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Resumo

Mostramos a existência de métricas adaptadas para conjuntos singulares hiperbólicos

de codimensão um com respeito a um campo C1 em uma variedade compacta de dimensão

finita sem uso de formas quadráticas. Analisando as medidas de um sistema, provamos

um teorema tipo-Kingman para medidas finitas arbitrárias assumindo algumas condições

em um espaço métrico qualquer, e fornecemos condições necessárias que garatem a ex-

istência de medidas invariantes em espaços separáveis e localmente compactos para funções

próprias cont́ınuas. Além disso, usamos o operador de Perron-Frobenius e as técnicas de-

senvolvidas aqui para obter um outro critério que garante a existência de medidas invari-

antes para funções cont́ınuas (não necessariamente funções próprias) em espaços métricos

localmente compactos e separáveis.

Palavras-chave: Conjunto singular hipérbolico, métricas adaptadas, Teorema tipo-Kingman,

localmente compacto, separável, medidas invariantes, operador de Perron-Frobenius.
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Abstract

We show the existence of singular adapted metrics for any codimension one sin-

gular hyperbolic set with respect to a C1 vector field on finite dimensional compact man-

ifolds without using quadradic forms. Considering the measures of a system, we provide

a Kingman-like Theorem for an arbitrary finite measure assuming some conditions in any

metric space, and we give necessary conditions to guarantee the existence of invariant

measures in locally compact and separable metric spaces for continuous proper maps.

Moreover, we use the Perron-Frobenius operator and the techniques developed here to

obtain other criteria to guarantee the existence of invariant measures for continuous maps

(not necessarily a proper maps) in locally compact separable metric spaces.

Keywords: Singular hyperbolic set, adapted metrics, Kingman-like Theorem, locally

compact, separable, invariant measures, Perron-Frobenius operator.
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Introduction

Let M be a connected compact finite m-dimensional manifold, m ≥ 3, with or

without boundary. We consider a vector field X, such that X is inwardly transverse to

the boundary ∂M , if ∂M 6= ∅. The flow generated by X is denoted by Xt.

A hyperbolic set for a flow Xt on a finite dimensional Riemannian manifold M

is a compact invariant set Γ with a continuous splitting of the tangent bundle, TΓM =

Es ⊕ EX ⊕ Eu, where EX is the direction of the vector field, for which the subbundles

are invariant under the derivative DXt of the flow Xt

DXt · E∗x = E∗Xt(x), x ∈ Γ, t ∈ R, ∗ = s,X, u; (1)

and Es is uniformly contracted by DXt and Eu is likewise expanded: there are K,λ > 0

so that

‖DXt |Esx ‖ ≤ Ke−λt, ‖(DXt |Eux )−1‖ ≤ Ke−λt, x ∈ Γ, t ∈ R. (2)

Very strong properties can be deduced from the existence of such hyperbolic structure;

see for instance [19, 20, 67, 43, 60].

An important feature of hyperbolic structures is that it does not depends on the

metric on the ambient manifold (see [36]). We recall that a metric is said to be adapted

to the hyperbolic structure if we can take K = 1 in equation (2).

Weaker notions of hyperbolicity (e.g. dominated splitting, partial hyperbolicity,

volume hyperbolicity, sectional hyperbolicity, singular hyperbolicity) have been developed

to encompass larger classes of systems beyond the uniformly hyperbolic ones; see [18] and

specifically [72, 6, 11] for singular hyperbolicity and Lorenz-like attractors.

In the same work [36], Hirsch, Pugh and Shub asked about adapted metrics for

dominated splittings. The positive answer was given by Gourmelon [34] in 2007, where it

is given adapted metrics to dominated splittings for both diffeomorphisms and flows, and

he also gives an adapted metric for partially hyperbolic splittings as well.

Proving the existence of some hyperbolic structure is, in general, a non-trivial

matter, even in its weaker forms.

1
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In [48], Lewowicz proved that a diffeomorphism on a compact riemannian man-

ifold is Anosov if and only if its derivative admits a nondegenerate Lyapunov quadratic

function.

An example of application of the adapted metric from [34] is contained in [7],

where L. Salgado and V. Araújo, following the spirit of Lewowicz’s result, construct

quadratic forms which characterize partially hyperbolic and singular hyperbolic structures

on a trapping region for flows.

In [8], L. Salgado and V. Araújo provided an alternative way to obtain singular

hyperbolicity for three-dimensional flows using the same expression as in Proposition 1.11

applied to the infinitesimal generator of the exterior square ∧2DXt of the cocycle DXt.

This infinitesimal generator can be explicitly calculated through the infinitesimal gener-

ator DX of the linear multiplicative cocycle DXt associated to the vector field X.

Here, in Chapter 1, the author and L. Salgado provide a similar result as above

for m-dimensional flows if this admits a partially hyperbolic splitting for which one of the

invariant subbundles is one-dimensional.

In [8], V. Araújo and L. Salgado noted that the existence of an adapted metric

could be considered for singular hyperbolic splittings, and they proved it for a three-

dimensional vector field by using quadratic forms.

In [62, Theorem B], the author and L. Salgado showed the existence of adapted

metrics for any singular hyperbolic set Γ of a C1 vector fields in the particular setting

where Γ has a partially hyperbolic splitting TΓM = E ⊕ F with F volume expanding

and E an one-dimensional uniformly contracting bundle, extending the result from [8] for

any codimension one singular hyperbolic set. This is also done under the point of view of

J-algebras of Potapov [77], confirming the very interesting feature of the quadratic forms

technique from which we can get adapted metrics.

Here, in Chapter 1, in a joint work with V. Araújo and L. Salgado, we also proved

this result but this is made in a certain different way from [8, 62]. Now, we make this

without using quadratic forms, we only use multilinear algebra and the dynamics.

In Chapter 2, our purpose is to investigate Kingman-like Theorems for arbitrary

finite measures.

Let (M,A, µ) be a measure space equipped with a σ-finite measure, and T : M →
M be a measurable map.

If µ(A) = µ(T−1(A)) for all A ∈ A then µ is said to be invariant under T or,

equivalently, T is measure-preserving.

The most important results of invariant measures theory are Kingman’s Theorem

(see [13]) and Birkhoff’s Theorem (see [16]).

The basic idea to proof Kingman’s Theorem is to apply Fekete’s Subadditive
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Lemma. This Lemma yields information about subadditive sequences (an)n in R proving

that the limit lim
n→∞

an
n

= inf
n

an
n

= a and satisfies −∞ ≤ a < ∞. This sequence occurs

naturaly when we work with invariant measures and a subbaditive sequence of functions

for a transformation in a manifold.

Derriennic [29] generalized Fekete’s Lemma as follows. Let (an)n be a sequence

in R and (cn)n be a sequence such that cn ≥ 0. If an+m ≤ an + am + cn for all n,m ≥ 1,

and lim
n

cn
n

= 0 then the limit lim
n

an
n

= a and satisfies −∞ ≤ a < ∞. He utilizes this

result and others techniques to provide a generalization for Kingman’s Theorem.

Other generalisations of Kingman’s Theorem were proved by Akcoglu and Suche-

ston [2] (for superadditive processes), Shurger [65] (a stochastic analogue of generalization

of Kingman’s Theorem given by Derriennic), and recently by A. Karlsson and Margulis

[41] (for ergodic measure preserving transformations).

Here, we will show a Kingman-like Theorem for an arbitrary finite measure as-

suming some conditions. This theorem was inspired by the proof of Kingman’s Theorem

given by Avila and Bochi [13].

Generalisations of Birkhoff’s Theorem were proved by E.Hopf [37] (for infinite

measure preserving transformations), J. Aaronson [1, Theorem 2.4.2] (for conservative

ergodic measure transformations), W. Hurewicz [38] (for conservative nonsingular trans-

formations where the observables are defined by means of Radon-Nykodim Theorem and

the measure can be finite or infinite), R. Chacon, D.Ornsten [25] (for Markov operators),

M. Carvalho and F. Moreira [22] (for half-invariant measures), and recently M. Carvalho

and F. Moreira [23] (for ultralimits by means of ultrafilters).

As an application of our Kingman-like Theorem, we formulated a version of

Birkhoff’s Theorem for bounded observables and finite measures. Our result are not

contemplated by previous work:

(a) in [38], Hurewicz worked in context of conservative transformations and

bounded observables defined by means of Radon-Nykodim Theorem;

(b) in [22, Theorem 1.2], Carvalho and Moreira showed that every finite and

half-invariant measure is an invariant measure, and our theorem was proved for a finite

arbitraty measure;

(c) in [23], Carvalho and Moreira showed that the Birkhoff’s Theorem holds for

each non-principal ultrafilter, so for this Theorem to imply our result it is necessary that

the value of integral be the same for each non-principal ultrafilter, however it is not clear

how to compute this, because the ultrafilters are obtained by Zorn’s Lemma, and therefore

we do not have an expression for these ultrafilters.

In Chapter 3, we are interested in finding necessary conditions to ensure the exis-

tence of invariant finite measures in locally compact separable metric spaces for continuous
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proper maps.

We recall that under theses conditions (locally compact and separable metric

spaces and continuous proper maps) some authors (see [49, 51, 58]) constructed a vari-

ational principle. Recently, Caldas and Patrão [21] dropped the proper condition of the

map and extended the result for any continuous map.

Results that guarantee the existence of invariant measures were proved for Groups

([26, 32, 57]), Markov Chains ([46, 47, 66, 75]), and Dynamical Systems (for recent results

see [9]). The most celebrated result of this theory was proved by Krylov and Bogolyubov

[17] for compact metric space. Precisely, they showed that if f : M →M is a continuous

map then f admits an invariant Borel probability measure where M is a compact metric

space.

We observe that our result is obtained by means of Functional Analysis and

Measure Theory, and allows us to provide a natural characterization for the existence of

invariant measures in this context (locally compact and separable metric spaces for contin-

uous proper maps). Moreover, we use the Perron-Frobenius operator and the techniques

developed here to obtain other criteria to guarantee the existence of invariant measures

in locally compact and separable metric spaces for continuous functions (not necessarily

a proper map).

To facilite acess to the individual topics, the chapters are rendered as self-contained

as possible.

Finally, in Chapter 4, we discuss future perspectives of this work, considering

some problems and conjectures.



Chapter 1

Singular hyperbolic flows

The best known and simplest examples of chaotic dynamical systems are hyper-

bolic systems. A hyperbolic set is defined to be a compact invariant set Γ of a diffeomor-

phism f in a compact manifold such that there exists a splitting of the tangent bundle TΓ

into two supplementary, df -invariant subbundles, called the stable and the unstable bun-

dles that are uniformly contracted and expanded, by the derivative dfn, for some n > 0.

The hyperbolicity of Γ does not depend on the metric on the manifold, but the smallest

time n where the contraction/expansion phenomena are seen depends on the metric; a

Riemannian metric is said to be adapted to the hyperbolic set Γ if one can take n = 1.

Hirsch, Pugh and Shub obtain that any hyperbolic set admits an adapted Riemannian

metric applying Holmes’ Theorem (see [36] p.15).

Weaker notions of hyperbolicity (e.g. dominated splitting, partial hyperbolicity,

volume hyperbolicity, sectional hyperbolicity, singular hyperbolicity) have been developed

to encompass larger classes of systems beyond the uniformly hyperbolic ones; see [18] and

specifically [72, 6, 11] for singular hyperbolicity and Lorenz-like attractors.

In the same work [36], Hirsch, Pugh and Shub asked about adapted metrics for

dominated splittings. The positive answer was given by Gourmelon [34] in 2007, where

it is given adapted metrics to dominated splittings for both diffeomorphisms and flows,

and he also gives an adapted metric for partially hyperbolic splittings as well. To do this

Gourmelon adapted the Holmes’ Theorem to the case of dominated behaviours.

For a partially hyperbolic splitting TΓM = E ⊕ F of Γ, a C1 vector field X on a

m-manifold, we provided an alternative way to obtain singular-hyperbolicity using only

the tangent map DX of X and its derivative DXt whether E is one-dimensional subspace.

Moreover, we show the existence of singular adapted metrics for any codimension

one singular hyperbolic set Γ with respect to a C1 vector field on finite dimensional

compact manifolds.

This results were published in [62] (in a joint work with L. Salgado) and [5] (in a

5



CHAPTER 1. SINGULAR HYPERBOLIC FLOWS 6

joint work with V.Araújo and L. Salgado).

1.0.1 Statements of main results of Chapter

In the sequel, we write J̃(v) =< J̃xv, v >, where J̃x is given in Proposition 1.11,

that is, J̃(v) is the time derivative of a quadratic form J under the action of the flow.

The absolute value of the cross product (also called vector product) on a 3-

dimensional vector space V , denote by w = u × v, provides the length of the vector

w. It is very useful to calculate the area expansion of the parallelogram generated by u, v,

under the action of a linear operator.

Following this way, in [8], L. Salgado and V. Araújo proved the result below.

Theorem 1.1. [8, Theorem B] Suppose that X is 3-dimensional vector field on M which

is non-negative strictly J-separated over a non-trivial subset Γ, where J has index 1. Then

1. ∧2DXt is strictly (−J)-separated;

2. Γ is a singular hyperbolic set if either one of the following properties is true

(a) ∆̃t
0(x) −−−−→

t→+∞
−∞ for all x ∈ Γ.

(b) J̃− 2 tr(DX)J > 0 on Γ.

Here, we generalized this result to m and k = m− 1, as follows.

If ∧kDXt is strictly separated with respect to some family J of quadratic forms,

then there exists the function δk as stated in Proposition 1.11 with respect to the cocyle

∧kDXt. We set

∆̃b
a(x) :=

∫ b

a

δk(Xs(x)) ds

the area under the function δk : U → R given by Proposition 1.11 with respect to ∧kDXt

and its infinitesimal generator.

If k = m− 1, it is not difficult to see that this function is related to X and δ as

follows: let δ : Γ → R be the function associated to J and DXt, as given by Proposition

1.11, then δk = 2 tr(DX) − δ, where tr(DX) represents the trace of the linear operator

DXx : TxM 	, x ∈M .

We recall that J̃ = ∂tJ is the time derivative of J along the flow; see Remark 1.12.

Our first main result is the following.

Theorem A. Suppose that X is m-dimensional vector field on M which is non-negative

strictly J-separated over a non-trivial subset Γ, where J has index 1. Then
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1. If Γ is a singular hyperbolic set then ∧(m−1)DXt is strictly (−J)-separated;

2. Γ is a singular hyperbolic set if either one of the following properties is true

(a) ∆̃t
0(x) −−−−→

t→+∞
−∞ for all x ∈ Γ.

(b) J̃− 2 tr(DX)J > 0 on Γ.

We work here with exterior products of codimension one. See [50] for more details

on this subject.

This result provides useful sufficient conditions for a m-dimensional vector field to

be singular hyperbolic if k = m−1, using only one family of quadratic forms J and its space

derivative DX, avoiding the need to check cone invariance and contraction/expansion

conditions for the flow Xt generated by X on a neighborhood of Γ.

Now we recall the definition of adapted metrics in the singular hyperbolic setting.

Definition 1.2. We say a Riemannian metric 〈·, ·〉 adapted to a singular hyperbolic

splitting TΓ = E ⊕ F if it induces a norm | · | such that there exists λ > 0 satisfying for

all x ∈ Γ and t > 0 simultaneously

|DXt |Ex | ·
∣∣(DXt |Fx)−1| ≤ e−λt, |DXt |Ex | ≤ e−λt and | det(DXt |Fx)| ≥ eλt.

We call it singular adapted metric, for simplicity.

This extends the notion of adapted metric for dominated and partially hyperbolic

splittings; see e.g. [34].

In [8], L. Salgado and V. Araújo proved the next result.

Theorem 1.3. [8, Theorem C] Let Γ be a singular-hyperbolic set for a C1 three-dimensional

vector field X. Then Γ admits a singular adapted metric.

In [62, Theorem B], the author and L. Salgado showed the existence of adapted

metrics for any singular hyperbolic set Γ of a C1 vector fields in particular setting where

Γ has a partially hyperbolic splitting TΓM = E ⊕ F with F volume expanding and E

a one-dimensional uniformly contracting bundle, extending the result from [8] for any

codimension one singular hyperbolic set.

Here, in a joint work with V. Araújo and L. Salgado, we also proved this result

but in this work this is made in a certain different way from [8, 62]. Now, we make this

without using quadratic forms, we only use multilinear algebra and the dynamics.

Consider a partially hyperbolic splitting TΓM = E ⊕ F where E is uniformly

contracted and F is volume expanding. We show that for C1 flows having a singular-

hyperbolic set Γ such that E is one-dimensional subspace there exists a metric adapted

to the partial hyperbolicity and the area expansion, as follows.
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Theorem B. Let Γ be a singular-hyperbolic set of codimension one for a C1 m-dimensional

vector field X. Then Γ admits a singular adapted metric.

We present the relevant definitions and auxiliary results in the next section.

The chapter is organized as follow. In the present Section we provide an intro-

duction and statement of main results. In Section 1.1 we give the main definitions and

useful properties of quadratic forms. In Section 1.2 we provide some auxiliary results. In

Section 1.3 we give the proofs of our theorems.

1.1 Preliminary definitions and results

We now present preliminary definitions and results.

We recall that a trapping region U for a flow Xt is an open subset of the manifold

M which satisfies: Xt(U) is contained in U for all t > 0, and there exists T > 0 such

that Xt(U) is contained in the interior of U for all t > T . We define Γ(U) = ΓX(U) :=

∩t>0Xt(U) to be the maximal positive invariant subset in the trapping region U .

A singularity for the vector field X is a point σ ∈ M such that X(σ) = ~0 or,

equivalently, Xt(σ) = σ for all t ∈ R. The set formed by singularities is the singular set

of X denoted Sing(X). We say that a singularity is hyperbolic if the eigenvalues of the

derivative DX(σ) of the vector field at the singularity σ have nonzero real part.

Definition 1.4. A dominated splitting over a compact invariant set Λ of X is a contin-

uous DXt-invariant splitting TΛM = E ⊕ F with Ex 6= {0}, Fx 6= {0} for every x ∈ Λ

and such that there are positive constants K,λ satisfying

‖DXt|Ex‖ · ‖DX−t|FXt(x)‖ < Ke−λt, for all x ∈ Λ, and all t > 0. (1.1)

A compact invariant set Λ is said to be partially hyperbolic if it exhibits a domi-

nated splitting TΛM = E ⊕ F such that subbundle E is uniformly contracted, i.e., there

exists C > 0 and λ > 0 such that ‖DXt|Ex‖ ≤ Ce−λt for t ≥ 0. In this case F is the

central subbundle of Λ. Or else, we may replace uniform contraction along E by uniform

expansion along F (the right hand side condition in (2)).

We say that a DXt-invariant subbundle F ⊂ TΛM is a sectionally expanding

subbundle if dimFx ≥ 2 is constant for x ∈ Λ and there are positive constants C, λ such

that for every x ∈ Λ and every two-dimensional linear subspace Lx ⊂ Fx one has

| det(DXt|Lx)| > Ceλt, for all t > 0. (1.2)
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Definition 1.5. [53, Definition 2.7] A sectional-hyperbolic set is a partially hyperbolic

set whose central subbundle is sectionally expanding.

This is a particular case of the so called singular hyperbolicity whose definition

we recall now. A DXt-invariant subbundle F ⊂ TΛM is said to be a volume expanding if

in the above condition 1.2, we may write

| det(DXt|Fx)| > Ceλt, for all t > 0. (1.3)

Definition 1.6. [54, Definition 1] A singular hyperbolic set is a partially hyperbolic set

whose central subbundle is volume expanding.

Clearly, in the three-dimensional case, these notions are equivalent.

This is a feature of the Lorenz attractor as proved in [69] and also a notion

that extends hyperbolicity for singular flows, because sectional hyperbolic sets without

singularities are hyperbolic; see [55, 6].

1.1.1 Linear multiplicative cocycles over flows

Let A : G× R→ G be a smooth map given by a collection of linear bijections

At(x) : Gx → GXt(x), x ∈ Γ, t ∈ R,

where Γ is the base space of the finite dimensional vector bundle G, satisfying the cocycle

property

A0(x) = Id, At+s(x) = At(Xs(x)) ◦ As(x), x ∈ Γ, t, s ∈ R,

with {Xt}t∈R a complete smooth flow over M ⊃ Γ. We note that for each fixed t > 0 the

map At : G→ G, vx ∈ Gx 7→ At(x) · vx ∈ GXt(x) is an automorphism of the vector bundle

G.

The natural example of a linear multiplicative cocycle over a smooth flow Xt on

a manifold is the derivative cocycle At(x) = DXt(x) on the tangent bundle G = TM of a

finite dimensional compact manifold M . Another example is given by the exterior power

At(x) = ∧kDXt of DXt acting on G = ∧kTM , the family of all k-vectors on the tangent

spaces of M , for some fixed 1 ≤ k ≤ dimG.

It is well-known that the exterior power of a inner product space has a naturally

induced inner product and thus a norm. Thus G = ∧kTM has an induced norm from the

Riemannian metric of M . For more details see e.g. [12].
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In what follows we assume that the vector bundle G has a smoothly defined inner

product in each fiber Gx which induces a corresponding norm ‖ · ‖x, x ∈ Γ.

Definition 1.7. A continuous splitting G = E ⊕ F of the vector bundle G into a pair of

subbundles is dominated (with respect to the automorphism A over Γ) if

• the splitting is invariant: At(x) · Ex = EXt(x) and At(x) · Fx = FXt(x) for all x ∈ Γ

and t ∈ R; and

• there are positive constants K,λ satisfying

‖At|Ex‖ · ‖A−t|FXt(x)‖ < Ke−λt, for all x ∈ Γ, and all t > 0. (1.4)

We say that the splitting G = E⊕F is partially hyperbolic if it is dominated and

the subbundle E is uniformly contracted: ‖At | Ex‖ ≤ Ce−µt for all t > 0 and suitable

constants C, µ > 0.

1.1.2 Fields of quadratic forms, positive and negative cones

Let EU be a finite dimensional vector bundle with inner product 〈·, ·〉 and base

given by the trapping region U ⊂M . Let J : EU → R be a continuous family of quadratic

forms Jx : Ex → R which are non-degenerate and have index 0 < q < dim(E) = n. The

index q of J means that the maximal dimension of subspaces of non-positive vectors is q.

Using the inner product, we can represent J by a family of self-adjoint operators Jx : Ex 	

as Jx(v) = 〈Jx(v), v〉, v ∈ Ex, x ∈ U .

We also assume that (Jx)x∈U is continuously differentiable along the flow. The

continuity assumption on J means that for every continuous section Z of EU the map

U 3 x 7→ J(Z(x)) ∈ R is continuous. The C1 assumption on J along the flow means that

the map R 3 t 7→ JXt(x)(Z(Xt(x))) ∈ R is continuously differentiable for all x ∈ U and

each C1 section Z of EU .

Using Lagrange diagonalization of a quadratic form, it is easy to see that the

choice of basis to diagonalize Jy depends smoothly on y if the family (Jx)x∈U is smooth,

for all y close enough to a given x. Therefore, choosing a basis for Tx adapted to Jx at each

x ∈ U , we can assume that locally our forms are given by 〈Jx(v), v〉 with Jx a diagonal

matrix whose entries belong to {±1}, J∗x = Jx, J
2
x = I and the basis vectors depend as

smooth on x as the family of forms (Jx)x.

We let C± = {C±(x)}x∈U be the family of positive and negative cones associated

to J

C±(x) := {0} ∪ {v ∈ Ex : ±Jx(v) > 0}, x ∈ U,
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and also let C0 = {C0(x)}x∈U be the corresponding family of zero vectors C0(x) = J−1
x ({0})

for all x ∈ U .

1.1.3 Strict J-separation for linear multiplicative cocycles

Let A : E × R → E be a linear multiplicative cocycle on the vector bundle E

over the flow Xt. The following definitions are fundamental to state our results.

Definition 1.8. Given a continuous field of non-degenerate quadratic forms J with con-

stant index on the positively invariant open subset U for the flow Xt, we say that the

cocycle At(x) over Xt is

• J-separated if At(x)(C+(x)) ⊂ C+(Xt(x)), for all t > 0 and x ∈ U (simple cone

invariance);

• strictly J-separated if At(x)(C+(x) ∪ C0(x)) ⊂ C+(Xt(x)), for all t > 0 and x ∈ U
(strict cone invariance).

• J-monotone if JXt(x)(DXt(x)v) ≥ Jx(v), for each v ∈ TxM \ {0} and t > 0;

• strictly J-monotone if ∂t
(
JXt(x)(DXt(x)v)

)
|t=0> 0, for all v ∈ TxM \ {0}, t > 0

and x ∈ U ;

• J-isometry if JXt(x)(DXt(x)v) = Jx(v), for each v ∈ TxM and x ∈ U .

We say that the flow Xt is (strictly) J-separated on U if DXt(x) is (strictly) J-separated

on TUM . Analogously, the flow of X on U is (strictly) J-monotone if DXt(x) is (strictly)

J-monotone.

Remark 1.9. If a flow is strictly J-separated, then for v ∈ TxM such that Jx(v) ≤ 0 we

have JX−t(x)(DX−t(v)) < 0, for all t > 0, and x such that X−s(x) ∈ U for every s ∈ [−t, 0].

Indeed, otherwise JX−t(x)(DX−t(v)) ≥ 0 would imply Jx(v) = Jx
(
DXt(DX−t(v))

)
> 0,

contradicting the assumption that v was a non-positive vector.

This means that a flow Xt is strictly J-separated if, and only if, its time reversal

X−t is strictly (−J)-separated.

Remark 1.10. Let V be a real finite dimensional vector space, and L : V → V be a

J-separated linear operator. Then L can be uniquely represented by L = RT , where T

is a J-isometry (i.e. J(T (v)) = 〈Jx(Tv), T v〉 = 〈Jx(v), v〉 = J(v), v ∈ V ) and R is

J-symmetric (i.e. 〈Jx(Rv), w〉 = 〈v, JxRw〉, for v, w ∈ V ) with positive spectrum; the

operator R can be diagonalized by a J-isometry, and there exist constants r− and r+ such

that the operator L is (strictly) J-monotonous if, and only, if r− ≤ (<) 1 and r+ ≥ (>) 1.

For more details see [7, Proposition 2.4] and comments below of the Theorem 1.2 in [77].
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A vector field X is J-non-negative on U if J(X(x)) ≥ 0 for all x ∈ U , and J-non-

positive on U if J(X(x)) ≤ 0 for all x ∈ U . When the quadratic form used in the context

is clear, we will simply say that X is non-negative or non-positive.

We say that a C1 family J of indefinite and non-degenerate quadratic forms is

compatible with a continuous splitting EΓ⊕FΓ = E of a vector bundle over some compact

subset Γ if Ex is a J-negative subspace and Fx is a J-positive subspace for all x ∈ Γ.

Proposition 1.11. [7, Proposition 1.3] A J-non-negative vector field X on U is strictly

J-separated if, and only if, there exists a compatible family J0 of forms and there exists a

function δ : U → R such that the operator J̃0,x := J0 ·DX(x) +DX(x)∗ · J0 satisfies

J̃0,x − δ(x)J0 is positive definite, x ∈ U,

where DX(x)∗ is the adjoint of DX(x) with respect to the adapted inner product.

Remark 1.12. The expression for J̃0,x in terms of J0 and the infinitesimal generator of

DXt is, in fact, the time derivative of J0 along the flow direction at the point x, which we

denote ∂tJ0; see item 1 of Proposition 1.18. We keep this notation in what follows.

A characterization of dominated splittings, via quadratic forms is given in [7] (see

also [77]) as follow.

Theorem 1.13. [7, Theorem 2.13] The cocycle At(x) is strictly J-separated if, and only if,

EU admits a dominated splitting F−⊕F+ with respect to At(x) on the maximal invariant

subset Λ of U , with constant dimensions dimF− = q, dimF+ = p, dimM = p+ q.

This is an algebraic/geometrical way to prove the existence of dominated split-

tings. As we have said in the introduction, proving existence of some hyperbolic structure

is not an easy work to do, in general. One of the most habitual way is to use cone field

techniques, see for instance [56, 42, 59].

In [8, Example 5], L. Salgado and V. Araújo checked out the singular hyperbolicity

of geometric Lorenz attractor, in a most simple way, by using Theorem 1.1. It was proved

by Tucker [69], under computer assistance, that the Lorenz attractor exist for the classical

parameters.

In fact, we have an analogous result about partial hyperbolic splittings, as follow.

We say that a compact invariant subset Λ is non-trivial if

• either Λ does not contain singularities;

• or Λ contains at most finitely many singularities, Λ contains some regular orbit and

is connected.
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Theorem 1.14. [7, Theorem A] A non-trivial compact invariant subset Γ is a partially

hyperbolic set for a flow Xt if, and only if, there is a C1 field J of non-degenerate and in-

definite quadratic forms with constant index, equal to the dimension of the stable subspace

of Γ, such that Xt is a non-negative strictly J-separated flow on a neighborhood U of Γ.

Moreover E is a negative subspace, F a positive subspace and the splitting can be

made almost orthogonal.

Here strict J-separation corresponds to strict cone invariance under the action of

DXt and 〈·, ·〉 is a Riemannian inner product in the ambient manifold. We recall that the

index of a field quadratic forms J on a set Γ is the dimension of the J-negative space at

every tangent space TxM for x ∈ U . Moreover, we say that the splitting TΓM = E ⊕ F
is almost orthogonal if, given ε > 0, there exists a smooth inner product 〈·, ·〉 on TΓM so

that |〈u, v〉| < ε, for all u ∈ E, v ∈ F , with ‖u‖ = 1 = ‖v‖.
We note that the condition stated in Theorem 1.14 allows us to obtain partial

hyperbolicity checking a condition at every point of the compact invariant set that depends

only on the tangent map DX to the vector field X together with a family J of quadratic

forms without using the flow Xt or its derivative DXt. This is akin to checking the

stability of singularity of a vector field using a Lyapunov function. For example, it is

well known by Lyapunov’s Stability Theorem that if a singularity σ of a C1 vector field

Y : U ⊂ Rn → Rn, defined over an open set U , admits a strict Lyapunov funtion on σ,

then this is a asymptotically stable singularity. Lewowicz, in [48], used this idea replacing

stability of a singularity by topological stability of Anosov diffeomorphisms.

1.1.4 Exterior powers

We note that if E ⊕ F is a DXt-invariant splitting of TΓM , with {e1, . . . , e`} a

family of basis for E and {f1, . . . , fh} a family of basis for F , then F̃ = ∧kF generated

by {fi1 ∧ · · · ∧ fik}1≤i1<···<ik≤h is naturally ∧kDXt-invariant by construction. In addition,

Ẽ generated by {ei1 ∧ · · · ∧ eik}1≤i1<···<ik≤` together with all the exterior products of i

basis elements of E with j basis elements of F , where i + j = k and i, j ≥ 1, is also

∧kDXt-invariant and, moreover, Ẽ⊕ F̃ gives a splitting of the kth exterior power ∧kTΓM

of the subbundle TΓM . Let TΓM = EΓ⊕FΓ be a DXt-invariant splitting over the compact

Xt-invariant subset Γ such that dimF = k ≥ 2. Let F̃ = ∧kF be the ∧kDXt-invariant

subspace generated by the vectors of F and Ẽ be the ∧kDXt-invariant subspace such that

Ẽ ⊕ F̃ is a splitting of the kth exterior power ∧kTΓM of the subbundle TΓM .

We consider the action of the cocycle DXt(x) on k-vector that is the k-exterior

∧kDXt of the cocycle acting on ∧kTΓM .
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We denote by ‖ · ‖ the standard norm on k-vectors induced by the Riemannian

norm of M , see [12].

Remark 1.15. Let V to be a vector space of dimension N .

(i) The dimension of space ∧rV is dim∧rV =

(
N

r

)
. If {e1, · · · , eN} is a basis of V ,

so the set {ek1 ∧ · · · ∧ ekr : 1 ≤ k1 < · · · < kr ≤ N} is a basis in ∧rV with

(
N

r

)
elements.

(ii) If V has the inner product 〈, 〉, then the bilinear extension of

〈u1 ∧ · · · ∧ ur, v1 ∧ · · · ∧ vr〉 := det(〈ui, vj〉)r×r

defines a inner product in ∧rV . In particular, ||u1 ∧ · · · ∧ ur|| =
√

det(〈ui, uj〉)r×r
is the volume of r-dimensional parallelepiped H spanned by u1, · · · , ur, we write

vol(u1, · · · , ur) = vol(H) = det(H) = | det(u1, · · · , ur)|.

(iii) If A : V → V is a linear operator then the linear extension of ∧rA(u1∧· · ·∧ur) =

A(u1) ∧ · · · ∧ A(ur) defines a linear operator ∧rA on ∧rV .

(iv) Let A : V → V , and ∧rA : ∧rV → ∧rV linear operators with G spanned by

v1, · · · , vs ∈ V . Define H := A|G, then H is spanned by A(v1), · · · , A(vs) . So

| detA|G| = vol(A|G) = vol(H) = vol(A(v1), · · · , A(vs)) = ||A(v1) ∧ · · · ∧ A(vs)|| =

|| ∧s A(v1 ∧ · · · ∧ vs)||.

When DXt(ui) = vi(t) = vi, where G is spanned by u1, · · · , ur ∈ TΓM , and H is

spanned by v1, · · · , vr, we have H = DXt(G) = DXt|G. Thus,

| det(DXt|G)| = vol(DXt(u1), · · · , DXt(ur)) =

||DXt(u1) ∧ · · · ∧DXt(ur)|| = || ∧r DXt(u1 ∧ · · · ∧ ur)||.

It is natural to consider the linear multiplicative cocyle ∧kDXt over the flow Xt

of X on U , that is, for any k choice, u1, u2, · · · , uk of vectors in TxM,x ∈ U and t ∈ R
such that Xt(x) ∈ U we set

(∧kDXt) · (u1 ∧ u2 ∧ · · · ∧ uk) = (DXt · u1) ∧ (DXt · u2) ∧ · · · ∧ (DXt · uk)

see [12, Chapter 3, Section 2.3] or [74] for more details and standard results on exterior

algebra and exterior products of linear operator.
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In [8], L. Salgado and V. Araújo proved the following relation between a domi-

nated splitting and its exterior power.

Theorem 1.16. [8, Theorem A] The splitting TΓM = E ⊕ F is dominated for DXt if,

and only if, ∧kTΓM = Ẽ ⊕ F̃ is a dominated splitting for ∧kDXt.

Hence, the existence of a dominated splitting TΓM = EΓ ⊕ FΓ over the compact

Xt-invariant subset Γ, is equivalent to the bundle ∧kTΓM admits a dominated splitting

with respect to ∧kDXt : ∧kTΓM → ∧kTΓM .

As a consequence, they obtain the next characterization of three-dimensional

singular sets.

Corollary 1.17. [8, Corollary 1.5] Assume that M has dimension 3, E is uniformly

contracted by DXt, and that k = 2. Then E⊕F is a singular-hyperbolic splitting for DXt

if, and only if, Ẽ ⊕ F̃ is partially hyperbolic splitting for ∧2DXt such that F̃ is uniformly

expanded by ∧2DXt.

1.1.5 Properties of J-separated linear multiplicative cocycles

We present some useful properties about J-separated linear cocycles whose proofs

can be found in [7].

Let At(x) be a linear multiplicative cocycle over Xt. We define the infinitesimal

generator of At(x) by

D(x) := lim
t→0

At(x)− Id
t

. (1.5)

The following is the basis for arguments given by L. Salgado and V. Araújo in [7]

to prove the Theorem 1.14.

Proposition 1.18. [7, Proposition 2.7] Let At(x) be a cocycle over Xt defined on an open

subset U and D(x) its infinitesimal generator. Then

1. J̃(v) = ∂tJ(At(x)v) = 〈J̃Xt(x)At(x)v, At(x)v〉 for all v ∈ Ex and x ∈ U , where

J̃x := J ·D(x) +D(x)∗ · J (1.6)

and D(x)∗ denotes the adjoint of the linear map D(x) : Ex → Ex with respect to the

adapted inner product at x;
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2. the cocycle At(x) is J-separated if, and only if, there exists a neighborhood V of Λ,

V ⊂ U and a function δ : V → R such that

J̃x ≥ δ(x)Jx for all x ∈ V. (1.7)

In particular we get ∂t log |J(At(x)v)| ≥ δ(Xt(x)), v ∈ Ex, x ∈ V, t ≥ 0;

3. if the inequalities in the previous item are strict, then the cocycle At(x) is strictly J-

separated. Reciprocally, if At(x) is strictly J-separated, then there exists a compatible

family J0 of forms on V satisfying the strict inequalities of item (2).

4. For a J-separated cocycle At(x), we have
|J(At2 (x)v)|
|J(At1 (x)v)| ≥ exp ∆t2

t1(x) for all v ∈ Ex and

reals t1 < t2 so that J(At(x)v) 6= 0 for all t1 ≤ t ≤ t2, where ∆t2
t1(x) was defined

in (1.8).

5. we can bound δ at every x ∈ Γ by infv∈C+(x)
J̃(v)
J(v)
≤ δ(x) ≤ supv∈C−(x)

J̃(v)
J(v)

.

Remark 1.19. We stress that the necessary and sufficient condition in items (2-3) of

Proposition 1.18, for (strict) J-separation, shows that a cocycle At(x) is (strictly) J-

separated if, and only if, its inverse A−t(x) is (strictly) (−J)-separated.

Remark 1.20. Item (2) above of Proposition 1.18 shows that δ is a measure of the

“minimal instantaneous expansion rate” of |J ◦ At(x)|.

The area under the function δ provided by Proposition 1.18 allows us to detect

different dominated splittings with respect to linear multiplicative cocycles on vector

bundles (Proposition 1.21). For this, define the function

∆b
a(x) :=

∫ b

a

δ(Xs(x)) ds, x ∈ Γ, a, b ∈ R. (1.8)

Proposition 1.21. [7, Theorem 2.23] Let Γ be a compact invariant set for Xt admitting

a dominated splitting EΓ = F−⊕F+ for At(x), a linear multiplicative cocycle over Γ with

values in E. Let J be a C1 family of indefinite quadratic forms such that At(x) is strictly

J-separated. Then

1. F− ⊕ F+ is partially hyperbolic with F+ uniformly expanding if ∆t
0(x) −−−−→

t→+∞
+∞

for all x ∈ Γ.

2. F− ⊕ F+ is partially hyperbolic with F− uniformly contracting if ∆t
0(x) −−−−→

t→+∞
−∞

for all x ∈ Γ.
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3. F− ⊕ F+ is uniformly hyperbolic if, and only if, there exists a compatible family J0

of quadratic forms in a neighborhood of Γ such that J′0(v) > 0 for all v ∈ Ex and all

x ∈ Γ.

For the proof and more details about the Proposition 1.21, see [7].

1.2 Auxiliary results

1.2.1 Exterior products and main Lemma

From now, we present some properties about exterior products and the main

lemma to prove the Theorem A. Next, we are going to use Proposition 1.21 to obtain

sufficient conditions for a flow Xt on a m-manifold M to have a ∧m−1DXt-invariant

one-dimensional uniformly expanding direction orthogonal to the (m − 1)-dimensional

center-unstable bundle.

Let V a m-dimensional vector space, we denote V by V m, consider ∧kV m where

2 ≤ k ≤ m. Let B = {e1, · · · , em} a basis of V m. So {ej1∧· · ·∧ejk : 1 ≤ j1 < · · · < jk ≤ m}

is a basis of ∧kV m, and J := {(j1, · · · , jk) ∈ Nk : 1 ≤ j1 < · · · < jk ≤ m}. Let l =

(
m

k

)
,

so we have l combination of k vectors in {e1, · · · , em}, and |J | = l.

Take u1, u2, · · · , uk ∈ V m where uj = (u1
j , u

2
j , · · · , umj )B for all j ∈ {1, · · · , k}.

Define

C :=


u1

1 ... u1
k

... ... ...

um1 ... umk


m×k

. (1.9)

For (j1, · · · , jk) ∈ J , consider

Cj1,...,jk :=


uj11 ... uj1k

... ... ...

ujk1 ... ujkk


k×k

(1.10)

The following result holds

u1 ∧ · · · ∧ uk =
∑

(j1,...,jk)∈J

det(Cj1,...,jk)(ej1 ∧ · · · ∧ ejk). (1.11)

Let A : V m → V m a linear operator with matrix in basis B given by



CHAPTER 1. SINGULAR HYPERBOLIC FLOWS 18


a11 a12 ... a1m

... ... ... ...

am1 am2 ... amm


(m×m)

. (1.12)

We will denote this matrix by A too.

Consider ∧kA : ∧kV m → ∧kV m, note that A(u1)∧· · ·∧A(uk) = ∧kA(u1∧· · ·∧uk),
by (1.11) and the linearity of ∧kA, we have that

A(u1) ∧ · · · ∧ A(uk) =
∑

(j1,··· ,jk)∈J

det(Cj1,··· ,jk) ∧k A(ej1 ∧ · · · ∧ ejk) (1.13)

DefineAj := A(ej), soAj is the j-th column ofA, i.e., A(ej) = Aj = (a1j, · · · , amj)T ,

so A(ej) = [aij]m×1. Let Aj1···jk := (Aj1 · · ·Ajk)m×k where (j1, · · · , jk) ∈ J . For each

(i1 · · · ik), (j1 · · · jk) ∈ J consider

Ai1···ikj1···jk :=


ai1j1 ... ai1jk

... ... ...

aikj1 ... aikjk


k×k

(1.14)

Using that ∧kA(ej1 ∧ · · · ∧ ejk) = A(ej1) ∧ · · · ∧ A(ejk) with matrix

Aj1···jk := (Aj1 · · ·Ajk)m×k,

by (1.11) we obtain that

A(ej1) ∧ · · · ∧ A(ejk) =
∑

(i1,··· ,ik)∈J

det(Ai1···ikj1···jk)(ei1 ∧ · · · ∧ eik). (1.15)

Lemma 1.22. Let V to be vector space and A : V → V to be a linear operator then

∧(m−1)A = det(A) · (A−1)∗.

Under suitable identification, the announced formula holds for differential of a

diffeomorphism of a compact finite dimensional manifold.

Proof. Consider k = m− 1. We use the following identification between ∧(m−1)V and V .

For each (j1, · · · , jm−1) ∈ J , we identify ej1 ∧ · · · ∧ ej(m−1)
in ∧(m−1)V by δpep in V , where

p /∈ {j1, · · · , jm−1}, δp = 1 if p is odd, and δp = −1 if p is even.

We must show that for each (j1, · · · , jm−1) ∈ J the exterior product ∧(m−1)A(ej1∧
· · · ∧ ej(m−1)

) corresponds to the det(A) · (A−1)∗(δpep), where δpep is given as above.

Define S := det(A) · (A−1)∗, using that A−1 = 1
det(A)

Adj(A), we obtain that

S = cof(A) where cof(A) = [(−1)i+jMij]m×m and Mij is the determinant of the submatrix
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formed by deleting the i-th row and j-th column. We have that Mij = det(Ar1···rks1···sk) where

i /∈ {r1, · · · , rk} and j /∈ {s1, · · · , sk}.
Note that

cof(A)(δpep) = δp cof(A)(ep) = δp((−1)1+pM1p, (−1)2+pM2p, · · · , (−1)m+pMmp)B.

In case p is odd, δp = 1 and cof(A)(δpep) = (M1p,−M2p, · · · , (−1)m+pMmp)B.

We obtain that

cof(A)(δpep) = M1pe1 +M2p(−e2) + · · ·+Mmp(−1)m+pemp =

M1p(e1δ1) +M2p(e2δ2) + · · ·+Mmp(empδmp).

Using that

A(ej1) ∧ · · · ∧ A(ejk) =
∑

(i1,··· ,ik)∈J

det(Ai1···ikj1···jk)(ei1 ∧ · · · ∧ eik)

and Mij = det(Ar1···rks1···sk) where i /∈ {r1, · · · , rk} and j /∈ {s1, · · · , sk}, we have that

cof(A)(δpep) ∼= A(ej1) ∧ · · · ∧ A(ejk).

This concludes the proof.

The result below generalizes Corollary 1.17 to arbitrary n and k. The main

difficulty here is working on the dimensions of the subbundles and its exterior powers.

Lemma 1.23. The subbundle FΓ is volume expanding by DXt if, and only if, F̃ is uni-

formly expanded by ∧kDXt.

In particular, E⊕F is a singular hyperbolic splitting, where F is volume expanding

for DXt if, and only if, Ẽ ⊕ F̃ is partially hyperbolic splitting for ∧kDXt such that F̃ is

uniformly expanded by ∧kDXt.

Proof. We consider the action of the cocycle DXt(x) on k-vector that is the k-exterior

power ∧kDXt of the cocycle acting on ∧kTΓM .

Denote by ‖ · ‖ the standard norm on k-vectors induced by the Riemannian norm

of M ; see, e.g. [12]. We write m = dimM .

Suppose that TΓM admits a splitting EΓ⊕FΓ with dimEΓ = m−k and dimFΓ =

k.

We note that if E ⊕F is a DXt-invariant splitting of TΓM , with {e1, . . . , e(m−k)}
a family of basis for E and {f1, . . . , fk} a family of basis for F , then F̃ = ∧kF generated

by {fi1 ∧ · · · ∧ fik}1≤i1<···<ik≤k is naturally ∧kDXt-invariant by construction. Then, the

dimension of F̃ is one with basis given by the vector f1 ∧ · · · ∧ fk.
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Assume that FΓ is volume expanding by DXt. We must show that there exist C

and λ > 0 such that | ∧kDXt|P | ≥ Ceλt, for all t > 0, where P is spanned by f1∧ · · ·∧ fk.
Note that

|| ∧k DXt|P || = || ∧k DXt(f1 ∧ · · · ∧ fk)|| = ||DXt(f1) ∧ · · · ∧DXt(fk)||.

But f1, · · · , fk is a basis for F , by hypothesis there exist constants C and λ > 0

such that | det(DXt|F )| ≥ C.eλt for all t > 0. So,

| det(DXt|F )| = vol(DXt(f1), · · · , DXt(fk)) = ||DXt(f1) ∧ · · · ∧DXt(fk)||.
The reciprocal statement is straightforward.

Given a basis {f1, · · · , fk} of F , we have that

| det(DXt|F )| =

vol(DXt(f1), · · · , DXt(fk)) = ||DXt(f1) ∧ · · · ∧DXt(fk)|| =

|| ∧k DXt(f1 ∧ · · · ∧ fk)|| = || ∧k DXt|P ||

where P is spanned by f1 ∧ · · · ∧ fk.
However, by hypothesis, there exist C and λ > 0 such that || ∧k DXt|P || ≥ Ceλt,

for all t > 0.

Corollary 1.24. Assume that E is uniformly contracted by DXt. E ⊕ F is a singular-

hyperbolic splitting for DXt if, and only if, Ẽ ⊕ F̃ is partially hyperbolic splitting for

∧kDXt such that F̃ is uniformly expanded by ∧kDXt.

Let M be a Riemannian manifold m-dimensional with 〈·, ·〉 inner product in TΓM ,

and 〈·, ·〉∗ the inner product in ∧kTΓM induced by 〈·, ·〉 where ∧kTΓM =
⋃
x∈Γ ∧kTxM .

So for x ∈ Γ, we have that 〈·, ·〉 is defined on TxM , and 〈·, ·〉∗ is defined on ∧kTxM .

Lemma 1.25. Let M be a Riemannian m-dimensional manifold. Then, for each inner

product [·, ·]∗ in ∧(m−1)TΓM there exists an inner product [·, ·] on TΓM such that [·, ·]∗ is

induced by [·, ·].

Proof. Let M be a Riemannian m-dimensional manifold with an inner product 〈·, ·〉 in

TΓM , and 〈·, ·〉∗ the inner product in ∧(m−1)TΓM induced by 〈·, ·〉.
Take [·, ·]∗∗ an arbitrary inner product in ∧(m−1)TΓM . Using that [·, ·]∗∗ and 〈·, ·〉∗

are inner products in ∧(m−1)TΓM there exists a linear isomorphism J : ∧(m−1)TΓM →
∧(m−1)TΓM such that [u, v]∗∗ = 〈J(u), J(v)〉∗.

Define ϕ : GL(TΓM)→ GL(∧(m−1)TΓM) given by A 7→ ∧(m−1)A.

Note that ϕ is an injective linear homomorphism, and due to the dimensions of

the spaces, ϕ is a linear isomorphism.
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Hence, there exists A ∈ GL(TΓM) such that ∧(m−1)A = J .

Consider [x, y] := 〈A(x), A(y)〉 for x, y ∈ TzM and z ∈ Γ. Then if u =

u1 ∧ · · · ∧ u(m−1) and v = v1 ∧ · · · ∧ v(m−1) we get [u, v]∗ = det([ui, vj])(m−1)×(m−1) =

det(〈Aui, Avj〉)(m−1)×(m−1).

We have that

[u, v]∗ = det(〈A(ui), A(vj)〉)(m−1)×(m−1) = 〈∧(m−1)A(u),∧(m−1)A(v)〉∗.

On the other hand,

[u, v]∗∗ = 〈J(u), J(v)〉∗ = 〈∧(m−1)A(u),∧(m−1)A(v)〉∗.

Therefore, [·, ·]∗ = [·, ·]∗∗, and we are done.

1.3 Proofs of main results

We are now able to prove our main results.

1.3.1 Proof of Theorem A

Proof. Consider a m-manifold M and Γ a compact Xt-invariant subset having a singular-

hyperbolic splitting TΓM = EΓ ⊕ FΓ with dimEΓ = 1 . By Theorem 1.16 we have a

∧(m−1)DXt-invariant partial hyperbolic splitting ∧(m−1)TΓM = Ẽ ⊕ F̃ with dim F̃ = 1

and F̃ uniformly expanded. Following the proof of Theorem 1.16, if we write e for a

unit vector in Ex and {u1, u2, · · · , um−1} an orthonormal base for Fx, x ∈ Γ, then Ẽx

is a (m − 1)-dimensional vector space spanned by set {e ∧ ui1 ∧ ui2 ∧ · · · ∧ uim−2 with

i1, · · · , im−2 ∈ {1, · · · ,m− 1}}.
From Theorem 1.14 and the existence of adapted metrics (see e.g. [34]), there

exists a field J of quadratic forms so that X is J-non-negative, DXt is strictly J-separated

on a neighborhood U of Γ, EΓ is a negative subbundle, FΓ is a positive subbundle and

these subspaces are almost orthogonal. In other words, there exists a function δ : Γ→ R
such that J̃x − δ(x)Jx > 0, x ∈ Γ and we can locally write J(v) = 〈J(v), v〉 where J =

diag{−1, 1, · · · , 1} with respect to the basis {e, u1, · · · , um−1} and 〈·, ·〉 is the adapted

inner product; see [7].

By lemma 1.22, ∧(m−1)A = det(A) · (A−1)∗ with respect to the adapted inner

product which trivializes J, for any linear transformation A : TxM → TyM . Hence

∧m−1DXt(x) = det(DXt(x)) · (DX−t ◦Xt)
∗ and the infinitesimal generator D(m−1)(x) of

∧(m−1)DXt is the same as tr(DX(x)) · Id−DX(x)∗.
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Therefore, using the identification between ∧(m−1)TxM and TxM through the

adapted inner product, and Proposition 1.18

Ĵx(v) = ∂t(−J)(∧(m−1)DXt · v) |t=0 = 〈−(J ·D(m−1)(x) +D(m−1)(x)∗ · J)v, v〉

= 〈[(J ·DX(x) +DX(x)∗ · J)− 2 tr(DX(x))J]v, v〉

= (J̃− 2 tr(DX(x))J)(v). (1.16)

To obtain strict (−J)-separation of ∧(m−1)DXt we search a function δ(m−1) : Γ → R so

that

(J̃− 2 tr(DX)J)− δ(m−1)(−J) > 0 or J̃− (2 tr(DX)− δ(m−1))J > 0.

Hence it is enough to make δ(m−1) = 2 tr(DX) − δ. This shows that in our setting

∧(m−1)DXt is always strictly (−J)-separated.

Finally, according to Proposition 1.21, to obtain the partial hyperbolic splitting

of ∧(m−1)DXt which ensures singular-hyperbolicity, it is sufficient that either Ĵx is positive

definite or ∆̃b
a(x) =

∫ b
a
δ(m−1)(Xs(x)) ds satisfies item (1) of Proposition 1.21, for all x ∈ Γ.

This amounts precisely to the sufficient condition in the statement of Theorem A and we

are done.

Finally, we present the proof of Theorem B.

1.3.2 Proof of Theorem B

Let 〈·, ·〉 to be a Riemannian metric on TM and denote 〈·, ·〉x : TxM ×TxM → R
the induced inner product on TxM . We denote by 〈·, ·〉x,∗ the induced metric on ∧kTxM
as in Subsection 1.1.4. In particular, ‖u‖x,∗ :=

√
〈u, u〉x,∗ for u ∈ ∧kTxM .

Define the k-exterior tangent bundle ∧kTM by
⋃
x∈M{x} × ∧kTxM and the k-

exterior unit tangent bundle ∧k1TM by {(x, u) ∈ ∧kTM : u ∈ ∧kTxM and |u|x,∗ ≤ 1}.
We are now ready to present the proof of Theorem B.

Proof of Theorem B. Let a singular-hyperbolic set Γ for a C1 vector field X be given with

a splitting EΓ ⊕ FΓ with dimEΓ = m− k and dimFΓ = k.

Then F̃ = ∧kF generated by {fi1 ∧ · · · ∧ fik}1≤i1<···<ik≤k is naturally ∧kDXt-

invariant by construction, where {f1, . . . , fk} a basis for F . So dim(F̃ ) = 1 with basis

given by the vector f1 ∧ · · · ∧ fk.
By Corollary 2.2, we have a partially hyperbolic splitting Ẽ ⊕ F̃ for ∧kDXt such

that F̃ is uniformly expanded by ∧kDXt. Hence, from [34, Theorem 1], there exists an

adapted inner product [·, ·] for ∧kDXt over Γ, that is, there exists λ > 0 satisfying
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[∧kDXt |Ẽx ] · [∧
kDX−t |F̃Xt(x) ] ≤ e−λt and [∧kDXt |F̃x ] ≥ eλt, ∀t > 0, x ∈ Γ.

By Lemma 1.25, there exists an inner product [[·, ·]] on TΓM such that [·, ·] is

induced by [[·, ·]].
So there exists an inner product 〈〈·, ·〉〉 on TΓM with induced inner product

〈〈·, ·〉〉∗ on ∧(m−1)TΓM and λ > 0 such that

‖ ∧k DXt |Ẽx ‖∗ · ‖ ∧
k DX−t |F̃Xt(x) ‖∗ ≤ e−λt and ‖ ∧k DXt |F̃x ‖∗ ≥ eλt, ∀t >

0, x ∈ Γ where ‖ · ‖ is the norm induced by 〈〈·, ·〉〉.
Assuming the existence of this inner product defined on TΓM we prove the fol-

lowing Lemma.

Lemma 1.26. Suppose that there exists an inner product 〈〈·, ·〉〉 on TΓM with induced

inner product 〈〈·, ·〉〉∗ on ∧(m−1)TΓM and λ > 0 such that we have the following inequalities

‖ ∧k DXt |Ẽx ‖∗ · ‖ ∧
k DX−t |F̃Xt(x) ‖∗ ≤ e−λt and ‖ ∧k DXt |F̃x ‖∗ ≥ eλt for all t ∈ R and

x ∈ Γ. Then there exists an inner product 〈·, ·〉 in TΓM such that for all t > 0

1. |DXt |Ex | · |DX−t |FXt(x) | ≤ e−λt;

2. | ∧k DXt |Ẽx |∗ · | ∧
k DX−t |F̃Xt(x) |∗ ≤ e−λt; and

3. | ∧k DXt |F̃x |∗ ≥ eλt.

where | · | is the norm induced by 〈·, ·〉.

Proof. Let u ∈ Ex and v ∈ FXt(x) be such that ‖u‖ = 1 = ‖v‖. We observe that for a

given fixed t ∈ R

‖DXtu‖ · ‖DX−tv‖ = ‖ ∧k DXt(u ∧ u2 ∧ · · · ∧ uk)‖ · ‖ ∧k DX−t(v ∧ v2 ∧ · · · ∧ vk)‖

if we choose u2, · · · , uk ∈ TxM and v2, · · · , vk ∈ FXt(x) such that:

• 〈DXtu,DXtuj〉 = 0 for 2 ≤ j ≤ k and 〈DXtuj, DXtul〉 = δjl for 2 ≤ j, l ≤ k;

• 〈DX−tv,DX−tvj〉 = 0 for 2 ≤ j ≤ k and 〈DX−tvj, DX−tvl〉 = δjl for 2 ≤ j, l ≤ k.

Consequently we obtain

‖DXtu‖ · ‖DX−tv‖ ≤ ‖ ∧k DXt‖‖ ∧k DX−t‖‖u ∧ u2 ∧ · · · ∧ uk‖ · ‖v ∧ v2 ∧ · · · ∧ vk‖

≤ e−λt‖u ∧ u2 ∧ · · · ∧ uk‖ · ‖v ∧ v2 ∧ · · · ∧ vk‖.

We note that ‖uj‖ ≤ ‖DX−t(x)‖ since ‖DXtuj‖ = 1 and analogously ‖vj‖ ≤ ‖DXt(Xtx)‖
since ‖DX−tvj‖ = 1 for 2 ≤ j ≤ k with ‖u‖ = ‖v‖ = 1.
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We now set R = max{1, κ1}, where

κ1 = sup
t∈[−1,1]

sup
x∈Γ
‖DXt(x)‖

and define B[0, R] = {η ∈ TΓ : |η| ≤ R} a compact subset of TΓ.

Note that if we set t ∈ [−1, 1], then we get u, u2, · · · , uk, v, v2, · · · , vk ∈ B[0, R]

in the argument above.

Moreover
∏k

i=1B[0, R] is a compact subset of
∏k

i=1 TΓ =
∑

p∈Γ TpΓ ×
k· · · × TpΓ

and let I :
∏k

i=1 TΓ→ ∧kTΓ be the natural injection given by

(w1, · · · , wk) 7→ w1 ∧ · · · ∧ wk.

We can now define | · | = γ‖ · ‖ (or 〈·, ·〉 = γ2[[·, ·]]) where γ is a positive number

such that

sup
w∈

∏k
i=1B[0,R]

‖I(w)‖ ≤ γ−1.

It follows that

|DXtu| · |DX−tv| = γ‖ ∧k DXt(u ∧ u2 ∧ · · · ∧ uk)‖ · γ‖ ∧k DX−t(v ∧ v2 ∧ · · · ∧ vk)‖

≤ e−λtγ‖u ∧ u2 ∧ · · · ∧ uk‖ · γ‖v ∧ v2 ∧ · · · ∧ vk‖ ≤ e−λt

and note that the choice of γ does not change any of the previous relations involving ‖ · ‖.
Then for any given fixed t ∈ [−1, 1] we have obtained an adapted metric | · | that satisfies

the statement of the lemma.

For general t > 0, suppose first that t = n ∈ Z+. Then by invariance of the

subbundles

|DXnu| · |DX−nv| ≤ |
n−1∏
i=0

(DX1 ◦Xi) · u| · |
n−1∏
i=0

(DX−1 ◦Xn−i) · v|

≤
n−1∏
i=0

(
|DX1 |EXix | · |DX−1 |FXn−ix |

)
· |u| · |v| ≤ |u| · |v|e−nλ.

Now for non-integer t > 0 write t = [t]+α where α ∈ (0, 1) and [t] = sup{n ∈ Z+ : n ≤ t}
is the integer part function. Then

|DXtu| · |DX−tv| = |DX[t] ◦DXαu| · |DX−[t] ◦DX−αv|

≤ |DXαu| · |DX−αv|e−[t]λ ≤ |u| · |v|e−[t]λe−αλ = |u| · |v|e−tλ.

We have obtained a metric | · | satisfying item (1) in the statement of the Lemma. Analo-
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gously, it satisfies items (2) and (3) of the statement of the Lemma, and we are done.

From Lemma 1.26 we obtained an inner product 〈·, ·〉 in TΓM adapted to the

dominated splitting E ⊕ F for DXt, and this metric induces a metric in Ẽ ⊕ F̃ which is

an adapted metric to the partially hyperbolic splitting Ẽ ⊕ F̃ for ∧kDXt.

Moreover, from the definition of the inner product and exterior power, it follows

that for all t > 0

| det(DXt |Fx)| = |(∧kDXt)(f1 ∧ · ∧ fk)| = |(∧kDXt) |F̃ | ≥ eλt

since F is spanned by f1, . . . , fk. So | · | is adapted to the volume expansion along F .

To conclude, we are left to show that E admits a constant ω > 0 such that

|DXt |E | ≤ e−ωt for all t > 0. But since E is uniformly contracted, we know that

X(x) ∈ Fx for all x ∈ Γ.

Lemma 1.27. Let Γ be a compact invariant set for a flow X of a C1 vector field X on

M . Given a continuous splitting TΓM = E⊕F such that E is uniformly contracted, then

X(x) ∈ Fx for all x ∈ Γ.

Proof. See [4, Lemma 5.1] and [7, Lemma 3.3].

On the one hand, on each non-singular point x of Γ we obtain for w ∈ Ex

e−λt ≥ |DXt · w|
|DXt ·X(x)|

=
|DXt · w|
|X(Xt(x))|

≥ |DXt · w|
sup{|X(z)| : z ∈ Γ}

.

Now we define | · |∗ = ξ| · |, where ξ is a small positive constant such that sup{|X(z)|∗ :

z ∈ Γ} ≤ 1. We note that the choice of the positive constant ξ does not change any of

the previous relations involving | · |, except that now |DXt · w|∗ ≤ e−λt.

On the other hand, for σ ∈ Γ such that X(σ) = 0, we fix t > 0 and, since Γ is

a non-trivial invariant set, we can find a sequence xn → σ of regular points of Γ. The

continuity of the derivative cocycle ensures |DXt |Eσ |∗ = lim
n→∞

|DXt |Exn |∗ ≤ e−λt. Since

t > 0 was arbitrarily chosen, we see that | · |∗ is adapted for the contraction along Eσ.

This completes the proof of Theorem B.



Chapter 2

Kingman-like Theorem

As it is well-known, the Kingman Theorem is a striking tool to average the limit

of a subadditivity sequence if the system is equipped with an invariant measure. The

aim of this chapter is to provide a Kingman-like Theorem for an arbitrary finite measure

assuming some conditions. As an application we proved a version of Birkhoff’s Theorem

for bounded observables.

Let us describe one interesting consequence of this Theorem. Let X : M×R→M

be a continuous flow, and M to be a compact metric space. Consider Xt : M →M given

by Xt(x) = X(t, x), and ft : M → M defined by ft = Xt. Suppose that M is a compact

metric space, ϕ : M → R is a continuous function, and fix x ∈ M . If the following

inequality holds lim sup
n

1
n

∫ n
0
ϕ ◦ ft(yx)dt ≤ lim inf

n

1
n

∫ n
0
ϕ ◦ ft(x)dt for all yx ∈ ω(x), then

the limit lim
T→∞

1
T

∫ T
0
ϕ ◦ ft(x)dt exists.

We emphasize that our result sheds some new light on the problem of Birkhoff

average for a continuous observable in compact metric spaces.

The chapter is organized as follows: in Section 2.1 we give the statements of

main results. In Section 2.2, we provide the proof of results about continuous flow on

compact metric spaces. In Section 2.3 we prove the Corollary 2.6. Finally, in Section 2.4,

we present the proof of Theorem C.

2.1 Statements of main results of Chapter

In [29], Derriennic obtained a general version of Fekete’s Lemma (as we described

in the introduction) and proved a generalization of Kingman’s Theorem as follows.

Theorem 2.1. [29, Theorem 4] Let (M,A, µ) be a measure space, f : M → M be a

measurable function, µ be a finite measure, (ϕn)n be a sequence of measurable functions

where ϕn : M → R for each n in N. If the following conditions are satisfied:

26
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(i) µ is an invariant measure;

(ii) ϕn is µ-integrable for all n in N;

(iii) for all n, k ∈ N

ϕn+k − ϕn − ϕk ◦ fn ≤ fnhk

where (hk)k is a sequence of positive functions such that sup
k

∫
hkdµ < +∞;

(iv) inf
n

1
n

∫
ϕndµ > −∞.

Then the sequence (ϕn
n

)n converges µ-almost everywhere and in L1-norm to a

f -invariant function ϕ such that
∫
ϕdµ = lim

n

1
n

∫
ϕndµ.

First of all, we introduce some definitions and notations that will be appear on

text. Let (ϕn)n be a sequence of measurable functions where ϕn : M → R for each n in

N. We say that (ϕn)n is a subadditive sequence for f if ϕm+n ≤ ϕm + ϕn ◦ fm for all

m,n ≥ 1.

We consider a function ϕ− : M → [−∞,∞] given by ϕ−(x) = lim inf
n

ϕn(x)
n

. For

each ε > 0 fixed and k ∈ N we define

Eε
k = {x ∈M : ϕj(x) ≤ j(ϕ−(x) + ε) for some j ∈ {1, ..., k}}.

Note that Eε
k ⊆ Eε

k+1 and M =
∞⋃
k=1

Eε
k.

Theorem C. Let (M,A, µ) be a measure space, f : M →M be a measurable function, µ

be a finite measure. Suppose that (ϕn)n is a subadditive sequence for f such that ϕ1 ≤ β

for some β ∈ R. If the following conditions are satisfied:

(a) for all j ∈ N we have that ϕ−(f j(x)) = ϕ−(x) µ−almost everywhere x in M ;

(b) lim
k→∞

lim sup
n

1
n

n−k−1∑
i=0

µ(f−i(M \ E
1
`
k )) = 0 for each ` ∈ N \ {0}.

Then
∫
ϕ−dµ = inf

n

1
n

∫
ϕndµ. Moreover, if there exists γ > 0 such that for all

n > 0, ϕn
n
≥ −γ then

∫
ϕ−dµ = inf

n

1
n

∫
ϕndµ = lim

n

1
n

∫
ϕndµ.

Remark 2.2. Under hyphotesis of Theorem C, if
∫
ϕ−dµ = −∞ or β ≤ 0 then

∫
ϕ−dµ =

inf
n

1
n

∫
ϕndµ = lim

n

1
n

∫
ϕndµ. (See subsection 2.4.1)

Our goal is to provide a Kingman-like Theorem for an arbitrary measure assuming

only the conditions (a) and (b). Moreover, we obtain the convergence of integrals even

without a subadditive sequence of real numbers given by Fekete’s Lemma (or same version

of this result) as is usual when we work with invariant measures.
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Let (M,A, µ) be a measure space, f : M → M be a measurable transformation,

µ be a probability measure. Let ϕ : M → R be a measurable function, we consider (ϕn)n

the additive sequence for f given by ϕn :=
n−1∑
j=0

ϕ◦f j for each n in N, and ϕ−, ϕ+ functions

defined from M to [−∞,∞] given by ϕ−(x) = lim inf
n

ϕn(x)
n

, and ϕ+(x) = lim sup
n

ϕn(x)
n

.

Note that for every bounded function ϕ : M → R we have that ϕ−(f j(x)) =

ϕ−(x) µ−almost everywhere x in M for all j ∈ N. In fact, by definition,

ϕ−(f(x)) = lim inf
n

1
n

n−1∑
j=0

ϕ◦f j(f(x)) = lim inf
n

(
1
n

n−1∑
j=0

ϕ◦f j(x)+ 1
n
[ϕ(fnx)−ϕ(x)]

)
= ϕ−(x).

Remark 2.3. Under the the same hypotheses of Theorem C with condition (b) replaced

by condition (c), that says

(c) µ(f−i(M \ Eε
k)) ≤ µ(M \ Eε

k) for all i ∈ N, for any k ∈ N, and ε > 0,

we obtain the conclusion of Theorem C. This follows immediately by the lemma

below.

Lemma 2.4. Fixed ε > 0. If µ(f−i(M \ Eε
k)) ≤ µ(M \ Eε

k) for all i in N, then

lim
k→+∞

lim sup
n

1
n

n−k−1∑
i=0

µ(f−i(M \ Eε
k)) = 0.

Proof. Suppose that µ(f−i(M \ Eε
k)) ≤ µ(M \ Eε

k) so

1
n

n−k−1∑
i=0

µ(f−i(M \ Eε
k)) ≤ 1

n

n−k−1∑
i=0

µ(M \ Eε
k) = (1− k

n
)µ(M \ Eε

k),

and then

lim
k→+∞

lim sup
n

1
n

n−k−1∑
i=0

µ(M \ f−i(Eε
k)) = lim

k→+∞
µ(M \ Eε

k).

But µ(Eε
k) tends to 1 if k tends to infinity, so µ(M \Eε

k) tends to zero as k tends

to infinity.

We say that an observable ϕ satisfies hypothesis (c) if for all i, k ∈ N and ε > 0,

the following inequality µ(f−i(M \ Eε
k)) ≤ µ(M \ Eε

k) holds when we consider (ϕn)n an

additive sequence for f . We observe that if the measure µ is an invariant measure, then

every observable satisfies hypothesis (c).

Since every bounded observable satisfies hypothesis (a), we deduce Birkhoff’s

Theorem for finite measures and bounded observables as follows.

Corollary D. Let (M,A, µ) be a measure space, f : M → M be a measurable transfor-

mation, µ be a probability measure. If ϕ : M → R is a bounded measurable function that

satisfies the hypothesis (b) or (c). Then
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∫
ϕ−dµ = lim

n

1
n

∫ n−1∑
j=0

ϕ ◦ f jdµ = inf
n

1
n

∫ n−1∑
j=0

ϕ ◦ f jdµ.

Remark 2.5. In [22], Carvalho and Moreira introduced the notion of half-invariant mea-

sure µ, that means that

µ(f−1(B)) ≤ µ(B) (2.1)

for all measurable set B. Note that this implies that (µ(f−j(B)))j∈N is a decreasing se-

quence. The authors showed that for any bounded observable ϕ : M → R and a half-

invariant measure, the limit lim
n

1
n

n−1∑
j=0

ϕ ◦ f j(x) exists for µ a.e. point x in M . Here,

Corollary D tell us that condition 2.1 can be relaxed to consider only the sets of the type

M \ Eε
k for any ε > 0 and k ∈ N.

Let us mention one important consequence of Corollary D.

Let (W,d) be a metric space, g : W → W be a function, and x ∈ W . The set

O+x is the forward orbit of x, and it is given by O+x := {gn(x)}n∈N. A point x ∈ W is

a periodic point if there exists m ∈ N such that gmx = x. More generally, we say that a

point x ∈ W is eventually periodic if there exists j0 ∈ N such that gj0x is a periodic point.

Let S be a subset of W , and let g : W → W be a continuous function. The

ω-limit of S, denoted by ω(S, g), is the set of points y ∈ W for which there are z ∈ S and

a strictly increasing sequence of natural number {nk}k∈N such that gnkz → y as k →∞.

Note that ω(S, g) =
⋃
z∈S

ω({z}, g).

Consider Eε
k = {w ∈M :

ϕj
j

(w) ≤ ϕ−(w)+ε for some j ∈ {1, ..., k}}, (ϕn)n is the

additive sequence for f given by ϕn :=
n−1∑
j=0

ϕ ◦ f j for each n in N, and ϕ− is the function

defined from M to [−∞,∞) given by ϕ−(w) = lim inf
n

ϕn(w)
n

.

Corollary 2.6. Let (M,A) be a measurable space for M metric space, f : M → M be a

measurable transformation, and ϕ : M → R be a bounded measurable function. If one of

the following conditions is true

(i) lim
k→∞

lim sup
n

1
n

n−k−1∑
i=0

δx(f
−i(M \ E

1
`
k )) = 0 for each ` ∈ N \ {0} where δx the Dirac

measure of point x ∈M ;

(ii) Suppose that there exists x ∈ M such that for any ε > 0 there exist jε, kε ∈ N
satisfying that f j(x) ∈ Eε

kε
for j ≥ jε;

(iii) If M is a compact metric space, and there exists x ∈ M such that for any ε > 0

there exists kε ∈ N satisfying that ω({x}, f) is contained in the interior of Eε
kε

;

(iv) Suppose that M is a compact metric space, f, ϕ, ϕ− are continuous functions, and

ω({x}, f) is a finite set for some x ∈M .
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Then the limit lim
n→∞

1
n

n−1∑
j=0

ϕ ◦ f j(x) exists.

Remark 2.7. For each ε > 0 fixed and k ∈ N we define

F ε
k = {x ∈M : ϕj(x) ≥ j(ϕ+(x)− ε) for some j ∈ {1, ..., k}}.

We say that an observable ϕ satisfies the hypothesis (c′) if

(c′) for all i, k ∈ N and ε > 0, the following inequality µ(f−i(M \ F ε
k )) ≤ µ(M \ F ε

k )

holds when we consider (ϕn)n the additive sequence for f .

The next result is a direct application of Corollary D.

Corollary 2.8. Let (M,A, µ) be a measure space, f : M →M be a measurable transfor-

mation, µ be a probability measure. If ϕ : M → R is a measurable bounded function that

satisfies the hypothesis (c) and (c′), then there exists the limit ϕ̃(x) = lim
n

1
n

n−1∑
j=0

ϕ ◦ f j(x)

for µ almost every point x in M . Moreover, the function ϕ̃ defined as above is invariant

under f , integrable and satisfies
∫
ϕ̃dµ = lim

n

∫
1
n

n−1∑
j=0

ϕ ◦ f jdµ.

Proof. Note that ϕ− ≤ ϕ+, and γ = −ϕ is also a bounded function. By Corollary D,

lim
n

1
n

∫ n−1∑
j=0

ϕ ◦ f jdµ =
∫
ϕ+dµ. So

lim
n

1
n

∫ n−1∑
j=0

ϕ ◦ f jdµ =
∫
ϕ+dµ =

∫
ϕ−dµ.

Then
∫
ϕ−dµ =

∫
ϕ+dµ, and consequently, the functions ϕ− and ϕ+ coincide in

µ-a.e. So, ϕ̃ = ϕ− = ϕ+ for µ a.e. x in M , i.e., lim inf
n

ϕn(x)
n

= lim sup
n

ϕn(x)
n

for µ a.e. x in

M , then lim
n

ϕn(x)
n

exists for µ a.e. x in M , define ϕ̃(x) := lim
n

ϕn(x)
n

. This completes the

proof of corollary.

Now, we are going to introduce a version of item (ii) of Corollary 2.6 for contin-

uous flow on compact metric spaces. Let X : M × R → M be a continuous flow, and

M to be a compact metric space. Consider Xt : M → M given by Xt(x) = X(t, x), and

ft : M → M defined by ft = Xt. Let ϕ : M → R be a bounded measurable function, we

consider the following objects.

ϕ∗,−(y) = lim inf
n→∞

1
n

∫ n
0
ϕ ◦ ft(y)dt for each y ∈M ;

E∗,εkε = {y ∈M : 1
n

∫ n
0
ϕ ◦ ft(y)dt ≤ ϕ∗,−(y) + ε for some n ∈ {1, · · · , k}}.

Given x ∈M , we denote the Dirac measure of point x by δx.
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Corollary 2.9. Let ϕ : M → R be a bounded measurable function, and fix x ∈M . If for

any ε > 0 there exist tε ∈ R and kε ∈ N satisfying that δx(f−j(E
ε,∗
kε

)) = 1 for j ≥ tε and

j ∈ N, then the limit lim
T→∞

1
T

∫ T
0
ϕ ◦ ft(x)dt exists.

If ϕ is a continuous function, we obtain an interesting criterion to provide the

existence of Birkhoff’s limit as follows.

Theorem E. Suppose that M is a compact metric space, ϕ : M → R is a continuous

function, and fix x ∈M . If lim sup
n

1
n

∫ n
0
ϕ ◦ ft(yx)dt ≤ lim inf

n

1
n

∫ n
0
ϕ ◦ ft(x)dt for all yx ∈

ω(x), then for any ε > 0 there exist tε ∈ R and kε ∈ N satisfying that δx(f−j(E
ε,∗
kε

)) = 1

for j ≥ tε and j ∈ N. In particular, the limit lim
T→∞

1
T

∫ T
0
ϕ ◦ ft(x)dt exists.

Before we give our examples, we introduce some definition and result. We say

that x ∈ M is a 2d-point if for any yx ∈ ω(x) we have that ω(yx) is a fixed point (i.e.,

there exists q ∈ M such that ω(yx) = {q} and ft(q) = q for all t ∈ R). Define the fixed

point under X by FixX = {q ∈M : q is a fixed point}.
Let M be a compact metric space M , and ϕ : M → R be a continuous function.

Recall that if p, q ∈M and ω(p) = {q} then lim
T→∞

1
T

∫ T
0
ϕ ◦ ft(p)dt = ϕ(q). This allows us

to consider the next result.

Corollary 2.10. Suppose that M is a compact metric space, ϕ : M → R is a continuous

function, and take a 2d-point x ∈ M . Suppose that ϕ satisfies that ϕ|ω(x)∩FixX ≡ minϕ.

Then for any ε > 0 there exist tε ∈ R and kε ∈ N satisfying that δx(f−j(E
ε,∗
kε

)) = 1 for

j ≥ tε and j ∈ N. In particular, the limit lim
T→∞

1
T

∫ T
0
ϕ ◦ ft(x)dt exists.

Example 2.11. In the example by Bowen (the compact subset of R2 denoted by EB),

if (ft(x))t≥0 converges to the cycle, and ϕ is a continuous function on the plane, taking

different values in the saddle points A and B, the time average

lim
T→∞

1
T

∫ T
0
ϕ ◦ ft(x)dt

does not exist. This means that in this example there is an open set of initial states such

that the corresponding orbits define non-stationary time series (whenever one uses an

observable which has a different values in two saddle points).
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Figure 1: Phase portrait of the example by Bowen.

We denote, for the example of Bowen given in figure 1, the expanding and con-

tracting eigenvalues of the linearized vector field in A by α+ and α−, and in B by β+

and β−. We recall that the saddle points are denoted by A and B. The condition on the

eigenvalues which makes the cycle attracting is that the contracting eigenvalues dominate:

α−β− > α+β+.

The modolus associated with the upper, respectively lower, saddle connection is

denoted by λ, respectively σ. They are defined by

λ = α−/β+ and σ = β−/α+,

their values are positive and their products is bigger than 1, assuming the cycle

to be attracting. Gaunersdorfer([31], 1992) and Takens ([68],1994) proved the following.

Theorem 2.12. If ϕ is a continuous function on R2 with ϕ(A) > ϕ(B), and (ft(x))t≥0

is an orbit converging to the cycle, then we have for the partial averares of ϕ:

lim sup
T→∞

1

T

∫ T

0

ϕ ◦ ft(x)dt =
σ

1 + σ
ϕ(A) +

1

1 + σ
ϕ(B)

lim inf
T→∞

1

T

∫ T

0

ϕ ◦ ft(x)dt =
λ

1 + λ
ϕ(B) +

1

1 + λ
ϕ(A)

�

Here, Corollary 2.10 provides some information about the existence of Birkhoff’s

Limit if we take a continuous function as follows.

Corollary 2.13. Suppose that ϕ : EB → R is a continuous function with ϕ(A) = ϕ(B) =

minϕ, and (ft(x))t≥0 is an orbit converging to the cycle. Then for any ε > 0 there exist

tε ∈ R and kε ∈ N satisfying that δx(f−j(E
ε,∗
kε

)) = 1 for j ≥ tε and j ∈ N. In particular,

the limit lim
T→∞

1
T

∫ T
0
ϕ ◦ ft(x)dt exists.

Remark 2.14. This example also shows that for any x ∈ EB \{A,B} such that (ft(x))t≥0

is an orbit converging to the cycle the Dirac measure of point x, δx, is not an invariant

measure (since x is not a fixed point under X), but this measure satisfies that for any

ε > 0 there exist tε ∈ R and kε ∈ N satisfying that δx(f−j(E
ε,∗
kε

)) = 1 for j ≥ tε and j ∈ N.

2.2 Continuous flow on compact metric spaces

Now, we are going to provide a version of item (ii) of Corollary 2.6 for continuous

flow on compact metric space. Let X : M ×R→M be a continuous flow, and M to be a
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compact metric space. Consider Xt : M →M given by Xt(x) = X(t, x), and ft : M →M

defined by ft = Xt.

We say that a measure µ is invariant under flow (ft)t∈R if µ(E) = µ(f−t(E)) for

any mensurable set E and for all t ∈ R. Note that µ is an invariant measure under flow

if, and only if,
∫
ϕdµ =

∫
ϕ ◦ ftdµ for all ϕ : M → R µ-integrable and for all t ∈ R.

A fixed point of (ft)t∈R is a point q ∈M such that ft(q) = q for all t ∈ R.

Lemma 2.15. Fix x ∈ M . Then the Dirac measure of point x, δx, is an invariant

measure if, and only if, x is a fixed point.

Proof. Suppose that the Dirac measure of point x, δx, is an invariant measure. Then

δx(f−t{x}) = δxx = 1 for all t ∈ R, this implies that δx(f−t{x}) = 1, and then x ∈ f−t{x}
for all t ∈ R, so ft(x) = x for all t ∈ R.

Let ϕ : M → R be a bounded measurable function, we consider the following

objects.

ϕ∗,−(y) = lim inf
n→∞

1
n

∫ n
0
ϕ ◦ ft(y)dt for each y ∈M ;

E∗,εkε = {y ∈M : 1
n

∫ n
0
ϕ ◦ ft(y)dt ≤ ϕ∗,−(y) + ε for some n ∈ {1, · · · , k}}.

Note that M =
∞⋃
k=1

E∗,εkε for each ε > 0. Given x ∈ M , we denote the Dirac

measure of point x by δx. We observe the following result.

Lemma 2.16. If δx is an invariant measure for some x ∈ M , then for any ε > 0 there

exist tε ∈ R and kε ∈ N satisfying that δx(f−j(E
ε,∗
kε

)) = 1 for j ≥ tε and j ∈ N.

Proof. Fix ε > 0. Using that M =
∞⋃
k=1

E∗,εkε , there exists kε ∈ N such that x ∈ Eε,∗
kε

. But

ft(x) = x for all t ∈ R, and we are done.

The following is a version of item (ii) of Corollary 2.6 for flows on compact metric

spaces.

Corollary 2.17. Let ϕ : M → R be a bounded measurable function, and fix x ∈ M . If

for any ε > 0 there exist tε ∈ R and kε ∈ N satisfying that δx(f−j(E
ε,∗
kε

)) = 1 for j ≥ tε

and j ∈ N, then the limit lim
T→∞

1
T

∫ T
0
ϕ ◦ ft(x)dt exists.

Proof. Let ϕ : M → R be a bounded function, define ψ : M → R by ψ(y) =
∫ 1

0
ϕ◦ft(y)dt

for each y ∈M . Fix T > 0, and note that

1
T

∫ T
0
ϕ ◦ ft(y)dt = 1

T

[T ]−1∑
j=0

∫ j+1

j
ϕ ◦ ft(y)dt+ 1

T

∫ T
[T ]
ϕ ◦ ft(y)dt
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Considering t = j + s for s ∈ [0, 1], we see that∫ j+1

j

ϕ ◦ ft(y)dt =

∫ 1

0

ϕ ◦ fs(fjy)ds

1

T

∫ T

0

ϕ ◦ ft(y)dt =
1

T

[T ]−1∑
j=0

∫ 1

0

ϕ ◦ ft(fjy)dt+
1

T

∫ T

[T ]

ϕ ◦ ft(y)dt

1

T

∫ T

0

ϕ ◦ ft(y)dt =
1

T

[T ]−1∑
j=0

ψ ◦ fj(y) +
1

T

∫ T

[T ]

ϕ ◦ ft(y)dt (2.2)

Take T = n, by equation (2.2), 1
n

n−1∑
j=0

ψ ◦ fj(y) = 1
n

∫ n
0
ϕ ◦ ft(y)dt.

Observe that ψ is a bounded function since ϕ is a bounded function. Recall that

ψ−(y) = lim inf
n

1
n

n−1∑
j=0

ψ ◦ fj(y) for y ∈M . Now, for each ε > 0 and k ∈ N define

Ẽε
k = {y ∈M : 1

n

n−1∑
j=0

ψ ◦ fj(y) ≤ ψ−(y) + ε for some n ∈ {1, · · · , k}}.

Ẽε
k = {y ∈ M : 1

n

∫ n
0
ϕ ◦ ft(y)dt ≤ ε + lim inf

n

1
n

∫ n
0
ϕ ◦ ft(y)dt for some n ∈

{1, · · · , k}}, so Ẽε
k = Eε,∗

kε
.

By hypothesis, there exist tε ∈ R and kε ∈ N satisfying that fj(x) ∈ Eε,∗
kε

for j ≥ tε

and j ∈ N. Then, by Corollary 2.6, the limit lim
T→∞

1
T

[T ]−1∑
j=0

ψ ◦ fj(y) = lim
T→∞

1
[T ]

[T ]−1∑
j=0

ψ ◦ fj(y)

exists since

1
T

[T ]−1∑
j=0

ψ ◦ fj(y) = 1
[T ]+βT

[T ]−1∑
j=0

ψ ◦ fj(y) = 1

[T ](1+
βT
[T ]

)

[T ]−1∑
j=0

ψ ◦ fj(y)

for some βT ∈ (0, 1] such that T = [T ] + βT .

Note that

∣∣ 1

T

∫ T

[T ]

ϕ ◦ ft(y)dt
∣∣ =

∣∣ 1

T

∫ T−[T ]

0

ϕ ◦ ft(f[T ](y))dt
∣∣ ≤ 1

T

∫ T−[T ]

0

|ϕ ◦ ft(f[T ](y))|dt ≤

1

T

∫ 1

0

|ϕ ◦ ft(f[T ](y))|dt ≤ ‖ϕ‖
T
→ 0,

as T tends to infinity, and we are done.

If ϕ is a continuous function, we obtain an interesting criterion to provide the

existence of Birkhoff’s limit as follows.

Theorem F. Suppose that M is a compact metric space, ϕ : M → R is a continuous

function, and fix x ∈M . If lim sup
n

1
n

∫ n
0
ϕ ◦ ft(yx)dt ≤ lim inf

n

1
n

∫ n
0
ϕ ◦ ft(x)dt for all yx ∈

ω(x), then for any ε > 0 there exist tε ∈ R and kε ∈ N satisfying that δx(f−j(E
ε,∗
kε

)) = 1

for j ≥ tε and j ∈ N. In particular, the limit lim
T→∞

1
T

∫ T
0
ϕ ◦ ft(x)dt exists.
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Proof. Suppose that M is a compact metric space, and ϕ : M → R is a continuous

function (so ϕ is a bounded function). Take x ∈ M , and suppose, by contradiction, that

there exists ε > 0 such that for any k ∈ N, and for any t ∈ R there exists jk ∈ N with

jk > t such that fjk(x) /∈ E∗,εk .

In particular, for each k ∈ N, taking t = k, there exists jk > k and jk ∈ N such

that fjk(x) /∈ E∗,εk . This implies that jk → +∞ as k tends to infinity.

By compactness of M , there exists a subsequence of (fjk(x))k∈N that converges

to some yx ∈ ω(x), suppose that

fjks (x)→s yx (2.3)

where jks tends to infinity as s tends to infinity, fjks (x) /∈ E∗,εks and jks > ks. Without loss

of generality, we may assume that k1 < k2 < · · · < ks < ks+1 · · ·
We recall that E∗,εkε = {y ∈ M : 1

n

∫ n
0
ϕ ◦ ft(y)dt ≤ ϕ∗,−(y) + ε for some n ∈

{1, · · · , kε}}.
For each s ∈ N, by definition of E∗,εks ,

1
n

∫ n
0
ϕ ◦ ft(fjks (x))dt > ϕ∗,−(ftks (x)) + ε

for any n ∈ {1, · · · , ks} since fjks (x) /∈ E∗,εks .

Recall that ϕ∗,−(z) = lim inf
n→∞

1
n

∫ n
0
ϕ ◦ ft(z)dt = lim inf

n→∞
1
n

n−1∑
j=0

ψ ◦ fj(z) = ψ−(z),

where ψ is a bounded function. Then ψ−(fj(z)) = ψ−(z) for all j ≥ 0 and z ∈ M , so

ϕ∗,−(fjz) = ϕ∗,−(z) for all j ≥ 0.

Using that k1 < k2 < · · · < ks < ks+1 · · · , we see that k1 ∈ {1, · · · , ks} for any

s ≥ 1, and then

1
k1

∫ k1
0
ϕ ◦ ft(f tks (x))dt > ϕ∗,−(f tks (x)) + ε = ϕ∗,−(x) + ε.

Recall that 1
n

n−1∑
j=0

ψ ◦ fj(y) = 1
n

∫ n
0
ϕ ◦ ft(y)dt where ψ(y) =

∫ 1

0
ϕ ◦ ft(y)dt for each

y ∈M . This implies that 1
k1

∫ k1
0
ϕ ◦ ft(y)dt = 1

k1

k1−1∑
j=0

ψ ◦ fj(y) for each y ∈M .

Lemma 2.18. ψ : M → R is uniformly continuous.

Proof. Take y0, z ∈M and γ > 0. By compactness, ϕ is uniformly continuous, then there

exists ξ > 0 such that for every p, q ∈M with d(p, q) < ξ, we have that |ϕ(p)−ϕ(q)| < γ.

Note that

|ψ(z)− ψ(y0)| = |
∫ 1

0

ϕ ◦ ft(z)dt−
∫ 1

0

ϕ ◦ ft(y0)dt| = |
∫ 1

0

ϕ ◦ ft(z)− ϕ ◦ ft(y0)dt| ≤∫ 1

0

|ϕ ◦ ft(z)− ϕ ◦ ft(y0)|dt.
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Now, ([0, 1]×M,D) is a compact metric space where for any (t, z), (s, w) ∈ [0, 1]×
M we define D((t, z), (s, w)) := |t− s|+ d(z, w), and X[0,1] = X|[0,1]×M : [0, 1]×M →M

is a continuous function, then X[0,1] is uniformly continuous. Then there exists δ > 0

such that for any (t, z), (s, w) ∈ [0, 1]×M that satisfies D((t, z), (s, w)) < δ we have that

d(Xt(z), Xs(w)) = d(ft(z), fsw) < ξ.

So, for any y0, z ∈ M such that d(y0, z) < δ we have that D((t, z), (t, y0)) =

d(y0, z) < δ, and then d(Xt(z), Xt(y0)) = d(ft(z), ft(y0)) < ξ, and we are done.

So 1
k1

∫ k1
0
ϕ◦ft(·)dt = 1

k1

k1−1∑
j=0

ψ◦fj(·) is a continuous function because it is a finite

sum of continuous functions. By continuity of 1
k1

∫ k1
0
ϕ ◦ ft(·)dt, we have that

1
k1

∫ k1
0
ϕ ◦ ft(f tks (x))dt→ 1

k1

∫ k1
0
ϕ ◦ ft(yx)dt ≥ ϕ∗,−(x) + ε.

So using that k1 < k2 < · · · < ks < ks+1 · · · , we see that k` ∈ {1, · · · , ks} for any

s ≥ ` for each ` ∈ N, and then

1
k`

∫ k`
0
ϕ ◦ ft(f tks (x))dt→ 1

k`

∫ k`
0
ϕ ◦ ft(yx)dt ≥ ϕ∗,−(x) + ε.

This implies that 1
k`

∫ k`
0
ϕ ◦ ft(yx)dt ≥ ϕ∗,−(x) + ε for any ` ∈ N, and then

lim sup
n

1
n

∫ n
0
ϕ ◦ ft(yx)dt ≥ ϕ∗,−(x) + ε > ϕ∗,−(x) = lim inf

n

1
n

∫ n
0
ϕ ◦ ft(x)dt,

and we are done.

Here, we recall the following natural lemma.

Lemma 2.19. Suppose that M is a compact metric space, and ϕ : M → R is a continuous

function. If p, q ∈M and ω(p) = {q} then lim
T→∞

1
T

∫ T
0
ϕ ◦ ft(p)dt = ϕ(q).

Proof. First, note that

lim
t→+∞

ft(p) = q.

In fact, suppose that there exists ε > 0 and (tk)k such that tk → +∞ as k tends to

infinity and d(ftk , q) ≥ ε. By compactness of M , there exists a subsequence of (ftk)k that

converges to some z ∈ M . Without loss of generality, (ftk)k converges to z. Using the

continuity of metric, we obtain that

ε ≤ lim
k→∞

d(ftk , q) = d(z, q).
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But z ∈ ω(p) = {q}, and then z = q. This proves that lim
t→+∞

ft(p) = q. This

implies that ft(q) = q for any t ∈ R.

Define ψ : M → R by ψ(y) =
∫ 1

0
ϕ ◦ ft(y)dt for each y ∈ M . By Lemma 2.18, ψ

is uniformly continuous, and then lim
t→+∞

ψ ◦ ft(p) = ψ(q).

(Take γ > 0, there exists ξ > 0 such that for all x, y ∈ M with d(x, y) < ξ we

have that d(ψ(x), ψ(y)) < γ.

Using that lim
t→+∞

ft(p) = q, we have that there exists α > 0 such that for any

t ≥ α we have that |ft(p)− q| < ξ.

Then for any t ≥ α we have that d(ψ(ft(p)), ψ(q)) < γ.)

In particular, lim
n→+∞

ψ ◦ fn(p) = ψ(q), and then lim
n→+∞

1
n

n−1∑
j=0

ψ ◦ fj(p) = ψ(q).

Fix T > 0, and note that

1
T

∫ T
0
ϕ ◦ ft(y)dt = 1

T

[T ]−1∑
j=0

∫ j+1

j
ϕ ◦ ft(y)dt+ 1

T

∫ T
[T ]
ϕ ◦ ft(y)dt

Considering t = j + s for s ∈ [0, 1], we see that

∫ j+1

j

ϕ ◦ ft(y)dt =

∫ 1

0

ϕ ◦ fs(fjy)ds

1

T

∫ T

0

ϕ ◦ ft(y)dt =
1

T

[T ]−1∑
j=0

∫ 1

0

ϕ ◦ ft(fjy)dt+
1

T

∫ T

[T ]

ϕ ◦ ft(y)dt

1

T

∫ T

0

ϕ ◦ ft(y)dt =
1

T

[T ]−1∑
j=0

ψ ◦ fj(y) +
1

T

∫ T

[T ]

ϕ ◦ ft(y)dt

This implies that lim
T→∞

1
T

∫ T
0
ϕ ◦ ft(p)dt = ψ(q) =

∫ 1

0
ϕ ◦ ft(q)dt = ϕ(q).

Before we give our examples, we introduce some definition and result. We say

that x ∈ M is a 2d-point if for any yx ∈ ω(x) we have that ω(yx) is a fixed point (i.e.,

there exists q ∈ M such that ω(yx) = {q} and ft(q) = q for all t ∈ R). Define the fixed

point under X by FixX = {q ∈M : q is a fixed point}.

Corollary 2.20. Suppose that M is a compact metric space, ϕ : M → R is a continuous

function, and take a 2d-point x ∈ M . Suppose that ϕ satisfies that ϕ|ω(x)∩FixX ≡ minϕ.

Then for any ε > 0 there exist tε ∈ R and kε ∈ N satisfying that δx(f−j(E
ε,∗
kε

)) = 1 for

j ≥ tε and j ∈ N. In particular, the limit lim
T→∞

1
T

∫ T
0
ϕ ◦ ft(x)dt exists.

Proof. For each yx ∈ ω(x), there exists a fixed point qyx such that ω(yx) = {qyx}, so

qyx ∈ ω(x) ∩ FixX, and then ϕ(qyx) = minϕ.
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Now, by Lemma 2.19, lim
T→∞

1
T

∫ T
0
ϕ ◦ ft(yx)dt = ϕ(qyx) = minϕ.

Note that minϕ ≤ lim inf
n

1
n

∫ n
0
ϕ◦ft(x)dt, and then, by Theorem E, we are done.

2.3 Proof of Corollary 2.6

Let (M,A) be a measurable space for M compact metric space, and f : M →M

be a measurable transformation, ϕ : M → R be a bounded measurable function.

We are going to show that if one of the following conditions is true

(i) lim
k→∞

lim sup
n

1
n

n−k−1∑
i=0

δx(f
−i(M \ E

1
`
k )) = 0 for each ` ∈ N \ {0} where δx the Dirac

measure of point x ∈M ;

(ii) Suppose that there exists x ∈ M such that for any ε > 0 there exist jε, kε ∈ N
satisfying that f jx ∈ Eε

kε
for j ≥ jε;

(iii) If M is a compact metric space, and there exists x ∈ M such that for any ε > 0

there exists kε ∈ N satisfying that (O+x)′ is contained in the interior of Eε
kε

;

(iv) Suppose that M is a compact metric space, f, ϕ, ϕ− are continuous functions, and

(O+x)′ is a finite set for some x ∈M .

Then the limit lim
n→∞

1
n

n−1∑
j=0

ϕ ◦ f j(x) exists.

Proof of Corollary 2.6. Fix ϕ : M → R, and consider (ϕn)n to be the additive sequence

for f given by ϕn :=
n−1∑
j=0

ϕ ◦ f j for each n in N. Consider ϕ− : M → R given by

ϕ−(w) = lim inf
n

1
n

n−1∑
j=0

ϕ ◦ f j(w) for w ∈M .

For each ε > 0 fixed and k ∈ N we define

Eε
k = {w ∈M : ϕj(w) ≤ j(ϕ−(w) + ε) for some j ∈ {1, ..., k}}.

Consider the measure µ = δx where δx is the Dirac measure of point x.

To apply Corollary D it is sufficient to prove that ϕ satisfies condition (b), i.e.,

lim
k→∞

lim sup
n

1
n

n−k−1∑
i=0

δx(f
−i(M \ E

1
`
k )) = 0 for each ` ∈ N \ {0}.

(ii) If x is an eventually periodic point, there is nothing to show. Suppose that x

is not an eventually periodic point. Fixed ε > 0, there exist jε, kε ∈ N such that f jx ∈ Eε
kε

for j ≥ jε. This implies that (O+x) ∩M \ Eε
k is a finite set for k ≥ kε.

Claim 1: {j ∈ N : x ∈ f−j(M \ Eε
k)} is a finite set.
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Suppose the claim would be false. Then we could find a sequence (js)s∈N such

that f jsx ∈ M \ Eε
k for all s ∈ N. So f js(x) ∈ (O+x) ∩M \ Eε

k for all s ∈ N. Then for

s > #((O+x)∩M \Eε
k) there exists t ∈ N such that t < s and f jsx = f jtx. Using that x

is not an eventually periodic point, we are done.

By Claim 1, there exists j0 ∈ N such that for j ≥ j0 we must have the following

x ∈M \ f−j(M \ Eε
k), and then µ(f−j(M \ Eε

k)) = 0 for j ≥ j0.

Using that Eε
k ⊆ Eε

k+1, we see that µ(f−j(M \Eε
k̃
)) = 0 for all k̃ ≥ kε and j ≥ j0.

Now, take k̃ such that k̃ + 1 > j0 . It easy to see that there exists n ∈ N such

that n > j0 + k̃ + 1, and note that

1
n

n−k̃−1∑
j=0

µ(f−j(M \ Eε
k̃
)) = 1

n

j0−1∑
j=0

µ(f−j(M \ Eε
k̃
)) + 1

n

n−k̃−1∑
j=j0

µ(f−j(M \ Eε
k̃
))

Using that µ(f−j(M \ Eε
k̃ε

)) = 0 for all k̃ ≥ kε and j ≥ j0,

0 ≤ 1
n

n−k̃−1∑
j=0

µ(f−j(M \ Eε
k̃
)) = 1

n

j0−1∑
j=0

µ(f−j(M \ Eε
k̃
)) ≤ j0

n
,

and then

lim sup
n

1
n

n−k̃−1∑
i=0

µ(f−i(M \ Eε
k̃
)) = 0 for k̃ + 1 > j0,

This implies that

lim
k→∞

lim sup
n

1

n

n−k−1∑
i=0

µ(f−i(M \ Eε
k)) = 0, (2.4)

this completes the proof of item (ii).

(iii) Suppose that M is a compact metric space. For any ε > 0 there exists

kε ∈ N such that ω({x}, f) is contained in the interior of Eε
kε

.

We are going to verify condition (ii).

Claim 2: Consider k ≥ kε. Then (O+x) ∩M \ Eε
k is a finite set.

Suppose, contrary to our claim, that there exists a sequence {ns}s∈N such that

fnsx /∈ Eε
k. By compactness of M , there exists a subsequence of sequence (fn`x)`∈N

that converges to some p ∈ M . Without loss generality, the sequence converges to p ∈
ω({x}, f), so p is an element of interior of Eε

kε
, i.e., p ∈ intEε

kε
. Using that intEε

kε
is an

open set, there exists np > 0 such that for ns ≥ np we have that fnsx ∈ intEε
kε

. But

intEε
kε
⊆ Eε

kε
⊆ Eε

k and fnsx /∈ Eε
k for all s ∈ N, this contradiction concludes the proof of

the Claim 2, and we are done.

(iv) For each ε > 0 fixed and k ∈ N we define

Êε
k = {w ∈M : ϕj(w) < j(ϕ−(w) + ε) for some j ∈ {1, ..., k}}
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where Êε
k ⊆ Eε

k.

By continuity of f ,ϕ and ϕ−, we see that Êε
k is an open set of M . Using that

M =
⋃
k∈N

Êε
k and ω({x}, f) is a finite set, there exists kε such that ω({x}, f) ⊆ Êε

kε
. By

item (iii), we are done. This completes the proof of Corollary 2.6.

2.4 Proof of Theorem C

Let (M,A, µ) be a measure space, f : M →M be a measurable function, µ be a

finite measure. Suppose that (ϕn)n is a subadditive sequence for f such that ϕ1 ≤ β for

some β ∈ R. Without loss of generality, we assume that β > 0.

Under the conditions stated above, and supposing that the following conditions

are satisfied:

(a) for all j ∈ N we have that ϕ−(f j(x)) = ϕ−(x) µ−almost everywhere x in M ;

(b) lim
k→∞

lim sup
n

1
n

n−k−1∑
i=0

µ(f−i(M \ E
1
`
k )) = 0 for each ` ∈ N \ {0}.

Then Theorem C ensures that inf
n

1
n

∫
ϕndµ =

∫
ϕ−dµ. Moreover, if there exists

γ > 0 such that for all n > 0, ϕn
n
≥ −γ then∫

ϕ−dµ = inf
n

1
n

∫
ϕndµ = lim

n

1
n

∫
ϕndµ.

The proof will be divided into two steps. In first step, we show the particular

version of Theorem C when the sequence (ϕn
n

)n is uniformly bounded from below, i.e.,

there exists α > 0 such that ϕn
n
≥ −α for all n ∈ N. In the second step, using a truncation

argument we conclude from step 1 the proof of the Theorem.

We begin by proving the following theorem.

Theorem 2.21. Let (M,A, µ) be a measure space, f : M →M be a measurable function,

µ be a finite measure. Suppose that (ϕn)n is a subadditive sequence for f such that ϕ1 ≤ β

for some β > 0. If the following conditions are satisfied:

(a) for all j ∈ N we have that ϕ−(f j(x)) = ϕ−(x) µ−almost everywhere x in M ;

(b) lim
k→∞

lim sup
n

1
n

n−k−1∑
i=0

µ(f−i(M \ E
1
`
k )) = 0 for each ` ∈ N \ {0};

(d) there exists γ > 0 such that for all n > 0, ϕn
n
≥ −γ.

Then lim
n

1
n

∫
ϕndµ = inf

n

1
n

∫
ϕndµ =

∫
ϕ−dµ.
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Proof of Theorem 2.21. First, without loss of generality, we consider β = γ. Using that

(ϕn)n is a subadditive sequence for f , we obtain that ϕm ≤
m−1∑
j=0

ϕ1 ◦ f j for all m ∈ N, but

ϕ1 ≤ β, so −β ≤ ϕm
m
≤ β, and −β ≤ 1

m

∫
ϕmdµ ≤ β for all m in N. In particular, ϕ1 is

integrable. Define ϕ− : M → [−β, β] by ϕ−(x) = lim inf
n

ϕn(x)
n

. So β ≥ ϕ−(x) ≥ −β for

all x in M , and then ϕ− is integrable.

Fixed ε > 0, define for each k ∈ N

Eε
k := {x ∈M : ϕj(x) ≤ j(ϕ−(x) + ε) for some j ∈ {1, ..., k}}

It is clear that Eε
k ⊆ Eε

k+1 for all k. Note that by definition of ϕ−, we have that

M =
⋃
k

Eε
k. Define ψk(x) = ϕ−(x) + ε if x ∈ Eε

k, and ψk(x) = ϕ1(x) if x /∈ Eε
k. Suppose

that x /∈ Eε
k, then ψk(x) = ϕ1(x), but by Eε

k’s definition we have that ϕ1(x) > ϕ−(x) + ε.

It imples that ψk > ϕ− + ε in M . Now, using that M =
⋃
k

Eε
k, we see that lim

k→∞
ψk(x) =

ϕ−(x) + ε for each x ∈M .

Now, let L be a fixed and arbitrary point of accumulation of sequence ( 1
n

∫
ϕndµ)n,

so there exists (nt)t∈N such that lim
t→∞

1
nt

∫
ϕntdµ = L and L ∈ [−β, β]. The basic idea of the

proof is to verify that
∫
ϕ−dµ ≤ L ≤ lim

k→∞

∫
ψkdµ. Later, an easy computation will show

that
∫
ϕ−dµ = L. Observing that L is an arbitrary point of accumulation of sequence

( 1
n

∫
ϕndµ)n, we conclude that this sequence converges to

∫
ϕ−dµ. This will end the proof

of Theorem 2.21.

From the above we are going to show that
∫
ϕ−dµ ≤ L and L ≤ lim

k→∞

∫
ψkdµ.

First, we observe that
∫
ϕ−dµ ≤ L. By hypothesis, there exists β > 0 such that ϕn

n
≥ −β

for all n. We have that ϕn
n
≥ −β. Define fn(x) := ϕn

n
(x) + β ≥ 0 and note that

f(x) = lim inf
n

(
ϕn
n

(x) + β) = ϕ−(x) + β.

By Fatou’s Lemma, we have that f(x) = ϕ−(x) + β is an integrable funcion, and∫
lim inf

n
(fn)dµ ≤ lim inf

n

∫
fndµ ≤ lim inf

nt

∫
fntdµ∫

ϕ−(x) + βdµ ≤ lim inf
nt

∫
(
ϕnt
nt

+ β)dµ

Then ∫
ϕ−(x)dµ ≤ lim inf

nt

∫
ϕnt
nt
dµ = lim

nt

∫
ϕnt
nt
dµ = L.

So ∫
ϕ−(x)dµ ≤ L. (2.5)
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Now, we show that L ≤ lim
k→∞

∫
ψkdµ+ 2βh(`). We need of the following result.

Lemma 2.22. For each n > k ≥ 1 and µ-a.e. x ∈M ,

ϕn(x) ≤
n−k−1∑
i=0

ψk(f
i(x)) +

n−1∑
i=n−k

max{ψk, ϕ1}(f i(x))

Proof. Use the subadditivity of sequence (ϕn)n, and the fact that ϕ− is invariant in orbit

of x in µ-a.e., see Lemma 1 in [13].

Note that ψk is integrable. We have that −β ≤ ϕn
n

for all n, so −β ≤ ϕ− and

−β ≤ ϕ1. Now, −β < −β + ε ≤ ϕ− + ε, then −β ≤ ψk.

Note that −β ≤ ψk ≤ max{ϕ−+ε, ϕ1} ≤ max{ϕ−+ε, β}, where max{ϕ−+ε, β}
is integrable, so ψk is integrable. Note that

max{ϕ1, ψk}◦f i ≤ max{ϕ1, ϕ−+ε, β}◦f i = max{ϕ−+ε, β}◦f i = max{ϕ−+ε, β}
because ϕ− is invariant in orbit of x in µ-a.e.

But max{ϕ− + ε, β} is integrable, then max{ϕ1, ψk} ◦ f i is integrable too for all

i in N. By Lemma 2.22,

1

n

∫
ϕn(x)dµ ≤ 1

n

n−k−1∑
i=0

∫
ψk(f

i(x))dµ+
1

n

n−1∑
i=n−k

∫
max{ψk, ϕ1}(f i(x))dµ. (2.6)

Define ϕ+ = max{0, ϕ}, and note that

n−1∑
i=n−k

∫
max{ψk, ϕ1}(f i(x))dµ ≤

n−1∑
i=n−k

∫
max{ϕ− + ε, ϕ+

1 }(f i(x))dµ.

Define S = {x ∈M : ϕ−(x) + ε ≥ ϕ+
1 (x)}, so

n−1∑
i=n−k

∫
max{ϕ− + ε, ϕ+

1 }(f i(x))dµ =
n−1∑
i=n−k

[
∫
S
ϕ− + εdµ+

∫
M\S ϕ

+
1 ◦ f idµ].

Using that −β ≤ ϕ− and
∫
ϕ−dµ ≤ L ∈ [−β,∞), then

∫
S
ϕ−dµ <∞. So,

n−1∑
i=n−k

[
∫
S
ϕ− + εdµ+

∫
M\S ϕ

+
1 ◦ f idµ] ≤ k[

∫
S
ϕ− + εdµ+ β],

and

1

n

n−1∑
i=n−k

∫
max{ψk, ϕ1}(f i(x))dµ ≤ k

n
(

∫
S

ϕ− + εdµ+ β). (2.7)

Now, we are going to show that

1
n

n−k−1∑
i=0

∫
ψk(f

i(x))dµ ≤ (1− k
n
)
∫
ψkdµ+ 2β · 1

n

n−k−1∑
i=0

µ(f−i(M \ Eε
k))
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Define Fi,k := f−i(Eε
k) for each i ∈ {0, ..., n− k − 1}, so∫

ψk(f
i(x))dµ =

∫
Fi,k

ϕ−(f i(x)) + εdµ +
∫
M\Fi,k

ψk(f
i(x))dµ. Using that ϕ− is

invariant in orbit of x in µ-a.e., we have that∫
ψk(f

i(x))dµ =
∫
Fi,k

ϕ−(x) + εdµ+
∫
M\Fi,k

ψk(f
i(x))dµ.

But ϕ−(x) + ε ≤ ψk in M , so∫
ψk ◦ f idµ ≤

∫
Fi,k

ψkdµ+

∫
M\Fi,k

ψk ◦ f idµ =∫
Fi,k

ψkdµ+

∫
M\Fi,k

ψkdµ−
∫
M\Fi,k

ψkdµ+

∫
M\Fi,k

ψk ◦ f idµ =∫
ψkdµ+

∫
M\Fi,k

ψk ◦ f idµ+

∫
M\Fi,k

−ψkdµ =∫
ψkdµ+

∫
M\Fi,k

ϕ1 ◦ f idµ+

∫
M\Fi,k

−ψkdµ ≤∫
ψkdµ+

∫
M\Fi,k

βdµ+

∫
M\Fi,k

βdµ ≤∫
ψkdµ+ 2βµ(M \ Fi,k).

since −β ≤ ψk ≤ max{ϕ− + ε, β}. Then∫
ψk ◦ f idµ ≤

∫
ψkdµ+ 2βµ(M \ Fi,k),

we obtain that

1

n

n−k−1∑
i=0

∫
ψk ◦ f idµ ≤ (1− k

n
)

∫
ψkdµ+ 2β · 1

n

n−k−1∑
i=0

µ(M \ Fi,k) (2.8)

By (2.6), (2.7), and the inequality above we have that

1
n

∫
ϕn(x)dµ ≤ k

n
(
∫
S
ϕ− + εdµ+ β) + (1− k

n
)
∫
ψkdµ+ 2β · 1

n

n−k−1∑
i=0

µ(M \ Fi,k).

Passing lim sup
n

in the previous inequality

L = lim sup
nt

1

nt

∫
ϕnt(x)dµ ≤ lim sup

n

1

n

∫
ϕn(x)dµ ≤∫

ψkdµ+ 2β lim sup
n

1

n

n−k−1∑
i=0

µ(f−i(M \ Eε
k)).

By equation (2.5),
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∫
ϕ−dµ ≤ L ≤

∫
ψkdµ+ 2β lim sup

n

1

n

n−k−1∑
i=0

µ(f−i(M \ Eε
k))

Taking ε = 1
`

for ` ∈ N \ {0},

∫
ϕ−dµ ≤ L ≤ lim

k→∞

∫
ψkdµ+ 2β lim

k→∞
lim sup

n

1

n

n−k−1∑
i=0

µ(f−i(M \ E
1
`
k ))

By hypothesis (b),

∫
ϕ−(x)dµ ≤ L ≤ lim

k→∞

∫
ψkdµ.

Lemma 2.23.
∫
ϕ−dµ = L

Proof. Using that M =
∞⋃
k=1

E
1
`
k , we obtain that ψk →k ϕ− + 1

`
in each point. But

−β ≤ ψk ≤ max{ϕ− + 1
`
, ϕ+

1 },

we define g := max{ϕ−+ 1
`
, β}. So g is integrable and |ψk| ≤ g. By dominated convergence

theorem, we have that

lim
k

∫
ψkdµ =

∫
ϕ− + 1

`
dµ.

We obtain that∫
ϕ−dµ ≤ L ≤ lim

k

∫
ψkdµ =

∫
ϕ−dµ+ 1

`
.

Making ` tend to infinity, ∫
ϕ−dµ ≤ L ≤

∫
ϕ−dµ

Since
∫
ϕ−dµ = L for all accumulation point L of the sequence ( 1

n

∫
ϕndµ)n, we

have that lim
n

1
n

∫
ϕndµ = inf

n

1
n

∫
ϕndµ =

∫
ϕ−dµ. This concludes the proof of Theorem

2.21.

Now, we are going to use a truncation argument to finish the proof of Theorem

C. For each k in N define ϕkn = max{ϕn,−kn} and ϕk− = max{ϕ−,−k}. For each ε > 0

fixed and r ∈ N we define Gε
r = {x ∈M : ϕkj (x) ≤ j(ϕk−(x) + ε) for some j ∈ {1, ..., r}}.

To finish we need of the following Lemma.
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Lemma 2.24. The following conditions are satisfied:

(i) (ϕkn)n is a subadditive sequence for any k fixed.

(ii) ϕk1 is upper bounded for any k fixed.

(iii) (ϕ
k
n

n
)n is uniformly bounded by below for any k fixed.

(iv) ϕk−(x) = lim inf
n

ϕkn(x)
n

for any k fixed.

(v) For each j ∈ N we have that ϕk−(f j(x)) = ϕk−(x) µ− a.e. x in M where ϕk− : M →
[−∞,∞] is given by ϕk−(x) = lim inf

n

ϕkn(x)
n

for any k fixed.

(vi) Eε
r ⊆ Gε

r for every ε > 0 and r ∈ N.

(vii) Fixed n, (ϕkn)k is a nonincreasing monotonic sequence.

(viii) Fixed n, lim
k
ϕkn(x) = ϕn(x) for all x in M , (then ϕkn ↘k ϕn).

(ix) (ϕk−)k is a nonincreasing monotonic sequence.

(x) lim
k
ϕk−(x) = ϕ−(x) for all x in M , (then ϕk− ↘k ϕ−).

(xi) (ϕk−)+(x) = (ϕ−)+(x) for all x in M and for all k in N.

�

In section 2.5, after the end of this proof, we present the demonstration of this

Lemma.

By (vi), Eε
r ⊆ Gε

r for every ε > 0 and r ∈ N. In particular, f−i(M \ Gε
r) ⊆

f−i(M \ Eε
r) for all i ≥ 0. Note that

µ(f−i(M \Gε
r)) ≤ µ(f−i(M \ Eε

r)), and then

lim
r→+∞

lim sup
n

1
n

n−r−1∑
i=0

µ(M\f−i(Gε
r)) ≤ lim

r→+∞
lim sup

n

1
n

n−r−1∑
i=0

µ(M\f−i(Eε
r)). There-

fore for each k we have that the sequence (ϕkn)n satisfies the hypothesis of Theorem 2.21,

so ∫
lim inf

n

ϕkn(x)

n
dµ =

∫
ϕk−dµ = lim

n

∫
ϕkn
n
dµ = inf

n

∫
ϕkn
n
dµ. (2.9)

We claim that

inf
k

∫
ϕkndµ =

∫
ϕndµ. (2.10)

To see this recall that ϕkn ↘k ϕn with ϕkn = max{ϕn,−kn}, so ϕ1
n ≥ ϕkn for

all k. Consider γk = ϕ1
n − ϕkn ≥ 0, and note that γk = ϕ1

n − ϕkn ≤ ϕ1
n − ϕk+1

n = γk+1.
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Thus (γk)k is nondecreasing monotonic sequence and γk ↗k ϕ
1
n − ϕn , and by monotone

convergence theorem,
∫
ϕ1
n − ϕndµ =

∫
lim
k→∞

γkdµ = lim
k→∞

∫
γkdµ = lim

k→∞

∫
ϕ1
n − ϕkndµ, and

then
∫
ϕndµ = lim

k→∞

∫
ϕkndµ and lim

k→∞

∫
ϕkndµ = infk

∫
ϕkndµ

Similarly, using monotone convergence theorem,

inf
k

∫
ϕk−dµ =

∫
ϕ−dµ (2.11)

By (2.9), (2.10) and (2.11), we have that∫
ϕ−dµ = inf

k
(
∫
ϕk−dµ) = inf

k
(inf
n

∫ ϕkn
n
dµ) = inf

n

1
n
(inf
k

∫
ϕkndµ) = inf

n

1
n
(
∫
ϕndµ)

Then ∫
ϕ−dµ = inf

n

1

n

∫
ϕndµ. (2.12)

This concludes the proof of Theorem C.

2.4.1 Proof of remark 2.2

We are going to show that if
∫
ϕ−dµ = −∞ or β ≤ 0 then

∫
ϕ−dµ = inf

n

1
n

∫
ϕndµ =

lim
n

1
n

∫
ϕndµ.

Suppose that
∫
ϕ−dµ = inf

n

1
n

∫
ϕndµ = −∞, then there exists a subsequence

( 1
nk

∫
ϕnkdµ)k∈N such that lim

k→∞
1
nk

∫
ϕnkdµ = −∞. Recall that (ϕn)n is a subadditive

sequence for f , so ϕm ≤
m−1∑
j=0

ϕ1 ◦ f j for all m ∈ N, but ϕ1 ≤ β, and then ϕm
m
≤ β for all

m ∈ N.

Let N be an arbitrary natural number, there exists a number s = s(N) > 0 such

that β − sN < −N . There exists k0 > 0 such that for k > k0, we have that

1

nk

∫
ϕnkdµ < −sN. (2.13)

Let n > nk0 , so n = nk0 + r with r ≥ 1. By subadditivity of sequence (ϕm)m,

ϕn = ϕr+nk0 ≤ ϕnk0 + ϕr ◦ fnk0
1

n
ϕn =

1

n
ϕr+nk0 ≤

1

n
ϕnk0 +

1

n
ϕr ◦ fnk0 ≤

1

nk0
ϕnk0 +

1

n
rβ

Note that 1
n
r < 1,
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1

n

∫
ϕndµ ≤

1

nk0

∫
ϕnk0dµ+

1

n
rβ

1

n

∫
ϕndµ ≤ −sN + β < −N

so for n > nk0 , we obtain that 1
n

∫
ϕndµ < −N . This shows that lim

n

1
n

∫
ϕndµ =

−∞.

Now, suppose that β ≤ 0. We are going to show that
∫
ϕ−dµ = inf

n

1
n

∫
ϕndµ =

lim
n

1
n

∫
ϕndµ.

If inf
n

1
n

∫
ϕndµ =

∫
ϕ−dµ = −∞ there is nothing to show. Suppose that β ≤ 0

and inf
n

1
n

∫
ϕndµ =

∫
ϕ−dµ ∈ R, then there exists a subsequence ( 1

nk

∫
ϕnkdµ)k∈N such

that lim
k→∞

1
nk

∫
ϕnkdµ =

∫
ϕ−dµ and 0 ≤ 1

n

∫
ϕndµ −

∫
ϕ−dµ for all n ∈ N. Recall that

(ϕn)n is a subadditive sequence for f , so ϕm ≤
m−1∑
j=0

ϕ1 ◦ f j for all m ∈ N, but ϕ1 ≤ β, and

then ϕm
m
≤ β for all m ∈ N.

Let ε > 0, there exists k0 > 0 such that for k > k0, we have that

1

nk

∫
ϕnkdµ−

∫
ϕ−dµ < ε. (2.14)

Let n > nk0 , so n = nk0 + r with r ≥ 1. By subadditivity of sequence (ϕm)m,

ϕn = ϕr+nk0 ≤ ϕnk0 + ϕr ◦ fnk0
1

n
ϕn =

1

n
ϕr+nk0 ≤

1

n
ϕnk0 +

1

n
ϕr ◦ fnk0 ≤

1

nk0
ϕnk0 +

1

n
rβ

Note that 1
n
r < 1,

1

n

∫
ϕndµ−

∫
ϕ−dµ ≤

1

nk0

∫
ϕnk0dµ+

1

n
rβ −

∫
ϕ−dµ

1

n

∫
ϕndµ−

∫
ϕ−dµ+

1

n
rβ ≤ ε+ β ≤ ε

so for n > nk0 , we obtain that 1
n

∫
ϕndµ −

∫
ϕ−dµ < ε. This shows that

lim
n

1
n

∫
ϕndµ =

∫
ϕ−dµ, and we are done.
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2.5 Proof of Lemma 2.24

We are going to verify a sequence of technical results that were stated by Lemma

2.24. First, recall that ϕkn = max{ϕn,−kn}.
(i) (ϕkn)n is a subadditive sequence for any k fixed.

We must to show that ϕkn+m(x) ≤ ϕkn(x) + ϕkm ◦ fn(x). We have to consider the

following cases.

If ϕkn+m(x) = −k(n + m) then ϕkn+m(x) = −k(n + m) = −kn − km ≤ ϕkn(x) +

ϕkm(fnx).

If ϕkn+m(x) = ϕn+m(x) then ϕkn+m(x) = ϕn+m(x) ≤ ϕn(x) + ϕmf
n(x) ≤ ϕkn(x) +

ϕkm ◦ fn(x).

This proves the item (i).

(ii) ϕk1 is upper bounded for any k fixed.

Just observe that ϕk1 = max{ϕ1,−k} ≤ β.

(iii) (ϕ
k
n

n
)n is uniformly bounded by below for any k fixed.

Note that ϕkn
n

= 1
n
ϕkn = max{ 1

n
ϕn,−k} ≥ −k.

(iv) ϕk−(x) = lim inf
n

ϕkn(x)
n

for any k fixed.

It follows from an easy computation. In fact,

lim inf
n

ϕkn(x)
n

= lim inf
n

max{ϕn(x),−kn}
n

= lim inf
n

max{ϕn(x)
n
,−k} =

= max{lim inf
n

ϕn(x)
n
,−k} = max{ϕ−(x),−k} =: ϕk−(x).

(v) For each j ∈ N we have that ϕk−(f j(x)) = ϕk−(x) µ − a.e. x in M where ϕk− : M →
[−∞,∞] is given by ϕk−(x) = lim inf

n

ϕkn(x)
n

for any k fixed.

The proof is straightforward from condition (a). So,

ϕk−(x) = max{ϕ−(x),−k} = max{ϕ−(f jx),−k} = ϕk−(f jx) for all j ∈ N since

(a) holds.

(vi) Eε
r ⊆ Gε

r for every ε > 0 and r ∈ N. Recall that Gε
r = {x ∈M : ϕkj (x) ≤ j(ϕk−(x) + ε)

for some j ∈ {1, ..., r}}; and Eε
k = {x ∈M : ϕj(x) ≤ j(ϕ−(x)+ε) for some j ∈ {1, ..., k}}.

To see this take x ∈ Eε
r , so ϕj(x) ≤ j(ϕ−(x) + ε) for some j ∈ {1, ..., k}. The

following two cases completes the proof of item (vi).

Case ϕkj (x) = ϕj(x), then ϕkj (x) = ϕj(x) ≤ j(ϕ−(x) + ε) ≤ j(ϕk−(x) + ε) since

ϕk−(x) = max{ϕ−(x),−k}, so x ∈ Gε
r.

Case ϕkj (x) = −k, we have that ϕkj (x) = −k ≤ ϕk−(x) ≤ ϕk−(x) + ε then x ∈ Gε
r

with j = 1.

(vii) Fixed n, (ϕkn)k is a nonincreasing monotonic sequence.

We are going to show that ϕkn ≥ ϕk+1
n .

(Case I): −kn ≤ ϕn(x) = ϕkn(x)

Now, −n(k + 1) = −nk − n < −kn ≤ ϕn(x) = ϕk+1
n (x). So ϕk+1

n (x) = ϕkn(x).
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(Case II): ϕn(x) ≤ −kn = ϕkn(x)

Subcase II.1: −(k + 1)n ≤ ϕn(x) = ϕk+1
n (x)

Then ϕk+1
n (x) = ϕn(x) ≤ −kn = ϕkn(x). So, ϕk+1

n (x) ≤ ϕkn(x).

Subcase II.2: ϕn(x) ≤ −(k + 1)n = ϕk+1
n (x)

We have that ϕk+1
n (x) = −(k + 1)n < −kn = ϕkn(x). So, ϕk+1

n (x) < ϕkn(x).

The item (vii) is proved.

(viii) Fixed n, we have that the lim
k
ϕkn(x) = ϕn(x) for all x in M , (then ϕkn ↘k ϕn).

Fix x in M , given ε > 0, there exists k0 ∈ N such that for k ≥ k0 we have that

ϕn(x) > −kn. So for k ≥ k0 one has ϕkn(x) = ϕn(x).

For k ≥ k0 we have that |ϕkn(x)− ϕn(x)| = 0 < ε, this concludes the verification

of (viii).

(ix) (ϕk−)k is a nonincreasing monotonic sequence.

We have that ϕk−(x) = max{ϕ−(x),−k}.
(Case I): ϕk−(x) = ϕ−(x) ≥ −k
So −(k + 1) < −k ≤ ϕ−(x) , and then ϕk+1

− (x) = ϕ−(x)(= ϕk−(x)).

(Case II): ϕk−(x) = −k ≥ ϕ−(x)

(Subcase II.1) ϕk+1
− (x) = −(k + 1) ≥ ϕ−(x)

So ϕk+1
− (x) = −(k + 1) < −k = ϕk−(x).

(Subcase II.2) ϕk+1
− (x) = ϕ−(x) ≥ −(k + 1)

Then ϕk+1
− (x) = ϕ−(x) ≤ −k = ϕk−(x).

The item (ix) is proved.

(x) lim
k
ϕk−(x) = ϕ−(x) for all x in M , (and then ϕk− ↘k ϕ−).

(Case I): ϕ−(x) > −∞
Let ε > 0, then there exists k0 in N such that ϕ−(x) > −k0. For k > k0 we have

that ϕk−(x) = ϕ−(x) > −k0 > −k.

For k > k0, we see that |ϕk−(x)− ϕ−(x)| = 0 < ε.

(Case II): ϕ−(x) = −∞
Thus ϕk−(x) = −k and limk ϕ

k
−(x) = limk−k = −∞ = ϕ−(x).

The item (x) is proved.

(xi) (ϕk−)+(x) = (ϕ−)+(x) for all x in M and for all k in N.

We have that ϕk− = max{ϕ−,−k}, (ϕk−)+ = max{ϕk−, 0} and (ϕ−)+ = max{ϕ−, 0}.
(Case I): ϕk−(x) = ϕ−(x)

But (ϕk−)+(x) = max{ϕk−(x), 0} = max{ϕ−(x), 0} = (ϕ−)+(x).

(Case II): ϕk−(x) = −k ≥ ϕ−(x) (so 0 > ϕ−(x))

But (ϕk−)+(x) = max{ϕk−(x), 0} = max{−k, 0} = 0 = max{ϕ−(x), 0} = (ϕ−)+(x)

This completes the proof of item (xi), and we are done.

�



Chapter 3

Existence of invariant measures

One of the most celebrated results of invariant measure theory was proved by

Krylov and Bogolyubov [17] for compact metric space. Precisely, they showed that if

f : M → M is a continuous map, then f admits an invariant Borel probability measure

where M is a compact metric space. Since there exists an invariant measure we can apply

the Kingman Theorem (and so the Birkhoff Theorem) to study the statistical properties

of the system. Other fundamental results that hold in the context of finite invariant

measures are the Poincaré Recurrence Theorem and Kac’s Theorem.

With these theorems in mind, we give necessary conditions to guarantee the exis-

tence of invariant measures in locally compact and separable metric space for continuous

proper maps. Moreover, we use the Perron-Frobenius operator and the techniques de-

veloped here to obtain other criteria to guarantee the existence of invariant measures

for continuous maps (not necessarily a proper map) in locally compact separable metric

space.

The chapter is organized as follows: in Section 3.1 we give the statements of

main results. In section 3.2, we provide some applications and examples for our results.

In Section 3.3 we state some auxiliary results needed to proof of Theorem G and Theorem

H. In Section 3.4 and 3.6 we present the proofs of Theorem G, and Theorem H respectively.

3.1 Statements of main results of Chapter

Let M be a metric space, a map f : M → M is a proper map if the preimage of

every compact set in M is compact in M .

In what follows we consider X to be a locally compact separable metric space.

Let C0(X,R) be the set of functions that vanishes at “infinity” given by

C0(X,R) = C0(X) = {ϕ ∈ C(X,R) : {x ∈ X : |ϕ(x)| ≥ ε} is compact for all ε > 0}

50
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where C(X,R) is the set of all continuous function from X to R. We denote the set of all

continuous functions ϕ : X → R with compact support by Cc(X,R), or Cc(X). Our result

allow us to obtain a characterization for the existence of invariant measures as follows.

Theorem G. Suppose that f : X → X is a continuous proper map on locally compact

separable metric space. Then the following conditions are equivalents.

(i) there exist ϕ ∈ Cc(X;R) with 0 ≤ ϕ ≤ 1 and x0 ∈ X such that the following number

lim
n

1
n

n−1∑
j=0

ϕ ◦ f j(x0) > 0;

(ii) there exist ϕ ∈ Cc(X;R) with 0 ≤ ϕ ≤ 1 and x0 ∈ X such that the following number

lim inf
n

1
n

n−1∑
j=0

ϕ ◦ f j(x0) > 0;

(iii) there exist a probability measure ν on X and an observable ϕ ∈ C0(X,R) such that

lim inf
n

1
n

∫ n−1∑
j=0

ϕ ◦ f jdν > 0;

(iv) there exists an invariant probability measure.

Our goal is to provide a natural way to obtain invariant measures for continuous

proper maps in this spaces. Moreover, our proof does not use the tightness property of

Prokhorov’s Theorem to obtain the convergence in the space of Borel finite measures.

Remark 3.1. Actually, Theorem G holds for any measurable function f : X → X such

that ϕ ◦ f ∈ Cc(X,R) for all ϕ ∈ Cc(X,R) where X is a locally compact separable metric

space. In Lemma 3.29, we see that continuous proper maps satisfy this condition.

Remark 3.2. Note that the following conditions are equivalents.

(iii) there exist a probability measure ν on X and an observable ϕ ∈ C0(X,R) such that

lim inf
n

1
n

∫ n−1∑
j=0

ϕ ◦ f jdν > 0;

(iii′) there exist a probability measure ν on X and an observable ψ ∈ C0(X,R) such that

lim sup
n

1
n

∫ n−1∑
j=0

ψ ◦ f jdν < 0.

Remark 3.3. Using Corollary D and Theorem G, we obtain that if there exist a probability

measure ν on X and an observable ϕ in C0(X,R) such that ϕ satisfies hypothesis (b) and∫
ϕ−dν 6= 0, then there exists an invariant probability measure, where (X, d) is a locally

compact separable metric space, and f : X → X is a continuous proper map.

Remark 3.4. Let (M,A, µ) be a measure metric space, f be a measurable transformation

where µ is a finite measure (not necessarily an invariant measure under f). The system

(M,A, µ, f) is said to be mixing if for any bounded measurable maps ϕ, ψ : M → R,



CHAPTER 3. EXISTENCE OF INVARIANT MEASURES 52

one has lim
n→∞

∫
ϕ ◦ fn · ψdµ =

∫
ϕdµ

∫
ψdµ. For a continuous proper map f : X → X on

locally compact separable metric space, we are able to show that if there exists a probability

measure η (not necessarily an invariant measure under f) such that (X,A, f, η) is a mixing

system, then there exists an invariant probability measure. (See subsection 3.5.1.)

Remark 3.5. Since homeomorphisms are continuous proper maps, the conditions stated

by Theorem G are also equivalents for homeomorphisms on locally compact separable met-

ric space.

Remark 3.6. Let X be a locally compact separable metric space and let µ be a Borel

measure on X. We will say that µ is arealike if µ(x) = 0 for all x in X, µ(U) > 0 for

all nonempty open subsets U of X, and µ(K) is finite for all compact subsets K of X. In

[14], Baldwin provided a topological criterion that guarantees the existence of an arealike

invariant measure for a given fixed homeomorphism of X.

The following example admits a unique invariant measure that is not arealike

measure. Consider the homeomorphism f : [0,+∞) → [0,+∞) given by f(x) = x
2
, note

that [0,+∞) is a locally compact separable metric space.

We use the Perron-Frobenius operator and the techniques developed here in the

proof of the Theorem G to obtain other criteria to guarantee the existence of invariant

measures for locally compact separable metric space and continuous maps (not necessarily

a proper map).

Let f : X → X to be a continuous function. A bounded operator L : C0(X) →
C0(X) is called Perron-Frobenius-like operator for f if L(g) ≥ 0 whenever g ≥ 0 for

g ∈ C0(X), and L((g1 ◦ f)g2) = g1L(g2) for all g1, g2 ∈ C0(X). (In Lemma 3.36, we show

that the Perron-Frobenius-like operator L is well defined i.e., if f is a continuous function

and g1, g2 ∈ C0(X) then (g1 ◦ f)g2 ∈ C0(X)).

Theorem H. Suppose that f : X → X is a continuous function, and L : C0(X)→ C0(X)

is a Perron-Frobenius-like operator. If ‖L‖ is an eigenvalue of L, then there exists an

invariant probability measure.

The important point to note here is the form of the boundedness of the Perron-

Frobenius-like operator is used to drop the proper condition of map of Theorem G.

Our goal is to provide a relation between the existence of a Perron-Frobenius

operator and the existence of invariant measures for continuous maps on locally compact

separable metric spaces.
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3.2 Applications

The characterization for the existence of invariant measures, Theorem G, allows

us to obtain the following consequences.

Example 3.7. Theorem G implies the Theorem of Krylov and Bogolyubov for compact

metric space. In fact, suppose that M is a compact metric space, and f : M → M is a

continuous function. Since closed in compact is compact, we see that f is a proper map,

and all continuous function ϕ : M → R is a continuous function with compact support.

This implies that C(X,R) = C0(X,R). Taking ϕ = 1, the constant function, and any

non-null finite Borel measure µ of M , by item (i) of Theorem G, we are done.

Example 3.8. Consider the homeomorphism f : (0,+∞)→ (0,+∞) given by f(x) = x
2
,

and note that M = (0,+∞) is a locally compact and separable metric space. Then does

not exist an invariant measure, therefore, by Remarks 3.2 and 3.5, for any ϕ ∈ C0(M,R)

and for any x ∈ M , we have that lim inf
n

1
n

n−1∑
j=0

ϕ ◦ f j(x) ≤ 0 ≤ lim sup
n

1
n

n−1∑
j=0

ϕ ◦ f j(x).

Now, for any ϕ ∈ C0(M,R) with M = (0,+∞) we have that lim
x→0

ϕ(x) = 0. Observing

that for all x ∈ M , f j(x) goes to 0 as j tends to infinity, we see that lim
j→∞

ϕ ◦ f j(x) = 0,

and then lim
n→∞

1
n

n−1∑
j=0

ϕ ◦ f j(x) = 0.

Example 3.9. Suppose that f : X → X is a continuous proper map on locally compact

separable metric space. If there exist x ∈ X, n0 in N and a compact set K contained in

X such that for n > n0, fn(x) ∈ K then there exists an invariant probability measure.

In fact, suppose that there exist x0 ∈ X, n0 in N and K compact set such that for

n > n0, fn(x0) ∈ K. Without loss generality, fn(x0) ∈ K for all n ∈ N, since X is a

locally compact separable metric space. By Urysohn Lemma, Lemma 3.15, there exists a

function ϕ ∈ Cc(X) such that 0 ≤ ϕ(y) ≤ 1 for all y ∈ X, and ϕ(x) = 1 for all x ∈ K,

then ϕ(fnx0) = 1 for all n ∈ N. We obtain that 1 = ϕ(x0) ≥ ϕ(fnx0) = 1 for all n ∈ N,

so

1
n

n−1∑
j=0

ϕ ◦ f j(x0) = lim
n→∞

1
n

n−1∑
j=0

ϕ ◦ f j(x0) = 1.

Using Theorem G, there exists an invariant measure, and we are done.

In view of Example 3.9, we say that a system (X, f) is a non-trivial example if X

is a locally compact separable metric space and f : X → X is a continuous proper map

that admits an invariant finite measure such that for any compact set K and x ∈ X there

exists n̂(K, x) = n̂ ∈ N such that f n̂(x) /∈ K. The next result shows that if X = R, it is

not possible.
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Corollary 3.10. Suppose that f : R→ R is a continuous proper map. Then the following

conditions are equivalents.

(i) there exist x ∈ R, n0 in N and a compact set K contained in R such that for n > n0,

fn(x) ∈ K;

(ii) there exists an invariant probability measure.

Proof. By Example 3.9, we have that (i) implies (ii). So we are reduced to proving that

(ii) implies (i).

Suppose that there exists an invariant probability measure. By Theorem G, there

exist ϕ ∈ Cc(R;R) with 0 ≤ ϕ ≤ 1 and x0 ∈ X such that lim inf
n

1
n

n−1∑
j=0

ϕ ◦ f j(x0) > 0.

We have that suppϕ is a compact set of R, so there exist c, d ∈ R such that

suppϕ ⊆ [c, d]. If f(x) = x for some x ∈ R, then K = {x} is the compact set desired.

Suppose that f(x) 6= x for any x ∈ R. By continuity, we have that R is either A = {x ∈
R : f(x) > x} or B = {x ∈ R : f(x) < x}.

Using that lim inf
n

1
n

n−1∑
j=0

ϕ ◦ f j(x0) > 0, we see that {n : fn(x0) ∈ [c, d]} is an

infinite set.

(Case I). Suppose that R = A = {x ∈ R : f(x) > x}.

Claim 1: f i(x0) /∈ (d,+∞) for all i ∈ N. In fact, if f i(x0) ∈ (d,+∞) for

some i ∈ N, then d < f i(x0) < f i+j(x0) for any j ≥ 0 since f(x) > x for any x, but

{n : fn(x0) ∈ [c, d]} is an infinite set.

Claim 2: For any x ∈ R, if f(x) ∈ [c, d] then f j(x) /∈ (−∞, c) for all j ≥ 1. In

fact, we have that f j(x) > · · · > f 2(x) > f(x) ≥ c for any j ∈ N.

Using that {n : fn(x0) ∈ [c, d]} is an infinite set. There exists ĩ ∈ N such

that f ĩ(x0) ∈ [c, d]. By Claim 2, f j(f ĩ(x0)) /∈ (−∞, c) for all j ≥ 0. By Claim 1,

f j(f ĩ(x0)) /∈ (d,+∞) for all j ≥ 0. We obtain that f j+ĩ(x0) ∈ [c, d] for all j ≥ 0.

(Case II). Suppose that R = B = {x ∈ R : f(x) < x}.

Claim 3: f i(x0) /∈ (−∞, c) for all i ∈ N. In fact, if f i(x0) ∈ (−∞, c) for

some i ∈ N, then f i+j(x0) < f i(x0) < c for any j ≥ 0 since f(x) < x for any x, but

{n : fn(x0) ∈ [c, d]} is an infinite set.

Claim 4: For any x ∈ R, if f(x) ∈ [c, d] then f j(x) /∈ (d,+∞) for all j ≥ 1. In

fact, we have that f j(x) < · · · < f 2(x) < f(x) ≤ d for any j ∈ N.

Using that {n : fn(x0) ∈ [c, d]} is an infinite set. There exists ĩ ∈ N such

that f ĩ(x0) ∈ [c, d]. By Claim 3, f j(f ĩ(x0)) /∈ (−∞, c) for all j ≥ 0. By Claim 4,
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f j(f ĩ(x0)) /∈ (d,+∞) for all j ≥ 0. We obtain that f j+ĩ(x0) ∈ [c, d] for all j ≥ 0, and we

are done.

The special linear group SL(n,R) of degree n over R is the set of n× n matrices

with determinant 1, with the group operations of ordinary matrix multiplication and

matrix inversion. We denote by SL(n,Z) the group of n× n matrices with integer entries

and determinant equals 1. Note that SL(n,Z) is a discrete subgroup of SL(n,R). Using

Theorem G, we can prove the following result

Corollary 3.11. For each A ∈ SL(n,R) there exist BA SL(n,Z) ∈ SL(n,R)/ SL(n,Z) and

an observable ϕA ∈ Cc(SL(n,R)/ SL(n,Z),R) such that lim
n

1
n

n−1∑
j=0

ϕA(AjBA SL(n,Z)) > 0.

In general, we can state this below result.

Corollary 3.12. Suppose that G is a locally compact second countable Hausdorff group,

and Γ is a lattice in G. For each g ∈ G there exist agΓ ∈ G/Γ and ϕg ∈ Cc(G/Γ,R) such

that lim
n

1
n

n−1∑
j=0

ϕg(g
jagΓ) > 0.

In section 3.7, we give the proofs of Corollary 3.11 and Corollary 3.12.

3.3 Preliminary definitions and results

3.3.1 Locally compact Hausdorff spaces

Recall some definitions from Topology.

Definition 3.13. Let W be a topological space.

(i) A neigborhood of a point p in W is any open subset of W which contains p.

(ii) W is a Hausdorff space if the following condition is true: If p ∈ W , q ∈ W , and

p 6= q then p has a neighborhood U and q has a neigborhood V such that U ∩V = ∅.

(iii) W is a locally compact if every point of W has a neighborhood whose closure is

compact.

(iv) Let ϕ : W → R be a continuos function. The support of ϕ, denoted by supp(ϕ), is

the closure of {y ∈ W : ϕ(y) 6= 0}, i.e., supp(ϕ) = {y ∈ Y : ϕ(y) 6= 0}.

(v) Let Z be a locally compact Hausdorff space. We denote the set of all continuous

functions ϕ : Z → R with compact support by Cc(Z,R), or Cc(Z).
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(vi) A topological space W is σ-compact if it is a countable union of compact sets.

(vii) A second countable space is a topological space whose topology has a countable base.

(viii) A topological space is called separable if it contains a countable, dense subset; that

is, there exists a sequence {xn}∞n=1 of elements of the space such that every nonempty

open subset of the space contains at least one element of the sequence.

Let W be a set equipped with a σ-algebra A. A measure on A (or on (W,A), or

simply on W if A is understood) is a function µ : A → [0,∞] such that

(i) µ(∅) = 0

(ii) if {Ej}∞j=1 is a sequence of disjoint sets in A then µ(
∞⋃
j=1

Ej) =
∞∑
j=1

µ(Ej).

Property (ii) is called countable additivity.

If W is a set and A is a σ-algebra, (W,A) is called a measurable space and the

sets in A are called measurable sets. If µ is a measure on (W,A), then (W,A, µ) is called

a measure space. If W is a metric space, and (W,A, µ) is a measure space, then (W,A, µ)

is called a measure metric space.

Let Z be a locally compact Hausdorff space. We assume this terminolgies, BZ will

denote the Borel σ-algebra on Z, that is, the σ-algebra generated by open sets; measures

on BZ will be called Borel measures.

Let µ be a Borel measure on Z and E a Borel subset of Z. The measure µ is

called outer regular on E if

µ(E) = inf{µ(U) : U ⊃ E,U open}

and inner regular on E if

µ(E) = sup{µ(K) : K ⊂ E,K compact}.

If µ is outer and inner regular on all Borel sets, µ is called regular. A Radon

measure on Z is a Borel measure that is finite on all compact sets, outer regular on all

Borel sets, and inner regular on all open sets.

Given a subset A of Z, recall that the indicator function 1A : Z → R is defined

by setting 1A(x) = 1, for x ∈ A; and 1A(x) = 0, for x /∈ A.

Definition 3.14. [30] Let U ⊆ Z be an open set and ϕ be a function in Cc(Z). If ϕ

satisfies 0 ≤ ϕ ≤ 1 and supp(ϕ) ⊆ U we use the notation ϕ ≺ U .
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The notation K ≺ ϕ will mean that K is a compact subset of X, that ϕ ∈ Cc(X),

that 0 ≤ ϕ(x) ≤ 1 for all x ∈ X, and that ϕ(x) = 1 for all x ∈ K.

The notation K ≺ ϕ ≺ U will be used to indicate that K ≺ ϕ and ϕ ≺ U hold.

An useful result is the Urysohn Lemma:

Lemma 3.15. [61, Lemma 2.12] Suppose X is a locally compact Hausdorff space, V is

open in X, K ⊆ V , and K is a compact. Then there exists a function ϕ ∈ Cc(X), such

that

K ≺ ϕ ≺ V .

A linear functional I on Cc(Z) will be called positive if I(ϕ) ≥ 0 whenever ϕ ≥ 0

where Cc(Z) is a normed space equipped with the uniform norm:

‖ϕ‖ = sup
x∈Z
|ϕ(x)|.

Let µ be a Radon Measure, then I : Cc(Z;R) → R given by I(ϕ) =
∫
ϕdµ is a

positive linear functional. The Riesz Representation Theorem tell us that this reciprocal

is true as follows.

Theorem 3.16. [30, Theorem 7.2] If I : Cc(Z;R) → R be a positive linear functional.

Then there is a unique Radon measure µ on Z such that

I(ϕ) =
∫
ϕdµ

for all ϕ ∈ Cc(Z). Moreover, µ satisfies

µ(U) = sup{
∫
ϕdµ : ϕ ∈ Cc(Z), ϕ ≺ U} (3.1)

for all open U ⊂ Z, and

µ(K) = inf{
∫
ϕdµ : ϕ ∈ Cc(Z), ϕ ≥ 1K} (3.2)

for all compact K ⊂ Z.

Now, recall the following results.

Lemma 3.17. [30, Corollary 7.6] Let Z be a locally compact Hausdorff space. If Z is

σ-compact, every Radon measure on Z is regular.

Theorem 3.18. [30, Theorem 7.8] Let Z be a second countable locally compact Hausdorff

space. Then every Borel measure on Z that is finite on compact sets is regular and hence

Radon.
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In what follows we consider X to be a locally compact separable metric space.

Let µ be a finite measure on X. Recall that for locally compact metric space,

the condition of σ-compactness is equivalent to be second countable (that is equivalent to

be a separable space). By Lemma 3.17 and Theorem 3.18, µ is a Radon measure if, only

if, µ is a Borel measure. The following Lemma characterizes the bounded positive linear

functionals of Cc(X).

Lemma 3.19. [40, p. 36] Let I : Cc(X) → R be a positive linear functional, and let µ

be the Radon Measure such that I(f) =
∫
fdµ for all f ∈ Cc(X). Then I is a bounded

operator if, and only if, µ(X) <∞.

Proof. Suppose that I is a bounded operator. By Theorem 3.16,

µ(X) = sup{I(ϕ) : ϕ ∈ Cc(X), ϕ ≺ 1X = 1} ≤

sup{|I(ϕ)| : ϕ ∈ Cc(X), 0 ≤ ϕ ≤ 1} ≤

sup
‖ϕ‖≤1

|I(ϕ)| = ‖I‖ <∞.

Then µ(X) <∞.

Now, suppose that µ(X) < ∞. Let (ϕn)n be a sequence in Cc(X) such that

uniformly converges to ϕ in Cc(X). By Dominated Convergence Theorem, lim
n→∞

∫
ϕndµ =∫

ϕdµ. So lim
n→∞

I(ϕn) = lim
n→∞

∫
ϕndµ =

∫
ϕdµ = I(ϕ), and then I is a bounded operator.

Let C0(X,R) be the set of functions that vanishes at infinity given by

C0(X,R) = {ϕ ∈ C(X,R) : {x ∈ X : |ϕ(x)| ≥ ε} is compact for all ε > 0}

where C(X,R) is the set of all continuous function from X to R. Note that C0(X) is the

uniform closure of Cc(X) (see [30, Proposition 4.35]).

Let RM to be the set of all finite Radon measures on X. By Lemma 3.19, we

may consider the linear operator I : RM→ Cc(X;R)
′

given by

I(µ)ϕ = Iµϕ =
∫
ϕdµ

for all ϕ in Cc(X) where Cc(X;R)
′

is the dual of Cc(X;R), the set of all bounded linear

functional from Cc(X;R) to R. Then Iµ : Cc(X;R) → R is a bounded linear functional.

But C0(X) is the uniform closure of Cc(X), so there exists a continuous extension of Iµ
from C0(X) to R with norm ‖Iµ‖. We abuse the notation and write this extension by

Iµ too. Then our linear operator I is defined from RM to C0(X;R)
′
, i.e., I : RM →

C0(X;R)
′
.
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Remark 3.20. Note that the Riesz Representation Theorem (Theorem 3.16) provides that

I is an injective function.

3.3.2 Duality

Now, we recall the standard results and definitions of functional analysis.

Let (Y, ‖ · ‖) be a normed space. We define the dual of Y by

Y ′ = {ϕ : Y → R | ϕ is a continuous and linear function}.

Y
′′

= {η : Y ′ → R | η is a continuous and linear function}.

Define J : Y → Y
′′

given by J(y)(ϕ) = ϕ(y) for all y in Y and ϕ in Y ′.

Definition 3.21. The weak topology in Y , σ(Y, Y ′), is the topology spanned by continuous

linear functions ϕ in Y ′.

Recall that

Ṽ [y, F, ε] =
⋂
fi∈F

(fi)
−1(B(fi(y), ε))

is a basic open of (Y, σ(Y, Y ′)) where F = {f1, ..., fn} and fi ∈ Y ′ for i ∈ {1, ..., n}.

Ṽ [f,Γ, ε] =
⋂
Ti∈Γ

(Ti)
−1(B(Ti(f), ε))

is a basic open of (Y ′, σ(Y ′, Y ′′)) where Γ = {T1, ..., Tn} and Ti ∈ Y ′′ for i ∈ {1, ..., n}.

V [f,Φ, ε] =
n⋂
i=1

(Ti)
−1(B(Ti(f), ε)) =

n⋂
i=1

(J(yi))
−1(B(J(yi)(f), ε)) =

⋂
yi∈Φ

(J(yi))
−1(B(f(yi), ε))

is a basic open of (Y ′, σ(Y ′, Y )) where Ti ∈ J(Y ) for all i, Φ = {y1, ..., yn} and y1, ..., yn ∈
Y . We have that

V [f,Φ, ε] =
⋂
yi∈Φ

(J(yi))
−1(B(f(yi), ε))

is a basic open of (Y ′, σ(Y ′, Y )) where Φ = {y1, ..., yn} and y1, ..., yn ∈ Y .
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3.3.3 Locally compact separable metric spaces space versus Du-

ality

Let X be a locally compact separable metric space, recall that C0(X) is a normed

space equipped with the uniform norm. We define the linear operator I : RM →
C0(X;R)

′
where I(µ)ϕ = Iµϕ =

∫
ϕdµ for all ϕ in Cc(X;R) (note that this operator

extends the previous operator I, to see this recall the Bounded Linear Transformation

Theorem, since C0(X;R) is the closure of Cc(X;R)), and (C0(X;R), ‖ · ‖) is a Banach

space. Set (Y, ‖ · ‖) = (C0(X;R), ‖ · ‖) and Y ′ = C0(X;R)
′
.

Consider τ1 := σ(Y ′, Y )|I(RM), and take Iµ ∈ Y ′ for some µ ∈ RM, Φ =

{ϕ1, ..., ϕn} ⊆ Y and ε > 0. Then V [Iµ,Φ, ε] is an open basic of σ(Y ′, Y ). We have that

V [Iµ,Φ, ε] =
⋂
ϕi∈Φ

(J(ϕi))
−1(B(Iµ(ϕi), ε))

is a basic open of (Y ′, σ(Y ′, Y )).

So,

V [Iµ,Φ, ε] = {η ∈ Y ′ : |η(ϕi)−
∫
ϕidµ| < ε for all i ∈ {1, ..., n}},

and

V [Iµ,Φ, ε] ∩ I(RM) = {Iν ∈ I(RM) : |
∫
ϕidν −

∫
ϕidµ| < ε for all i ∈ {1, ..., n}}

is an open basic set of τ1 = σ(Y ′, Y )|I(RM).

In what follows we consider C0(X;R)
′

with the ∗-weak topology. So the notation

A for some A ⊆ C0(X;R)
′

will mean the closure of A with respect to the ∗-weak topology

of C0(X;R)
′
= Y ′.

Lemma 3.22. I(RM) is ∗-weak closed in C0(X;R)
′
= Y ′.

Proof. Let T ∈ C0(X;R)
′

be a bounded linear operator T : C0(X;R) → R such that

T ∈ I(RM). Note that T̂ := T |Cc(X,R) : Cc(X,R)→ R is a linear operator.

Let ϕ in Cc(X,R) such that ϕ : X → R is a positive function, i.e., for all x in X,

ϕ(x) ≥ 0. Then for all n ∈ N there exists µn ∈ RM such that

Iµn ∈ V [T, {ϕ}, 1
n
] = {R ∈ C0(X;R)

′
: |R(ϕ)− T (ϕ)| < 1

n
}.

In other words,

1
n
> |I(µn)(ϕ)− T (ϕ)| = |

∫
ϕdµn − T (ϕ)|,
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we obtain that lim
n→∞

∫
ϕdµn = T (ϕ). Using that

∫
ϕdµn ≥ 0 for all n, we have

that T (ϕ) ≥ 0. But T̂ := T |Cc(X,R), so T̂ (ϕ) = T (ϕ) ≥ 0, and T̂ : Cc(X,R) → R is a

positive linear functional on Cc(X,R). By Riesz Representation Theorem (Theorem 3.16),

there is a unique Radon measure µ on X such that T̂ (ϕ) =
∫
ϕdµ for all ϕ ∈ Cc(X).

But T̂ is a positive bounded linear operator, by Lemma 3.19, µ(X) < ∞, so µ ∈ RM.

Now, T is the continuous extension of T̂ on C0(X,R), and then T = Iµ ∈ I(RM). This

completes the proof of Lemma.

Let RM1 be the set of all probability Radon measure on X, so it is a subset of

RM.

Remark 3.23. Note that I(RM1) ⊆ I(RM).

The following classical property of locally compact separable metric spaces is

required for proof of our results.

Proposition 3.24. [28] Let (X, d) be a locally compact separable metric space, then the

space (Cc(X), ‖ · ‖) is separable. Moreover, (C0(X), ‖ · ‖) is separable.

Let (X, d) be a locally compact separable metric space, so C0(X) = Y is a

separable space, and then (BY ′ , σ(Y ′, Y )) is meatrizable where BY ′ = {ξ ∈ Y ′ : ‖ξ‖ ≤ 1}.
This implies that (BY ′ , σ(Y ′, Y )) is a compact metric space.

Proposition 3.25. I(RM1) is a compact metric space.

Proof. Just note that I(RM1) ⊆ BY ′ . In fact, let µ ∈ RM1,

‖Iµ‖ = sup
‖ϕ‖≤1

|Iµ(ϕ)| = sup
‖ϕ‖≤1

|
∫
ϕdµ| ≤ 1.

3.3.4 Dynamic of f

Here, we discuss the way to obtain invariant measures.

Let g : X → X be a measurable function, and let µ be a measure in X, we denote

by g∗µ the measure defined by g∗µ(B) := µ(g−1B) for all measurable set B in X.

Let g : X → X be a measurable function, and consider ĝ∗ : I(RM) → I(RM)

defined by ĝ∗(Iη) = I(g∗η) for all η in RM.

Let ν be a measure in RM1, let (µn)n be a sequence of probabilities given by

µn = 1
n

n−1∑
j=0

f j∗ν.
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So Iµn in I(RM1) for all n in N, but I(RM1) is a compact metric space, and

I(RM1) ⊆ I(RM1). There exists a subsequence (Iµnk)k∈N of sequence (Iµn)n that

converges in ∗-weak topology to some T in I(RM1). But I(RM1) ⊆ I(RM), then

there is µ in RM such that Iµ = T .

Note that

I(µn)ϕ =
1

n

n−1∑
j=0

∫
ϕ ◦ f jdν =

1

n

n−1∑
j=0

If j∗ν(ϕ) (3.3)

f̂∗(Iµn)ϕ = I(f∗µn)ϕ = Iµn(ϕ ◦ f) = 1
n

n−1∑
j=0

∫
ϕ ◦ f j+1dν = 1

n

n∑
j=1

If j∗ν(ϕ).

If f̂∗|I(RM1) : I(RM1) → I(RM1) is a continuous function in ∗-weak topology,

we showed that the limit of sequence of probability measures given as before provide us

an invariant measure as follows.

Lemma 3.26. Let ν be a probability measure in RM1, and µ be a finite measure such

that Iµ is a point of accumalation of sequence (Iµn)n where µn is given by µn = 1
n

n−1∑
j=0

f j∗ν.

If f̂∗|I(RM1) : I(RM1) → I(RM1) is a continuous function in ∗-weak topology, then µ

is an f -invariant measure.

Proof. We are going to show that Iµ = f̂∗(Iµ). By hypothesis, (Iµnk)k converges in

∗-weak topology to some Iµ. Using that f̂∗ is a ∗-weak continuous function in a compact

metric space I(RM1), we obtain that (f̂∗Iµnk)k converges in ∗-weak topology to f̂∗Iµ.

Then

I(µnk) = 1
nk

nk−1∑
j=0

If j∗ν → Iµ

f̂∗Iµnk = 1
nk

nk∑
j=1

If j∗ν → f̂∗Iµ

Let V [Iµ,Φ, ε] be an arbitrary neighborhood of Iµ where Φ = {ϕ1, · · · , ϕr} such

that ϕi in Cc(X) for any i in {1, · · · , r}. There exists k0 in N such that for k > k0

(a) 2
nk
· sup
i∈{1,··· ,r}

|ϕi| < ε
2
.

(b) |Iµnk(ϕi)− Iµ(ϕi)| = | 1
nk

nk−1∑
j=0

If j∗ν(ϕi)− Iµ(ϕi)| < ε
2

for all i in {1, · · · , r}.

and note that for k > k0

|I(µnk)ϕi − f̂∗Iµnkϕi| = | 1
nk

nk−1∑
j=0

∫
ϕi ◦ f jdν − 1

nk

nk∑
j=1

∫
ϕi ◦ f jdν|

= 1
nk
|
∫
ϕidν −

∫
ϕi ◦ fnkdν| ≤ 2

nk
· sup
i∈{1,··· ,r}

|ϕi| < ε
2
,

we obtain that
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|I(µnk)ϕi − f̂∗Iµnkϕi| < ε
2

for all i in {1, · · · , r} if k > k0.

For k > k0, and i in {1 · · · , r} fixed,

|f̂∗Iµnkϕi − Iµ(ϕi)| ≤ |f̂∗Iµnkϕi − I(µnk)ϕi|+ |I(µnk)ϕi − Iµ(ϕi)| < ε
2

+ ε
2

= ε

So f̂∗Iµnk ∈ V [Iµ,Φ, ε] for k > k0, and then (f̂∗Iµnk)k∈N converges in ∗-weak

topology to Iµ. But (f̂∗Iµnk)k converges in ∗-weak topology to f̂∗Iµ. By unicity of limit,

we obtain that f̂∗Iµ = Iµ.

Recall that f̂∗(Iµ) = If∗µ. We obtain that If∗µ = Iµ, but I is an injective

function (see Remark 3.20), so µ = f∗µ, and we are done.

Remark 3.27. The Lemma 3.26 is an adaptation of the Lemma 2.2.4 in [73].

3.4 Proof of Theorem G

Suppose that f : X → X is a continuous proper map on locally compact separable

metric space. Theorem G states that the following conditions are equivalents.

(i) there exist ϕ ∈ Cc(X;R) with 0 ≤ ϕ ≤ 1 and x0 ∈ X such that the following

number lim
n

1
n

n−1∑
j=0

ϕ ◦ f j(x0) > 0;

(ii) there exist ϕ ∈ Cc(X;R) with 0 ≤ ϕ ≤ 1 and x0 ∈ X such that the following

number lim inf
n

1
n

n−1∑
j=0

ϕ ◦ f j(x0) > 0;

(iii) there exist a probability measure ν on X and an observable ϕ ∈ C0(X,R) such that

lim inf
n

1
n

∫ n−1∑
j=0

ϕ ◦ f jdν > 0;

(iv) there exists an invariant probability measure.

To prove Theorem G, suppose that the following lemma is proved.

Lemma I. Suppose that f : X → X is a continuous proper map. If there exist a

probability measure ν on X and an observable ϕ in C0(X,R) such that the following

number lim inf
n

1
n

n−1∑
j=0

∫
ϕ ◦ f jdν > 0, then there exists an invariant probability measure.

Using Lemma I, we have that (i) → (ii) → (iii) → (iv). To deduce (iii) from

(ii), take the Dirac measure of point x0. So we are reduced to proving that (iv) implies

(i).

Suppose that (iv) holds, so there exists an invariant probability measure µ. By

Birkhoff’s Theorem for invariant measures, for each ϕ ∈ Cc(X;R) such that 0 ≤ ϕ ≤ 1,

there exists a function ϕ̃ from a set of full measure Xϕ contained in X to the real line R
defined by
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ϕ̃(x) = lim
n

1
n

n−1∑
j=0

ϕ ◦ f j(x)

such that
∫
ϕ̃dµ =

∫
ϕdµ. We claim that for some ψ ∈ Cc(X;R) such that 0 ≤ ψ ≤ 1

there exists x ∈ Xψ such that lim
n

1
n

n−1∑
j=0

ψ ◦ f j(x) > 0. Suppose the assertion of the claim

is false. So for any ϕ ∈ Cc(X) such that 0 ≤ ϕ ≤ 1, we have that lim
n

1
n

n−1∑
j=0

ϕ ◦ f j(x) = 0

for all x ∈ Xϕ. Then 0 =
∫

0dµ =
∫
ϕ̃dµ =

∫
ϕdµ.

It implies that
∫
ϕdµ = 0 for all ϕ in Cc(X,R) such that 0 ≤ ϕ ≤ 1. By Theorem

3.16, µ(X) = sup{
∫
ϕdµ : ϕ ∈ Cc(X), ϕ ≺ 1X = 1}, so µ(X) = 0, but µ(X) = 1. This

completes the proof of Theorem G.

3.5 Proof of Lemma I

In what follows we consider X to be a locally compact separable metric space.

To prove the Lemma I, we need of the following result.

Theorem 3.28. Suppose that f : X → X is a measurable function such that ϕ ◦ f ∈
Cc(X,R) for all ϕ ∈ Cc(X,R). If there exist a probability measure ν on X and an

observable ϕ in C0(X,R) such that lim inf
n

1
n

n−1∑
j=0

∫
ϕ ◦ f jdν > 0, then there exists an

invariant probability measure.

So, to obtain the Lemma I, we have to prove Theorem 3.28, and the following

lemma about continuous proper map and continuous functions with compact support.

Lemma 3.29. Suppose that f : X → X be a continuous proper map. Then ϕ ◦ f ∈
Cc(X,R) for all ϕ ∈ Cc(X,R).

Proof. Let ψ : X → R be a continuous function with compact support, so ψ ◦ f is a

continuous function. Note that

{y ∈ X : ψ ◦ f(y) 6= 0} = f−1({x ∈ X : ψ(x) 6= 0}) ⊆ f−1(suppψ)

So, supp(ψ ◦ f) ⊆ f−1(suppψ) = f−1(suppψ), by continuity of f since suppψ

is closed in X. Now, f is a proper map, and suppψ is compact in X, so f−1(suppψ) is

compact in X. But supp(ψ ◦ f) is closed in X, it implies that supp(ψ ◦ f) is compact in

X, and we are done.

From this moment, we are going to discuss the proof of Theorem 3.28. In the

course of this, we will indicate to the reader the verification of some auxiliary results
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in section 3.3. Recall that C0(X) is a normed space equipped with the uniform norm,

‖ϕ‖ = sup
x∈X
|ϕ(x)| for ϕ ∈ C0(X).

We define the linear operator I : RM→ C0(X;R)
′

by

I(µ)ϕ = Iµϕ =
∫
ϕdµ

for all ϕ in Cc(X;R) where RM is the set of all finite Radon measures on X, and RM1

is the set of all probability Radon measure on X.

Set (Y, ‖ · ‖) = (C0(X;R), ‖ · ‖) and Y ′ = C0(X;R)
′
.

Note that the Riesz Representation Theorem provides that I is an injective func-

tion.

In what follows we consider C0(X;R)
′

with the ∗-weak topology. So the notation

A for some A ⊆ C0(X;R)
′

will mean the closure of A with respect to the ∗-weak topology

of C0(X;R)
′
= Y ′.

In our proof, an essential result is that the set I(RM) is ∗-weak closed in

C0(X;R)
′
= Y ′ (see Lemma 3.22). This implies that I(RM1) ⊆ I(RM).

By Corollary 3.25, we conclude that (I(RM1)), σ(Y ′, Y )) is a compact metric

space.

Let g : X → X be a measurable function, and let µ be a measure in X, we denote

by g∗µ the measure defined by g∗µ(B) := µ(g−1B) for all measurable set B in X.

Let g : X → X be a measurable function, and consider ĝ∗ : I(RM) → I(RM)

defined by ĝ∗(Iη) = I(g∗η) for all η in RM.

We would like to apply the Lemma 3.26, so we have to show that f̂∗|I(RM1) :

I(RM1) → I(RM1) is a continuous function in ∗-weak topology. The following result

give us this.

Lemma 3.30. Let X be a locally compact separable metric space, and f : X → X be a

function such that ϕ ◦ f ∈ Cc(X,R) for all ϕ ∈ Cc(X,R). Then

(i) ψ ◦ f ∈ C0(X,R) for all ψ in C0(X,R)

(ii) the map f̂∗ : I(RM)→ I(RM) defined by f̂∗(Iη) = I(f∗η) is a continuous function

in ∗-weak topology.

(iii) f̂∗(I(RM1)) ⊆ I(RM1).

Due to the technicality of the Lemma 3.30, we will give the proof of this at the

end of this Section.
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Using the Lemma 3.30, we have that f̂∗|I(RM1) : I(RM1) → I(RM1) is a

continuous function in ∗-weak topology, and then, by Lemma 3.26, for any ν probability

measure in RM1, and µ be a finite measure such that Iµ is a point of accumalation of

sequence (Iµn)n where µn is given by µn = 1
n

n−1∑
j=0

f j∗ν, we have that µ is a f -invariant

measure.

Now, we are going to verify certain conditions to provide that the limit of sequence

Iµn given as above for some η is not the null measure. The next result completes the

proof of Lemma I.

Lemma 3.31. Let (X, d) be a locally compact separable metric space, and f : X →
X be a function such that ϕ ◦ f ∈ Cc(X,R) for all ϕ ∈ Cc(X,R). If there exist a

probability measure ν on X and an observable ϕ in C0(X,R) such that the following

number lim inf
n

1
n

n−1∑
j=0

∫
ϕ ◦ f jdν > 0, then there exists an invariant probability measure.

Proof. Suppose that there exist a probability measure ν on X and an observable ϕ in

C0(X,R) such that lim inf
n

1
n

n−1∑
j=0

∫
ϕ ◦ f jdν > 0,

Let µ be a finite measure such that Iµ is a point of accumalation of sequence

(Iµn)n where µn is given by µn = 1
n

n−1∑
j=0

f j∗η. So there exists a subsequence (Iµnk)k∈N of

sequence (Iµn)n that converges in ∗-weak topology to some Iµ.

Suppose that µ is the null-measure, and consider the function ϕ in C0(X,R). For

the family of neighborhood of I(0) = 0 given by (V`[0, {ϕ}, 1
`
])`∈N, we have that for each

` fixed, there exists k` > 0 such that for k ≥ k`,

1
`
> |I(µnk)ϕ− I(0)ϕ| = |I(µnk)ϕ| = | 1

nk

nk−1∑
j=0

∫
ϕ ◦ f jdη|, so

lim
k→∞

1

nk

nk−1∑
j=0

∫
ϕ ◦ f jdη = 0. (3.4)

and note that

0 < lim inf
n

1
n

n−1∑
j=0

∫
ϕ ◦ f jdν ≤ lim

k→∞
1
nk

nk−1∑
j=0

∫
ϕ ◦ f jdη = 0.

This shows that µ is not the null-measure, and the Lemma is proved.

3.5.1 Proof of remark 3.4

Suppose that η is a probability measure (not necessarily an invariant measure

under f) such that (X,A, f, η) is a mixing system. We are going to show that there exists

an invariant probability measure.
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By definition of mixing system, for any bounded and measurable functions ϕ, ψ :

X → R, we have that

lim
n→∞

∫
ϕ ◦ fnψdη =

∫
ϕdη

∫
ψdη (3.5)

Let µ be a finite measure such that Iµ is a point of accumalation of sequence

(Iµn)n where µn is given by µn = 1
n

n−1∑
j=0

f j∗η. So there exists a subsequence (Iµnk)k∈N of

sequence (Iµn)n that converges in ∗-weak topology to some Iµ.

Suppose that µ is the null-measure and fix ϕ in C0(X,R). Consider the family

of neighborhood of I(0) = 0 given by (V`[0, {ϕ}, 1
`
])`∈N.

Now, for each ` fixed, there exists k` > 0 such that for k ≥ k`,

1
`
> |I(µnk)ϕ− I(0)ϕ| = |I(µnk)ϕ| = | 1

nk

nk−1∑
j=0

∫
ϕ ◦ f jdη|, so

lim
k→∞

1

nk

nk−1∑
j=0

∫
ϕ ◦ f jdη = 0. (3.6)

By equation (3.5)

lim
n→∞

∫
ϕ ◦ fndη = lim

n→∞

∫
ϕ ◦ fn · 1Xdη = η(X)

∫
ϕdη =

∫
ϕdη, then

lim
m→∞

1

m

m−1∑
j=0

∫
ϕ ◦ f jdη =

∫
ϕdη. (3.7)

By equations 3.6 and 3.7,
∫
ϕdη = 0 for all ϕ in C0(X,R). By Theorem 3.16,

η(X) = sup{
∫
ϕdη : ϕ ∈ Cc(X), ϕ ≺ 1X = 1}, so η(X) = 0, but η(X) = 1. This

completes the proof of item (i).

The following sequence of technical lemmas proves the Lemma 3.30.

3.5.2 Proof of Lemma 3.30

Lemma 3.32. Suppose that ψ◦f ∈ Cc(X,R) for all ψ ∈ Cc(X,R). Then ψ◦f ∈ C0(X,R)

for all ψ in C0(X,R).

Proof. Let ψ in C0(X,R), using that X is a locally compact space, we have that Cc(X,R)

is dense in C0(X,R), so there exists a sequence (ψn)n∈N of continuous functions with

compact support that converges uniformly to ψ, and then (ψn◦f)n∈N converges uniformly

to ψ ◦ f . By hypothesis, ψn ◦ f ∈ Cc(X,R) for each n, so ψ ◦ f in C0(X,R), and we are

done.
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Lemma 3.33. [73, Lemma 2.2.1] Let µ be a finite measure in X, and φ : X → R be a

bounded measurable function. Then∫
φdg∗µ =

∫
φ ◦ gdµ. (3.8)

Proof. Suppose that φ is a characteristic function of a mensurable set B then the relation

(3.8) means that g∗µ(B) = µ(g−1(B)), that is true. By linearity of integral, (3.8) holds

for any simple function. Finally, from the fact that every bounded measurable function

can be uniformly approximated by simple fucntions, we are done.

Lemma 3.34. [73, Proposition 2.2.2] If f : X → X is a function such that ϕ ◦ f ∈
Cc(X,R) for all ϕ ∈ Cc(X,R), then the map f̂∗ : I(RM)→ I(RM) defined by f̂∗(Iη) =

I(f∗η) is a continuous function in (I(RM), τ1).

Proof. Let Iµ in I(RM) fixed, and let V [f̂∗(Iµ),Φ, ε] ∩ I(RM) be an arbitrary neigh-

borhood of f̂∗(Iµ) in I(RM) where Φ = {ϕ1, · · · , ϕn} is a finite family of C0(X,R).

Using that ϕ ◦ f ∈ Cc(X,R) for all ϕ ∈ Cc(X,R), by Lemma 3.32, we have that

Ψ = {ϕ1 ◦ f, · · · , ϕn ◦ f} is a finite family of C0(X,R) too. Note that

f̂∗(V [Iµ,Ψ, ε] ∩ I(RM)) ⊆ V [f̂∗(Iµ),Φ, ε] ∩ I(RM)

In fact, let Iη ∈ V [Iµ,Ψ, ε], by definition

|
∫
ϕi ◦ fdη −

∫
ϕi ◦ fdµ| < ε for all i ∈ {1, ..., n}.

By lemma 3.33, we obtain that ε > |
∫
ϕi◦fdη−

∫
ϕi◦fdµ| = |

∫
ϕidf∗η−

∫
ϕidf∗µ|

for all i ∈ {1, ..., n}, and then I(f∗η) ∈ V [I(f∗µ),Φ, ε], but I(f∗µ) = f̂∗(Iµ) and I(f∗η) =

f̂∗(Iη), so f̂∗(Iη) ∈ V [f̂∗(Iµ),Φ, ε], and we are done.

Lemma 3.35. f̂∗(I(RM1)) ⊆ I(RM1)

Proof. Let T in I(RM1), so there exists µ in RM such that T = Iµ (by remark 3.23),

and let V [f̂∗(Iµ),Φ, ε] be an arbitrary neighborhood of f̂∗(Iµ) in C0(X,R)′ where Φ =

{ϕ1, · · · , ϕn} is a finite family of C0(X,R).

Using that ϕ ◦ f ∈ Cc(X,R) for all ϕ ∈ Cc(X,R), by Lemma 3.32, we have that

Ψ = {ϕ1 ◦ f, · · · , ϕn ◦ f} is a finite family of C0(X,R) too. Note that

f̂∗(V [Iµ,Ψ, ε] ∩ I(RM1)) ⊆ V [f̂∗(Iµ),Φ, ε] ∩ I(RM1) (3.9)

In fact, let Iη ∈ V [Iµ,Ψ, ε] with η ∈ RM1, by definition

|
∫
ϕi ◦ fdη −

∫
ϕi ◦ fdµ| < ε for all i ∈ {1, ..., n}.
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By lemma 3.33, we obtain that ε > |
∫
ϕi◦fdη−

∫
ϕi◦fdµ| = |

∫
ϕidf∗η−

∫
ϕidf∗µ|

for all i ∈ {1, ..., n}, and then I(f∗η) ∈ V [I(f∗µ),Φ, ε], but I(f∗µ) = f̂∗(Iµ) and I(f∗η) =

f̂∗(Iη), so f̂∗(Iη) ∈ V [f̂∗(Iµ),Φ, ε].

Note that f̂∗(I(RM1)) ⊆ I(RM1). First, observe that for ν ∈ RM1, we have

that f∗ν(X) = ν(f−1(X)) = ν(X) = 1, so f∗ν ∈ RM1 if ν ∈ RM1. Then for ν ∈ RM1

we have that f̂∗(Iν) = I(f∗ν), but f∗ν ∈ RM1 if ν ∈ RM1 (by Theorem 3.18), so

f̂∗(Iν) ∈ I(RM1). Then f̂∗(Iη) ∈ I(RM1). This completes the proof of the inclusion

(3.9).

But T = Iµ in I(RM1), then V [Iµ,Ψ, ε] ∩ I(RM1) 6= ∅, we obtain that

V [f̂∗(Iµ),Φ, ε] ∩ I(RM1) 6= ∅

So f̂∗(T ) = f̂∗(Iµ) ∈ I(RM1), and we are done. This completes the proof of

Lemma 3.30.

3.6 Proof of Theorem H

Let X be a locally compact separable metric space, and f : X → X be a contin-

uous function. A bounded operator L : C0(X) → C0(X) is called Perron-Frobenius-like

operator for f if L(g) ≥ 0 whenever g ≥ 0 for g ∈ C0(X), and L((g1 ◦ f)g2) = g1L(g2)

for all g1, g2 ∈ C0(X). Now, we are going to prove the Theorem H, first we show that the

Perron-Frobenius-like operator L is well defined as follows.

Lemma 3.36. L is well defined, i.e., if f is a continuous function and g1, g2 ∈ C0(X)

then (g1 ◦ f)g2 ∈ C0(X).

Proof. First we prove that if g1 ∈ C0(X) and g2 ∈ Cc(X), then (g1 ◦ f)g2 ∈ Cc(X). So,

{x ∈ X : (g1 ◦ f)(x)g2(x) 6= 0} ⊆ {x ∈ X : g2(x) 6= 0} ⊆ supp g2,

and then supp(g1 ◦ f)g2 ⊆ supp g2. This implies that supp(g1 ◦ f)g2 is a compact

set, since supp g2 is a compact set. To finish suppose that g1, g2 in C0(X), and use that

Cc(X) is dense in C0(X). So, there exists a sequence (hn)n in Cc(X) that converges to g2.

By first part, we have that (g1 ◦ f)hn ∈ Cc(X) for all n in N. So ((g1 ◦ f)hn)n converges

to (g1 ◦ f)g2, and then (g1 ◦ f)g2 ∈ C0(X), and we are done.

Theorem H may be proved in much the same way as Theorem ??. However,

our proof makes no appeal to proper maps, and it forces us to explore the properties of

Perron-Frobenius operators, topological properties of this spaces, and tools of Functional

Analysis as follows.
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Proof of Theorem H. Suppose that X is a locally compact separable metric space, f :

X → X is a continuous function, and L : C0(X) → C0(X) is a Perron-Frobenius-like

operator such that ‖L‖ is an eigenvalue of L.

Recall that if L : C0(X)→ C0(X) is a Perron-Frobenius-like operator then

L((g1 ◦ f)g2) = g1L(g2) for all g1, g2 ∈ C0(X) and

L(g) ≥ 0 whenever g ≥ 0. Note that if L is a Perron-Frobenius-like operator then αL is

a Perron-Frobenius-like operator for all positive real number α.

So, without loss generality, L is a Perron-Frobenius-like operator such that ‖L‖ =

1 is an eigenvalue of L.

Consider the linear operator I : RM→ C0(X;R)
′

by

I(µ)ϕ = Iµϕ =
∫
ϕdµ

for all ϕ in Cc(X;R) where RM is the set of all finite Radon measures on X, and RM1

is the set of all probability Radon measure on X. Set (Y, ‖ · ‖) = (C0(X;R), ‖ · ‖) and

Y ′ = C0(X;R)
′
.

In what follows we consider C0(X;R)
′

with the ∗-weak topology. So the notation

A for some A ⊆ C0(X;R)
′

will mean the closure of A with respect to the ∗-weak topology

of C0(X;R)
′
= Y ′.

By boundedness of L, the dual Banach operator L∗ : C0(X)′ → C0(X)′ given by

(L∗T )(g) = T (Lg) for all g ∈ C0(X) is a bounded operator, and then L∗ is a continuous

operator in ∗-weak topology.

Lemma 3.37. L∗(I(RM)) ⊆ I(RM).

Proof. Let µ in RM, by definition of L∗, we note that L∗(Iµ) ∈ C0(X)′, so L∗(Iµ) is

a bounded linear operator, moreover, L∗(Iµ) is a positive operator, i.e., L∗(Iµ)(ϕ) ≥ 0

whenever ϕ ≥ 0 for ϕ in Cc(X). Note that L∗(Iµ)(ϕ) = (Iµ)(L(ϕ)) =
∫
L(ϕ)dµ.

Now, L : C0(X) → C0(X) is a Perron-Frobenius-like operator, so L(ϕ) ≥ 0, and then∫
L(ϕ)dµ ≥ 0. This implies that L∗(Iµ) is a bounded positive operator, by The Riesz

Representation Theorem (Theorem 3.16), there exists a finite measure µ̃ in RM such

that ∫
ϕdµ̃ = L∗(Iµ)(ϕ) =

∫
L(ϕ)dµ for all ϕ ∈ Cc(X).

Recall that I(R1M) is a compact metric space in ∗-weak topology.

Let ν be a measure in R1M, and consider the sequence

1
n

n−1∑
j=0

Lj∗(Iν).
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By Lemma 3.37, for each n in N, there exists µn in RM such that I(µn) =

1
n

n−1∑
j=0

Lj∗(Iν). We claim that I(µn) ∈ I(R1M). In fact, by Theorem 3.16,

µn(X) = sup{
∫
ϕdµn = Iµn(ϕ) : ϕ ∈ Cc(X), ϕ ≺ 1X = 1} ≤

sup{|Iµn(ϕ)| : ϕ ∈ Cc(X), 0 ≤ ϕ ≤ 1} ≤

sup
‖ϕ‖≤1

|Iµn(ϕ)| = ‖Iµn‖ = ‖ 1

n

n−1∑
j=0

Lj∗(Iν)‖ ≤

1

n

n−1∑
j=0

‖Lj∗‖ · |(Iν)| ≤ 1

n

n−1∑
j=0

1 · |(Iν)| = 1

n
n|(Iν)| ≤ 1

,

where |(Iν)| = sup
‖ϕ‖=1

∫
ϕdν ≤ sup

‖ϕ‖=1

∫
dν‖ϕ‖ = 1.

Then µn(X) ≤ 1 for all n in N. So µn in R1M for all n in N, but I(R1M) is

a compact metric space. There exists a subsequence (Iµnk)k∈N of sequence (Iµn)n that

converges in ∗-weak topology to some T in I(R1M). But I(R1M) ⊆ I(RM) = I(RM)

(see Lemma 3.22). So there exists µ in RM such that T = Iµ.

Using that 1 = ‖L‖, and L∗ is a continuous function on I(RM), we are going to

show that the limit of sequence of measures given as before provide us that L∗Iµ = Iµ.

Note that

Iµn(ϕ) =
1

n

n−1∑
j=0

∫
Lj(ϕ)dν =

1

n

n−1∑
j=0

Lj∗Iν(ϕ), (3.10)

and

L∗(Iµn)ϕ = (L∗Iµn)ϕ = Iµn(Lϕ) =

1

n

n−1∑
j=0

Lj+1
∗ ν(ϕ) =

1

n

n∑
j=1

Lj∗ν(ϕ) =
1

n

n∑
j=1

∫
Lj(ϕ)dν.

Lemma 3.38. Let ν be a probability measure in R1M, and µ be a finite measure such that

Iµ is a point of accumalation of sequence (Iµn)n where Iµn is given by Iµn = 1
n

n−1∑
j=0

Lj∗Iν.

Then L∗Iµ = Iµ.

Proof. We are going to show that L∗Iµ = Iµ. By hypothesis, (Iµnk)k converges in ∗-
weak topology to some Iµ. Using that L∗ is a ∗-weak continuous function in I(RM), we
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obtain that (L∗Iµnk)k converges in ∗-weak topology to L∗Iµ. Then

Iµnk =
1

nk

nk−1∑
j=0

Lj∗Iν → Iµ

L∗Iµnk =
1

nk

nk∑
j=1

Lj∗Iν → L∗Iµ

Let V [Iµ,Φ, ε] be an arbitrary neighborhood of Iµ where Φ = {ϕ1, · · · , ϕr} such

that ϕi in C0(X) for any i in {1, · · · , r}. There exists k0 in N such that for k > k0

(a) 2
nk
· sup
i∈{1,··· ,r}

|ϕi| < ε
2
.

(b) |Iµnk(ϕi)− Iµ(ϕi)| = | 1
nk

nk−1∑
j=0

Lj∗Iν(ϕi)− Iµ(ϕi)| < ε
2

for all i in {1, · · · , r}.

and note that for k > k0

|(Iµnk)ϕi − L∗Iµnkϕi| = | 1
nk

nk−1∑
j=0

∫
Lj(ϕ)dν − 1

nk

nk∑
j=1

∫
Lj(ϕ)dν|

= 1
nk
|
∫
ϕidν −

∫
Lnk(ϕi)dν| ≤ 1

nk
· sup
i∈{1,··· ,r}

|ϕi|+ 1
nk
· sup
i∈{1,··· ,r}

|ϕi| < ε
2

we obtain that

|I(µnk)ϕi − L∗Iµnkϕi| < ε
2

for all i in {1, · · · , r} if k > k0.

For k > k0, and i in {1 · · · , r} fixed,

|L∗Iµnkϕi − Iµ(ϕi)| ≤ |L∗Iµnkϕi − I(µnk)ϕi|+ |I(µnk)ϕi − Iµ(ϕi)| < ε
2

+ ε
2

= ε

So L∗Iµnk ∈ V [Iµ,Φ, ε] for k > k0, and then (L∗Iµnk)k∈N converges in ∗-weak

topology to Iµ. But (L∗µnk)k converges in ∗-weak topology to L∗Iµ. By unicity of limit,

we obtain that L∗Iµ = Iµ.

But 1 is an eigenvalue of L, so there exists h 6= 0 in C0(X) such that Lh = h.

Let ŷ in X such that h(ŷ) 6= 0. Consider ν = δŷ the Dirac measure of point ŷ.

Let (Iµn)n be a sequence given by

Iµn = 1
n

n−1∑
j=0

Lj∗Iν.

So µn in R1M for all n in N, but I(R1M) is a compact metric space. There

exists a subsequence (Iµnk)k∈N of sequence (Iµn)n that converges in ∗-weak topology to

some Iµ where µ in RM, and by Lemma 3.38, L∗Iµ = Iµ.

We claim that µ is not the null-measure. In fact, suppose that µ = 0, so for every

ϕ in C0(X) we have that



CHAPTER 3. EXISTENCE OF INVARIANT MEASURES 73

1
nk

nk−1∑
j=0

Lj∗ν(ϕ) = 1
nk

nk−1∑
j=0

∫
Lj(ϕ)dν → 0.

In particular, for ϕ = h = Lh,

1
nk

nk−1∑
j=0

∫
Ljhdν = 1

nk

nk−1∑
j=0

∫
hdν → 0,

and then 0 =
∫
hdν =

∫
hdδŷ = h(ŷ) 6= 0. This contradiction proves that µ is

not the null measure.

We are going to verify η = hµ is an invariant measure where Lh = h and L∗Iµ =

Iµ.

Recall that for any g1, g2 ∈ C0(X), one has L((g1 ◦ f)g2) = g1Lg2. Then for all

g : X → R in C0(X),

If∗η(g) =
∫
gdf∗η =

∫
(g ◦ f)dη =

∫
(g ◦ f)hdµ = Iµ((g ◦ f)h) = L∗Iµ((g ◦ f)h) =

Iµ(L((g ◦ f)h)) =
∫
L((g ◦ f)h)dµ =

∫
gLhdµ =

∫
ghdµ =

∫
gdη = Iη(g).

We obtain that If∗η = Iη, and by injectivity of I, f∗η = η. This proves that η

is an invariant measure, and completes the proof of Theorem H.

3.7 Topological Groups

We need of some theory to introduce the Haar measures of a locally compact

Hausdorff Group. Let G be a group endowed endowed with a topology τ where e is the

identity element of group G. (G, τ) is said to be a topological group if the multiplication

map P : G×G→ G defined by (g, h) 7→ gh and the inversion map ι : G→ G defined by

g 7→ g−1 are continuous when G × G carries the product topology. The left translation

defined by g ∈ G is the map Lg : G → G, Lg(h) = gh. Similarly, the right translation

defined by g ∈ G is the map Rg : G → G, Rg(h) = hg. Note that the continuity of

P ensures the continuity of Lg and Rg for any g ∈ G. Moreover, Lg : G → G and

Rg : G→ G are homeomorphism for any g ∈ G. In fact, first note that Lg is one-to-one.

Suppose that Lg(h) = Lg(w) for some h,w ∈ G, so gh = gw, and then h = w. Now, Lg

is a surjective map. Take w ∈ G, but Lg(g
−1w) = w. We showed that Lg is a bijective

function.

Note that Tg : G→ G given by h 7→ g−1h is the inverse map of Lg. Observe that

TgLg(h) = Tg(gh) = g−1(gh) = h, and LgTg(h) = Lg(g
−1h) = g(g−1h) = h. Actually,

Tg = Lg−1 , and then Tg is a continuous function. This proves that Lg is a homeomorphism

for any g ∈ G.
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If G is a topological group and H is a subgroup of G, we equip the set of cosets

G/H with the quotient topology, i.e., U ⊆ G/H is open if, and only if, π−1(U) is open in

G where π : G→ G/H, g 7→ gH, then π is a continuous function.

Let W be a topological space.

(i) A neigborhood of a point p in W is any open subset of W which contains p.

(ii) W is a Hausdorff space if the following condition is true: If p ∈ W , q ∈ W , and

p 6= q then p has a neighborhood U and q has a neigborhood V such that U ∩V = ∅.

(iii) W is a locally compact if every point of W has a neighborhood whose closure is

compact.

(iv) a second countable space is a topological space whose topology has a countable base.

Lemma 3.39. Let G to be a topological group and H to be a subgroup of G. Then

(i) π is an open map;

(ii) If G is a locally compact space then G/H is a locally compact space;

(iii) If G is a second countable space then G/H is a second countable space;

(iv) L̂a : G/H → G/H, gH 7→ agH is a homeomorphism for each a ∈ G.

Proof. (i) Let U to be an open set of G, and note that π−1(π(U)) =
⋃
h∈H

(Rh)
−1(U) (this

implies that π−1(π(U)) is an open set in G since it is an union of open sets, and then π(U)

is an open set in G/H). In fact, note that if g ∈ π−1(π(U)), then π(g) ∈ π(U). There

exists x ∈ U such that π(x) = π(g), that is xH = gH, so xh0 = gh1 for some h0, h1 ∈ H
and then x = gh2 = Rh2(g) where h2 = h1(h0)−1 ∈ H. Using that x ∈ U , we see that

Rh2(g) ∈ U , we obtain that g ∈ (Rh2)
−1(U) ⊆

⋃
h∈H

(Rh)
−1(U).

Now, take y ∈
⋃
h∈H

(Rh)
−1(U), by definition, there exists h ∈ H such that Rh(y) =

yh ∈ U , and then yhH = π(yh) ∈ π(U). Note that π(y) = yH = yhH = π(yh) ∈ π(U),

so y ∈ π−1(π(U)), this completes the proof of item (i).

(ii) Suppose that G is a locally compact space. Take gH ∈ G/H, by hyphoteses,

there exist a compact set K in G and open set U of G such that g ∈ U ⊆ K, and then

π(g) = gH ∈ π(U) ⊆ π(K). By continuity of π, π(K) is a compact set in G/H, and by

openess of π, π(U) is an open set, this completes the proof of item (ii).

(iii) Suppose that G is a second countable space, so there exists a countable basis

{Un : n ∈ N} for G, using that π is an open map, we have that π(Un) is an open set in

G/H. We claim that {π(Un) : n ∈ N} is a countable basis of G/H. In fact, take V to
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be an open set of G/H, so (π)−1(V ) is an open set of G, so (π)−1(V ) =
⋃
n∈I

Un for some

I ⊆ N. Note that

π((π)−1(V )) = π(
⋃
n∈I

Un) ⊆
⋃
n∈I

π(Un),

using that π is a surjective function, we see that π((π)−1(V )) = V , and then

V ⊆
⋃
n∈I

π(Un). We claim that V =
⋃
n∈I

π(Un). Take x ∈
⋃
n∈I

π(Un), there exists y ∈ Un

such that π(y) = x for some n ∈ N. But (π)−1(V ) =
⋃
n∈I

Un, then x = π(y) ∈ V . This

completes the proof of item (iii).

(iv) Fix a ∈ G, consider L̂a : G/H → G/H, gH 7→ agH. L̂a is an injective

function. In fact, suppose that L̂a(gH) = L̂a(bH), so agH = abH, there exist h0, h1 ∈ H
such that agh0 = abh1, and then gh0 = bh1. This implies that gH = bH. So L̂a is an

injective function.

L̂a is an onto map. Just note that for any gH ∈ G/H, we have that L̂a(a
−1gH) =

gH.

Observe that L̂a−1 : G/H → G/H, gH 7→ a−1gH is the inverse of L̂a.

L̂a is a continuous function. Let U to be an open set of G/H. We claim that

(L̂a)
−1(U) is an open set of G/H.

We have to show that (π)−1((L̂a)
−1(U)) is an open set of G. Note that

(π)−1((L̂a)
−1(U)) =

{x ∈ G : π(x) ∈ (L̂a)
−1(U)} =

{x ∈ G : L̂a(π(x)) ∈ U} =

{x ∈ G : L̂a(xH) ∈ U} =

{x ∈ G : axH ∈ U} =

{x ∈ G : π(ax) ∈ U} =

{x ∈ G : π(La(x)) ∈ U} =

{x ∈ G : π ◦ La(x) ∈ U} =

(π ◦ La)−1(U)

Since π and La are continuous functions, we have that π ◦ La is a continuous

function, and then (π ◦La)−1(U) is an open set in G. This shows that L̂a is a continuous

function, so L̂a−1 is also a continuous function, and then L̂a is a homeomorphism. This

completes the proof of item (iv).

Lemma 3.40. Let G to be a topological group and H to be a subgroup of G. Then the

following conditions are equivalents.

(i) if eH 6= yH with e, y ∈ G, then there exist open neighborhoods Ue, Uy of e, y such

that Ue ∩ UyH = ∅.
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(ii) For all x,w ∈ G such that xH 6= wH there exist open neighborhoods Ux, Uw of x,w

such that Ux ∩ UwH = ∅.

(iii) G/H is a Hausdorff space.

Proof. We are going to show that (i) implies (ii). Suppose that xH 6= wH with x,w ∈ G,

we claim that eH 6= x−1wH. In fact, suppose that eH = x−1wH, there exists h ∈ H such

that e = x−1wh, and then x = wh. This implies that xH = wH, but it is a contradiction.

We have that eH 6= x−1wH, taking y = x−1w. By hypotheses, there exist open

neighborhoods Ue, Uy of e, y such that Ue ∩ UyH = ∅.
Observe that xUe and xUy are open sets since Lx : G→ G is a homeomorphism.

Note that x ∈ xUe (just note that x = xe ∈ xUe) and w ∈ xUy (just note that w =

x(x−1w) ∈ xUy). We claim that xUe ∩ xUyH = ∅.
In fact, suppose that z ∈ xUe ∩ xUyH, so z = xu = xb with u ∈ Ue and b ∈ UyH,

so x = b ∈ Ue ∩ UyH, but Ue ∩ UyH = ∅. We deduced (ii) from (i).

Suppose that (ii) holds, and take xH 6= wH with x,w ∈ G. By item (ii), there

exist open neighborhoods Ux, Uw of x,w such that Ux ∩ UwH = ∅. Since π is an open

map, we have that π(Ux), π(Uw) are open sets of G/H.

We claim that π(Ux) ∩ π(Uw) = ∅. Suppose that there exists z ∈ π(Ux) ∩ π(Uw),

then for some u ∈ Ux and v ∈ Uw we have that z = π(u) = π(v). This implies that

uH = vH, so there exists h ∈ H such that u = vh. Note that u ∈ Ux and vh ∈ UwH,

this implies that u = vh ∈ Ux ∩UwH = ∅. We obtain that π(Ux)∩ π(Uw) = ∅, so G/H is

a Hausdorff space.

Now, suppose that G/H is a Hausdorff space, and take eH 6= yH with e, y ∈ G.

There exist open neighborhoods U , V of eH, yH such that U ∩ V = ∅. This implies that

π−1(U) ∩ π−1V = ∅ with e ∈ π−1(U) and y ∈ π−1(V ), and then π−1(U) ∩ π−1(V )H = ∅.
This completes the proof of Lemma 3.40

We recall this technical Lemma.

Lemma 3.41. Let G to be a topological group. Then for any open neighbourhood U of e,

there exists an open neighbourhood V of e such that V = V −1 and V 2 ⊆ U .

Proof. Let V = U1 ∩ U2 ∩ U−1
1 ∩ U−1

2 , where U1 × U2 ⊆ P−1(U) is a neighbourhood of

(e, e), P : G×G→ G is the multiplication in G.

Lemma 3.42. Let G to be a Hausdorff group and Γ to be a closed subgroup of G. Then

G/Γ is a Hausdorff space.
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Proof. Since Lg : G→ G and Rg : G→ G are homeomorphisms for all g ∈ G, gΓ and Γg

are closed sets in G for all g ∈ G. In view to apply Lemma 3.40, we have to show that

for all e, y ∈ G such that eΓ 6= yΓ, there exist open neighborhoods Ue, Uy of e, y such that

Ue ∩ UyΓ = ∅.
Take y ∈ G such that Γ 6= yΓ, so e ∈ G \ yΓ. Since yΓ is a closed set in G, we

have that U = G \ yΓ is an open neighbourhood of e. By Lemma 3.41, there exists an

open neighbourhood V of e such that V = V −1 and V 2 ⊆ U . Note that y ∈ V y (since

y = ey ∈ V y), and V y is an open set of G because Ry : G→ G is a homeomorphism. We

claim that V ∩ V yΓ = ∅.
In fact, suppose that there exists x ∈ V ∩ V yΓ, so x = ayh ∈ V with a ∈ V

and h ∈ Γ. Then yh = a−1(ayh) ∈ V −1V = V 2 ⊆ U and U = G \ yΓ, this contradiction

completes the proof of Lemma.

Remark 3.43. If G is a Hausdorff group and Γ is a discrete subgroup of G, we have that

Γ is a closed set in G (see e.g. [52]), and then G/Γ is a Hausdorff space.

Let W be a topological space. If W is a locally compact second countable Haus-

dorff space, then, by [45, Theorem 5.3, p. 33], W is also a complete metric space. So, we

proved the following result.

Corollary 3.44. If G is a locally compact second countable Hausdorff group and Γ is a

closed subgroup of G then G/Γ is a locally compact second countable metric space.

3.7.1 Haar measures

A Borel measure µ on a locally compact space is called regular when it holds that

(i) every compact set is µ-measurable;

(ii) if A is measurable then µ(A) = inf{µ(U)|A ⊆ U,U open};

(iii) µ(U) = sup{µ(C)|C ⊆ U,C compact} for each open set U.

A regular Borel measure µ on a locally compact group G is called a left Haar

measure if

(i) µ is not the zero measure;

(ii) the measure of a compact set is finite;

(iii) for every g ∈ G and all measurable sets E the left translate gE = LgE = (Lg−1)−1(E)

is measurable and µ((Lg−1)−1(E)) = µ(E).
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Given a left Haar measure µ, by item (iii) of above definition, we conclude that

µ is an invariant measure under left translation Lh : G→ G for any h ∈ G. We recall the

Haar’s Theorem as follows.

Theorem 3.45 (Haar’s Theorem). For every locally compact Hausdorff group there exists

a left Haar measure.

Let G to be a topological group and H to be a subgroup of G. We will say that

a regular Borel measure µ on the quotient G/H is a left invariant Haar measure if for all

Borel sets E ⊆ G/H and all g ∈ G we have µ(gE) = µ(E).

Given a Borel set E ⊆ G/H, note that (L̂g−1)−1(E) = gE for any g ∈ G. If a

regular Borel measure µ on the quotient is a left invariant Haar measure then µ(gE) =

µ(L̂g−1)−1(E)) = µ(E) = µ(L̂g)
−1(E)) = µ(g−1E). This means that µ is an invariant

measure under L̂g for any g ∈ G, we say that µ is a left G-invariant Haar measure.

Definition 3.46. Let G be a locally compact Hausdorff group and Γ be a discrete subgroup.

We say that Γ is a lattice in G if G/H carries a finite left G-invariant Harr measure.

Let G be a locally compact Hausdorff group and Γ be a discrete subgroup. We

say that Γ is cocompact in G if the space G/Γ is compact.

Suppose that G is a locally compact second countable Hausdorff group, and Γ is

a lattice in G, then G/Γ is a locally compact second countable metric space. Then, by

Corollary 3.44 and Definition 3.46, G/Γ admits a finite invariant measure under homeo-

morphism L̂b : G/Γ → G/Γ given by gΓ 7→ bgΓ for any b ∈ G. By Theorem G, we have

that

Corollary 3.47. Suppose that G is a locally compact second countable Hausdorff group,

and Γ is a lattice in G. For each g ∈ G there exist agΓ ∈ G/Γ and ϕg ∈ Cc(G/Γ,R) such

that lim
n

1
n

n−1∑
j=0

ϕg ◦ (L̂g)
j(agΓ) = lim

n

1
n

n−1∑
j=0

ϕg(g
jagΓ) > 0.

The special linear group SL(n,R) of degree n over R is the set of n× n matrices

with determinant 1, with the group operations of ordinary matrix multiplication and

matrix inversion. We denote by SL(n,Z) the group of n× n matrices with integer entries

and determinant equals 1. Note that SL(n,Z) is a discrete subgroup of SL(n,R).

Recall that SL(n,Z) is a lattice in SL(n,R). Moreover, SL(n,Z) is a noncocom-

pact lattice in SL(n,R) (see e.g. [71, Corollary 3]). By Corollary 3.47, we have the

following.

Corollary 3.48. For each A ∈ SL(n,R) there exist BA SL(n,Z) ∈ SL(n,R)/ SL(n,Z) and

an observable ϕA ∈ Cc(SL(n,R)/ SL(n,Z),R) such that lim
n

1
n

n−1∑
j=0

ϕA◦(L̂A)j(BA SL(n,Z)) =

lim
n

1
n

n−1∑
j=0

ϕA(AjBA SL(n,Z)) > 0.



Chapter 4

Future Perspectives

4.1 From Chapter 1

Motived by existence of adapted metric for a codimension one singular hyperbolic

set with respect to a C1 vector field on finite dimensional compact manifold, we give some

conjectures.

Conjecture 1. Given a singular-hyperbolic set for a C1 vector field, then there exists a

singular-hyperbolic adapted metric.

In [63, Definition 3], L. Salgado has given the following notion of sectional hyper-

bolicity encompassing intermediate dimensions between 2 and the full dimension of the

central subbundle.

Definition 4.1. A compact invariant set Λ is p-singular hyperbolic (or p-sectionally hy-

perbolic) for a C1 flow X if there exists a partially hyperbolic splitting TΛM = E⊕F such

that E is uniformly contracting and the central subbundle F is p-sectionally expanding,

with 2 ≤ p ≤ dim(F ).

Remark 4.2. Note that, if Lx is a p-plane with 2 ≤ p ≤ dim(F ), we can see it as

ṽ ∈ ∧p(Fx) \ {0} of norm one.

Hence, to obtain the singular expansion we just need to show that for some λ > 0

and every t > 0 holds the following inequality

‖ ∧p DXt(x).ṽ‖ > Ceλt.

We do not address sectional-expanding subbundles with dimension p less than

the full dimension of the central subbundle here, and we conjecture that similar results

should hold true.

79
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Conjecture 2. Given a p-sectional hyperbolic set Γ for a C1 vector field X, then there

exists a metric such that for some constant µ > 0 and all t > 0

• |DXt |E | ≤ eµt;

• |DXt |E | ≤ eµt|DXt | F |; and

• | ∧p DXt(x)|Lx| > eµt for every p-dimensional linear subspace Lx ⊂ Fx, 2 ≤ p <

dimF , x ∈ Γ.

We stress that the contructions of adapted metrics in [8, 62], via quadratic forms,

is deeply based on the dimension of the singular hyperbolic subbundles. Thus, it is not

clear how to use quadratic forms to obtain adapted metrics when the codimension between

the p-sectional hyperbolic splitting is not equal to one. This drive us to propose the next

conjecture.

Conjecture 3. Consider a riemannian compact manifold M of dimension n ≥ 4. If

Γ ⊂ M is a p-sectional hyperbolic set for a C1 vector field, with 2 < p < dimF , then

there exists a singular adapted metric induced by quadratic forms.

4.2 From Chapter 2

In Corollary D, we showed that for any measurable bounded function ϕ : M → R
that satisfies the condition (b) then the following limit exists∫

ϕ−dµ = lim
n

1
n

∫ n−1∑
j=0

ϕ ◦ f jdµ = inf
n

1
n

∫ n−1∑
j=0

ϕ ◦ f jdµ.

Let Cb(M ;R) be the set of all bounded continuous function from M to R. In

view of Corollary D, fixed a measure µ, we consider the set Hµ of functions of Cb(M ;R)

that satisfies the condition (b), namely

Hµ := {ϕ ∈ Cb(M ;R) | ϕ satisfies the condition (b)}.

Considering (Cb(M ;R), ‖ · ‖) the normed space where ‖ · ‖ is the uniform norm,

i.e., ‖ϕ‖ := sup
x∈M
|ϕ(x)| for any ϕ ∈ Cb(M ;R). We wish to investigate the properties of

Hµ. In this sense,

Problem 1. What are the topology properties of Hµ in Cb(M ;R)?

Moreover, we may consider H the subset of Cb(M ;R) given by H =
⋃

µ∈M1(M)

Hµ

where M1(M) is the set of all probabilities measures on M , and ask the same question

for this set.
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Problem 2. What are the topology properties of H in Cb(M ;R)?

In Corollary 2.6, we gave some conditions to ensure the existence of Birkhoff’s

limit, so the following question is natural.

Problem 3. Is it true that if lim
n→∞

1
n

n−1∑
j=0

ϕ◦f j(x) exists then lim
k→∞

lim sup
n

(
1
n

n−k−1∑
i=0

1M\Eεk ◦

f i(x)
)

= 0 for every ε > 0?

4.3 From Chapter 3

Let (M,A, µ) be a measure metric space, f be a measurable transformation

where µ is a finite measure (not necessarily an invariant measure under f). The sys-

tem (M,A, µ, f) is said to be weakly mixing if for any ϕ, ψ : M → R bounded measurable

maps, one has

lim
n→∞

1
n

n−1∑
j=0

|
∫
ϕ ◦ f j · ψdµ−

∫
ϕdµ

∫
ψdµ| = 0.

We recall the notions of meager set (or set of first category), and set of second

category in a topological space. Given a topological space W , a subset B of W is nowhere

dense if for each neighbourhood U of W , the set B∩U is not dense in U . Equivalently, B

is nowhere dense if its closure contains no nontrivial open set; a subset A of W is meagre

if it can be expressed as the union of countably many nowhere dense subsets of W . A

meagre set is also called a set of first category ; a nonmeagre set (that is, a set that is not

meagre) is also called a set of second category.

For the unit interval in the weak topology, Halmos [35] showed that the set of all

mixing measure is a set of first category in the group of measure preserve transformations,

and the set of weakly mixing transformations is of the second category. Motivated by this

result we consider the remark 3.4. In view of the second result of Halmos, one may

conjecture the following.

Conjecture 4. Let X be a locally compact separable metric space. Suppose that f : X →
X is a continuous proper map. If there exists a probability measure η (not necessarily an

invariant measure under f) such that (X,A, f, η) is a weakly mixing system, then there

exists an invariant probability measure.

In Theorem G, we used the properties of proper continuous functions to prove the

existence of invariant measures. To drop the condition of proper maps of this theorem we

consider the Perron-Frobenius operator in Theorem H. In the same spirit, one question

is which hypotheses can be considered to ensure the existence of invariant measures.

Precisely,
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Problem 4. What other conditions can be used to prove the existence of invariant mea-

sures in locally compact separable metric space using only the continuity the dynamics

?

In Theorem H, under the assumption that the norm of Perron-Frobenius operator

is an eigenvalue of Perron-Frobenius operator we prove the existence of invariant measures.

One may ask whether this still true if we suppose that there exists a real eigenvalue of

Perron-Frobenius operator. In other words,

Problem 5. Suppose that there exists a real eingenvalue of Perron-Frobenius operator.

Can we conclude that there are exist invariant measures?

In view of Theorem G, we are going to investigate the following natural problem.

Problem 6. Does there exist a similar criteria to guarantee the existence of SRB measures

or Gibbs measures?
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Av. Adhemar de Barros, s/n, Campus Universitário de Ondina, Salvador - BA

CEP: 40170 -110

<http://www.pgmat.ufba.br>


	Introduction
	Singular hyperbolic flows
	Statements of main results of Chapter
	Preliminary definitions and results
	Linear multiplicative cocycles over flows
	Fields of quadratic forms, positive and negative cones
	Strict J-separation for linear multiplicative cocycles
	Exterior powers
	Properties of J-separated linear multiplicative cocycles

	Auxiliary results
	Exterior products and main Lemma

	Proofs of main results
	Proof of Theorem  A
	Proof of Theorem  B


	Kingman-like Theorem 
	Statements of main results of Chapter
	Continuous flow on compact metric spaces
	Proof of Corollary 2.6
	Proof of Theorem C
	Proof of remark 2.2

	Proof of Lemma 2.24

	Existence of invariant measures
	Statements of main results of Chapter
	Applications
	Preliminary definitions and results
	Locally compact Hausdorff spaces
	Duality
	Locally compact separable metric spaces space versus Duality
	Dynamic of f

	Proof of Theorem G 
	Proof of Lemma I 
	Proof of remark 3.4
	Proof of Lemma 3.30

	Proof of Theorem H
	Topological Groups
	Haar measures


	Future Perspectives
	From Chapter 1
	From Chapter 2
	From Chapter 3

	References

