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Resumo

Mostramos a existéncia de métricas adaptadas para conjuntos singulares hiperbdlicos
de codimensao um com respeito a um campo C!' em uma variedade compacta de dimensao
finita sem uso de formas quadraticas. Analisando as medidas de um sistema, provamos
um teorema tipo-Kingman para medidas finitas arbitrarias assumindo algumas condigoes
em um espaco métrico qualquer, e fornecemos condigoes necessarias que garatem a ex-
istencia de medidas invariantes em espagcos separaveis e localmente compactos para fungoes
proprias continuas. Além disso, usamos o operador de Perron-Frobenius e as técnicas de-
senvolvidas aqui para obter um outro critério que garante a existéncia de medidas invari-
antes para fungoes continuas (ndo necessariamente fungoes proprias) em espagos métricos

localmente compactos e separaveis.

Palavras-chave: Conjunto singular hipérbolico, métricas adaptadas, Teorema tipo-Kingman,

localmente compacto, separavel, medidas invariantes, operador de Perron-Frobenius.



Abstract

We show the existence of singular adapted metrics for any codimension one sin-
gular hyperbolic set with respect to a C* vector field on finite dimensional compact man-
ifolds without using quadradic forms. Considering the measures of a system, we provide
a Kingman-like Theorem for an arbitrary finite measure assuming some conditions in any
metric space, and we give necessary conditions to guarantee the existence of invariant
measures in locally compact and separable metric spaces for continuous proper maps.
Moreover, we use the Perron-Frobenius operator and the techniques developed here to
obtain other criteria to guarantee the existence of invariant measures for continuous maps

(not necessarily a proper maps) in locally compact separable metric spaces.

Keywords: Singular hyperbolic set, adapted metrics, Kingman-like Theorem, locally

compact, separable, invariant measures, Perron-Frobenius operator.

vi



Contents

(Introduction|

(1 Singular hyperbolic flows|

[1.0.1 Statements of main results of Chapter|f . . . . . .. ... ... ...

M1

Preliminary definitions and results|. . . . . . . . ... ... .. ... ....

(1.1.1  Linear multiplicative cocycles over flows| . . . . . . ... ... ...

(1.1.2  Fields of quadratic forms, positive and negative cones| . . . . . . . .

[1.1.3  Strict J-separation for linear multiplicative cocycles| . . . . . . . ..

(1.1.4  Exterior powers| . . . . . . . . . . . ...

[1.1.5  Properties of J-separated linear multiplicative cocycles . . . . . ..

T2

Auxiliary results| . . . . ... o

(1.2.1 Exterior products and main Lemma). . . . . . . .. ... ... ...

[1.3.1  Proof of Theorem (Al . . . . . . . . . . . . . ...

Kingman-like Theorem |

P

Statements of main results of Chapter] . . . . . .. ... ... ... ....

P2

Continuous flow on compact metric spaces| . . . . . . . . . . . ... .. ..

23

Proof of Corollary 2.6[. . . . . . . ... ... ... ... ... ... ...

B

Statements of main results of Chapter] . . . . . .. ... ... ... ....

B2

Applications| . . . . . . ..

[3.3

Preliminary definitions and results|. . . . . . . . .. ... ... ... ...

[3.3.1 Locally compact Hausdorff spaces| . . . . . . .. ... ... ... ...
[3.3.2 Duality] . . . .. .. ...

10
11
13

17
17
21
21
22

26
26
32
38
40
46
48



CONTENTS

[3.3.3 Locally compact separable metric spaces space versus Duality]|

[3.3.4 Dynamicof f| . . . ... . ...

[3.7 Topological Groups| . . . . . . . . .. ...

4  Future Perspectives|

[4.1  From Chapter [l
[4.2  From Chapter [2]
4.3  From Chapter [3|

[References|

viil

60
61
63
64
66
67
69
73
7

79
79
80
81

83



Introduction

Let M be a connected compact finite m-dimensional manifold, m > 3, with or
without boundary. We consider a vector field X, such that X is inwardly transverse to
the boundary OM, if OM # (). The flow generated by X is denoted by X;.

A hyperbolic set for a flow X; on a finite dimensional Riemannian manifold M
is a compact invariant set I' with a continuous splitting of the tangent bundle, TTM =
E* ® EX @ E*, where EX is the direction of the vector field, for which the subbundles

are invariant under the derivative DX, of the flow X,
DX; B, =Ex,u, z€l, teR, x=s Xy (1)

and E* is uniformly contracted by DX; and E* is likewise expanded: there are K, A > 0
so that

DX,

p || < Ke ™ (DX, |p) | < Ke ™, zel, teR (2)
Very strong properties can be deduced from the existence of such hyperbolic structure;
see for instance [19] 20, [67, 43, 60].

An important feature of hyperbolic structures is that it does not depends on the
metric on the ambient manifold (see [36]). We recall that a metric is said to be adapted
to the hyperbolic structure if we can take K = 1 in equation ([2)).

Weaker notions of hyperbolicity (e.g. dominated splitting, partial hyperbolicity,
volume hyperbolicity, sectional hyperbolicity, singular hyperbolicity) have been developed
to encompass larger classes of systems beyond the uniformly hyperbolic ones; see [18] and
specifically [72], [0, [I1] for singular hyperbolicity and Lorenz-like attractors.

In the same work [36], Hirsch, Pugh and Shub asked about adapted metrics for
dominated splittings. The positive answer was given by Gourmelon [34] in 2007, where it
is given adapted metrics to dominated splittings for both diffeomorphisms and flows, and
he also gives an adapted metric for partially hyperbolic splittings as well.

Proving the existence of some hyperbolic structure is, in general, a non-trivial

matter, even in its weaker forms.
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In [48], Lewowicz proved that a diffeomorphism on a compact riemannian man-
ifold is Anosov if and only if its derivative admits a nondegenerate Lyapunov quadratic
function.

An example of application of the adapted metric from [34] is contained in [7],
where L. Salgado and V. Aratjo, following the spirit of Lewowicz’s result, construct
quadratic forms which characterize partially hyperbolic and singular hyperbolic structures
on a trapping region for flows.

In [§], L. Salgado and V. Aratjo provided an alternative way to obtain singular
hyperbolicity for three-dimensional flows using the same expression as in Proposition [I.1]]
applied to the infinitesimal generator of the exterior square A2DX, of the cocycle DX,.
This infinitesimal generator can be explicitly calculated through the infinitesimal gener-
ator DX of the linear multiplicative cocycle DX, associated to the vector field X.

Here, in Chapter [I], the author and L. Salgado provide a similar result as above
for m-dimensional flows if this admits a partially hyperbolic splitting for which one of the
invariant subbundles is one-dimensional.

In [8], V. Aratijo and L. Salgado noted that the existence of an adapted metric
could be considered for singular hyperbolic splittings, and they proved it for a three-
dimensional vector field by using quadratic forms.

In [62, Theorem B], the author and L. Salgado showed the existence of adapted
metrics for any singular hyperbolic set I of a C! vector fields in the particular setting
where I' has a partially hyperbolic splitting TTM = FE & F with F' volume expanding
and F an one-dimensional uniformly contracting bundle, extending the result from [§] for
any codimension one singular hyperbolic set. This is also done under the point of view of
J-algebras of Potapov [77], confirming the very interesting feature of the quadratic forms
technique from which we can get adapted metrics.

Here, in Chapter I} in a joint work with V. Araijo and L. Salgado, we also proved
this result but this is made in a certain different way from [8, [62]. Now, we make this
without using quadratic forms, we only use multilinear algebra and the dynamics.

In Chapter [2], our purpose is to investigate Kingman-like Theorems for arbitrary
finite measures.

Let (M, A, 1) be a measure space equipped with a o-finite measure, and 7' : M —
M be a measurable map.

If u(A) = pu(T71(A)) for all A € A then p is said to be invariant under T or,
equivalently, T' is measure-preserving.

The most important results of invariant measures theory are Kingman’s Theorem
(see [13]) and Birkhoft’s Theorem (see [16]).

The basic idea to proof Kingman’s Theorem is to apply Fekete’s Subadditive
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Lemma. This Lemma yields information about subadditive sequences (a,), in R proving
that the limit lim “7" = inf %" = a and satisfies —oo < a < oo. This sequence occurs
naturaly when %oowork WiZh invariant measures and a subbaditive sequence of functions
for a transformation in a manifold.

Derriennic [29] generalized Fekete’s Lemma as follows. Let (a,), be a sequence
in R and (c,), be a sequence such that ¢, > 0. If apypm < a, + ap + ¢, for all n,m > 1,
and lim <= = 0 then the limit lim %* = a and satisfies —oo < a < co. He utilizes this
resultnand others techniques to grovide a generalization for Kingman’s Theorem.

Other generalisations of Kingman’s Theorem were proved by Akcoglu and Suche-
ston [2] (for superadditive processes), Shurger [65] (a stochastic analogue of generalization
of Kingman’s Theorem given by Derriennic), and recently by A. Karlsson and Margulis
[41] (for ergodic measure preserving transformations).

Here, we will show a Kingman-like Theorem for an arbitrary finite measure as-
suming some conditions. This theorem was inspired by the proof of Kingman’s Theorem
given by Avila and Bochi [13].

Generalisations of Birkhoff’s Theorem were proved by E.Hopf [37] (for infinite
measure preserving transformations), J. Aaronson [I Theorem 2.4.2] (for conservative
ergodic measure transformations), W. Hurewicz [38] (for conservative nonsingular trans-
formations where the observables are defined by means of Radon-Nykodim Theorem and
the measure can be finite or infinite), R. Chacon, D.Ornsten [25] (for Markov operators),
M. Carvalho and F. Moreira [22] (for half-invariant measures), and recently M. Carvalho
and F. Moreira [23] (for ultralimits by means of ultrafilters).

As an application of our Kingman-like Theorem, we formulated a version of
Birkhoft’s Theorem for bounded observables and finite measures. Our result are not
contemplated by previous work:

(a) in [38], Hurewicz worked in context of conservative transformations and
bounded observables defined by means of Radon-Nykodim Theorem;

(b) in [22, Theorem 1.2], Carvalho and Moreira showed that every finite and
half-invariant measure is an invariant measure, and our theorem was proved for a finite
arbitraty measure;

(¢) in [23], Carvalho and Moreira showed that the Birkhoff’s Theorem holds for
each non-principal ultrafilter, so for this Theorem to imply our result it is necessary that
the value of integral be the same for each non-principal ultrafilter, however it is not clear
how to compute this, because the ultrafilters are obtained by Zorn’s Lemma, and therefore
we do not have an expression for these ultrafilters.

In Chapter [3, we are interested in finding necessary conditions to ensure the exis-

tence of invariant finite measures in locally compact separable metric spaces for continuous
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proper maps.

We recall that under theses conditions (locally compact and separable metric
spaces and continuous proper maps) some authors (see [49, [51], [58]) constructed a vari-
ational principle. Recently, Caldas and Patrao [21] dropped the proper condition of the
map and extended the result for any continuous map.

Results that guarantee the existence of invariant measures were proved for Groups
([26, 32, 57]), Markov Chains ([46] 47, [66), 75]), and Dynamical Systems (for recent results
see [9]). The most celebrated result of this theory was proved by Krylov and Bogolyubov
[17] for compact metric space. Precisely, they showed that if f: M — M is a continuous
map then f admits an invariant Borel probability measure where M is a compact metric
space.

We observe that our result is obtained by means of Functional Analysis and
Measure Theory, and allows us to provide a natural characterization for the existence of
invariant measures in this context (locally compact and separable metric spaces for contin-
uous proper maps). Moreover, we use the Perron-Frobenius operator and the techniques
developed here to obtain other criteria to guarantee the existence of invariant measures
in locally compact and separable metric spaces for continuous functions (not necessarily
a proper map).

To facilite acess to the individual topics, the chapters are rendered as self-contained
as possible.

Finally, in Chapter f] we discuss future perspectives of this work, considering

some problems and conjectures.



Chapter 1
Singular hyperbolic flows

The best known and simplest examples of chaotic dynamical systems are hyper-
bolic systems. A hyperbolic set is defined to be a compact invariant set I' of a diffeomor-
phism f in a compact manifold such that there exists a splitting of the tangent bundle TT
into two supplementary, df-invariant subbundles, called the stable and the unstable bun-
dles that are uniformly contracted and expanded, by the derivative df", for some n > 0.
The hyperbolicity of I' does not depend on the metric on the manifold, but the smallest
time n where the contraction/expansion phenomena are seen depends on the metric; a
Riemannian metric is said to be adapted to the hyperbolic set I' if one can take n = 1.
Hirsch, Pugh and Shub obtain that any hyperbolic set admits an adapted Riemannian
metric applying Holmes” Theorem (see [36] p.15).

Weaker notions of hyperbolicity (e.g. dominated splitting, partial hyperbolicity,
volume hyperbolicity, sectional hyperbolicity, singular hyperbolicity) have been developed
to encompass larger classes of systems beyond the uniformly hyperbolic ones; see [18] and
specifically [72] 6, [I1] for singular hyperbolicity and Lorenz-like attractors.

In the same work [36], Hirsch, Pugh and Shub asked about adapted metrics for
dominated splittings. The positive answer was given by Gourmelon [34] in 2007, where
it is given adapted metrics to dominated splittings for both diffeomorphisms and flows,
and he also gives an adapted metric for partially hyperbolic splittings as well. To do this
Gourmelon adapted the Holmes” Theorem to the case of dominated behaviours.

For a partially hyperbolic splitting Ty M = E @ F of ', a C* vector field X on a
m-manifold, we provided an alternative way to obtain singular-hyperbolicity using only
the tangent map DX of X and its derivative DX, whether F is one-dimensional subspace.

Moreover, we show the existence of singular adapted metrics for any codimension
one singular hyperbolic set I" with respect to a C! vector field on finite dimensional
compact manifolds.

This results were published in [62] (in a joint work with L. Salgado) and [5] (in a

b}
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joint work with V.Araijo and L. Salgado).

1.0.1 Statements of main results of Chapter

In the sequel, we write J (v) =< Jyv,v >, where J, is given in Proposition m,
that is, 5 (v) is the time derivative of a quadratic form J under the action of the flow.

The absolute value of the cross product (also called wector product) on a 3-
dimensional vector space V', denote by w = u X v, provides the length of the vector
w. It is very useful to calculate the area expansion of the parallelogram generated by u, v,
under the action of a linear operator.

Following this way, in [8], L. Salgado and V. Aratjo proved the result below.

Theorem 1.1. [8, Theorem B] Suppose that X is 3-dimensional vector field on M which

18 non-negative strictly J-separated over a non-trivial subset I', where J has index 1. Then
1. N’ DX, is strictly (—J)-separated;
2. T is a singular hyperbolic set if either one of the following properties is true

(a) Al(z) PRUSRAN S forallx €T.

(b) §—2tr(DX)J >0 onT.

Here, we generalized this result to m and k = m — 1, as follows.

If A*DX, is strictly separated with respect to some family J of quadratic forms,
then there exists the function d; as stated in Proposition [I.11| with respect to the cocyle
AFDX,. We set

. b
Al(z) = / 51 (Xs()) ds

the area under the function 0, : U — R given by Proposition with respect to AFDX,
and its infinitesimal generator.

If Kk =m — 1, it is not difficult to see that this function is related to X and 0 as
follows: let 0 : I' — R be the function associated to J and DX, as given by Proposition
then 0, = 2tr(DX) — 0, where tr(DX) represents the trace of the linear operator
DX, :T,M O,x € M.

We recall that j = 0,d is the time derivative of J along the flow; see Remark .

Our first main result is the following.

Theorem A. Suppose that X is m-dimensional vector field on M which is non-negative

strictly J-separated over a non-trivial subset I', where § has index 1. Then
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1. IfT is a singular hyperbolic set then A"~V DX, is strictly (—3)-separated;
2. T s a singular hyperbolic set if either one of the following properties is true

(a) Ab(z) PSRN S forallz €T.

(b) §—2tr(DX)J >0 onT.

We work here with exterior products of codimension one. See [50] for more details
on this subject.

This result provides useful sufficient conditions for a m-dimensional vector field to
be singular hyperbolic if £ = m—1, using only one family of quadratic forms J and its space
derivative DX, avoiding the need to check cone invariance and contraction/expansion
conditions for the flow X, generated by X on a neighborhood of I'.

Now we recall the definition of adapted metrics in the singular hyperbolic setting.

Definition 1.2. We say a Riemannian metric (-,-) adapted to a singular hyperbolic
splitting TT' = E & F if it induces a norm | - | such that there exists A > 0 satisfying for
allz € T' and t > 0 simultaneously

|IDX, |g, |- }(DXt Im) 7 <e ™, |DX, |p, | <e ™ and |det(DX,|p)| > eM.

We call it singular adapted metric, for simplicity.

This extends the notion of adapted metric for dominated and partially hyperbolic
splittings; see e.g. [34].
In [§], L. Salgado and V. Araijo proved the next result.

Theorem 1.3. [8, Theorem C] Let T be a singular-hyperbolic set for a C1 three-dimensional
vector field X. Then I' admits a singular adapted metric.

In [62, Theorem B, the author and L. Salgado showed the existence of adapted
metrics for any singular hyperbolic set I' of a C! vector fields in particular setting where
I has a partially hyperbolic splitting TtM = E & F with F volume expanding and F
a one-dimensional uniformly contracting bundle, extending the result from [§] for any
codimension one singular hyperbolic set.

Here, in a joint work with V. Aratjo and L. Salgado, we also proved this result
but in this work this is made in a certain different way from [8, [62]. Now, we make this
without using quadratic forms, we only use multilinear algebra and the dynamics.

Consider a partially hyperbolic splitting TrM = E & F where E is uniformly
contracted and F' is volume expanding. We show that for C' flows having a singular-
hyperbolic set I' such that E' is one-dimensional subspace there exists a metric adapted

to the partial hyperbolicity and the area expansion, as follows.
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Theorem B. Let I be a singular-hyperbolic set of codimension one for a C* m-dimensional

vector field X. Then I' admits a singular adapted metric.

We present the relevant definitions and auxiliary results in the next section.

The chapter is organized as follow. In the present Section we provide an intro-
duction and statement of main results. In Section we give the main definitions and
useful properties of quadratic forms. In Section we provide some auxiliary results. In

Section [I.3] we give the proofs of our theorems.

1.1 Preliminary definitions and results

We now present preliminary definitions and results.

We recall that a trapping region U for a flow X, is an open subset of the manifold
M which satisfies: X;(U) is contained in U for all ¢ > 0, and there exists 7" > 0 such
that X;(U) is contained in the interior of U for all t > T. We define I'(U) = I'x (U) :=
Ni>0X¢(U) to be the mazimal positive invariant subset in the trapping region U.

A singularity for the vector field X is a point ¢ € M such that X (o) = 0 or,

equivalently, X;(c) = o for all t € R. The set formed by singularities is the singular set
of X denoted Sing(X). We say that a singularity is hyperbolic if the eigenvalues of the

derivative DX (o) of the vector field at the singularity o have nonzero real part.

Definition 1.4. A dominated splitting over a compact invariant set A of X is a contin-
uous DX-invariant splitting T\M = E & F with E, # {0}, F, # {0} for every x € A

and such that there are positive constants K, \ satisfying
|DXe| g, [ - [[DX—t|py, o | < Ke ™ for allx € A, and all t > 0. (1.1)

A compact invariant set A is said to be partially hyperbolic if it exhibits a domi-
nated splitting TAM = E & F such that subbundle E is uniformly contracted, i.e., there
exists C' > 0 and X\ > 0 such that ||DX;|g,|| < Ce ™ for t > 0. In this case F is the
central subbundle of A. Or else, we may replace uniform contraction along F by uniform
expansion along F' (the right hand side condition in (2))).

We say that a DX;-invariant subbundle F' C T)M is a sectionally expanding
subbundle if dim F}, > 2 is constant for z € A and there are positive constants C, A such

that for every z € A and every two-dimensional linear subspace L, C F, one has

|det(DX,|1,)| > CeM, for all t > 0. (1.2)
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Definition 1.5. [53, Definition 2.7] A sectional-hyperbolic set is a partially hyperbolic

set whose central subbundle is sectionally expanding.

This is a particular case of the so called singular hyperbolicity whose definition
we recall now. A D X;-invariant subbundle F' C Ty M is said to be a volume expanding if
in the above condition [I.2] we may write

|det(DX,|g,)| > Ce™, for all t > 0. (1.3)

Definition 1.6. [5], Definition 1] A singular hyperbolic set is a partially hyperbolic set

whose central subbundle is volume expanding.

Clearly, in the three-dimensional case, these notions are equivalent.
This is a feature of the Lorenz attractor as proved in [69] and also a notion
that extends hyperbolicity for singular flows, because sectional hyperbolic sets without

singularities are hyperbolic; see [55, [6].

1.1.1 Linear multiplicative cocycles over flows

Let A: G xR — G be a smooth map given by a collection of linear bijections
Ay(z) : Gy — GXt(x), rel,teR,

where I is the base space of the finite dimensional vector bundle G, satisfying the cocycle

property
Ao(z) = 1d, Aps(x) = A(Xs(x)) 0 Ag(x), x €T t,s€R,

with {X;her a complete smooth flow over M D I'. We note that for each fixed ¢t > 0 the
map Ay : G = G, v, € Gy — Ay() - v, € Gx,(y) is an automorphism of the vector bundle
G.

The natural example of a linear multiplicative cocycle over a smooth flow X; on
a manifold is the derivative cocycle A;(x) = DX;(z) on the tangent bundle G = T M of a
finite dimensional compact manifold M. Another example is given by the exterior power
Ai(z) = A*DX; of DX, acting on G = A*T'M, the family of all k-vectors on the tangent
spaces of M, for some fixed 1 < k < dimG.

It is well-known that the exterior power of a inner product space has a naturally
induced inner product and thus a norm. Thus G = A¥T'M has an induced norm from the

Riemannian metric of M. For more details see e.g. [12].
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In what follows we assume that the vector bundle G has a smoothly defined inner

product in each fiber G, which induces a corresponding norm || - ||,z € T".

Definition 1.7. A continuous splitting G = E & F' of the vector bundle G into a pair of

subbundles is dominated (with respect to the automorphism A over ') if

o the splitting is invariant: Ay(x) - B, = Ex,(z) and Ay(x) - Fp = Fx,@) for allz € T
and t € R; and

e there are positive constants K, A satisfying

[Adlm, |- 1A=ty | < Ke ™ forallx €T, and allt > 0. (1.4)

We say that the splitting G = E'@® F' is partially hyperbolic if it is dominated and
the subbundle E is uniformly contracted: ||A; | E,.|| < Ce # for all ¢ > 0 and suitable
constants C, u > 0.

1.1.2 Fields of quadratic forms, positive and negative cones

Let Ey be a finite dimensional vector bundle with inner product (-,-) and base
given by the trapping region U C M. Let J : Ey — R be a continuous family of quadratic
forms g, : E, — R which are non-degenerate and have index 0 < ¢ < dim(E) = n. The
index ¢ of J means that the maximal dimension of subspaces of non-positive vectors is q.
Using the inner product, we can represent J by a family of self-adjoint operators J, : E, O
as J.(v) = (Jp(v),v),v € E,,x € U.

We also assume that (J,).cy is continuously differentiable along the flow. The
continuity assumption on J means that for every continuous section Z of Ey the map
U3z~ J(Z(z)) € R is continuous. The C* assumption on J along the flow means that
the map R 3 t — Jx,2)(Z(Xi(x))) € R is continuously differentiable for all x € U and
each C' section Z of Ey.

Using Lagrange diagonalization of a quadratic form, it is easy to see that the
choice of basis to diagonalize J, depends smoothly on y if the family (d,).ecp is smooth,
for all ¥ close enough to a given x. Therefore, choosing a basis for T, adapted to J, at each
x € U, we can assume that locally our forms are given by (J,(v),v) with J, a diagonal
matrix whose entries belong to {£1}, J¥ = J,, J2 = I and the basis vectors depend as
smooth on z as the family of forms (J,),.

We let C1 = {CL(x)}.cv be the family of positive and negative cones associated
to J

Ci(z) :={0}U{veE,:+d,(v) >0}, ze€U,
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and also let Gy = {Cy(z)}.er be the corresponding family of zero vectors Cy(x) = ;1 ({0})
for all z € U.

1.1.3 Strict J-separation for linear multiplicative cocycles

Let A: EF xR — E be a linear multiplicative cocycle on the vector bundle E

over the flow X;. The following definitions are fundamental to state our results.

Definition 1.8. Given a continuous field of non-degenerate quadratic forms J with con-
stant index on the positively invariant open subset U for the flow X;, we say that the

cocycle Ay(x) over Xy is

e J-separated if Ai(z)(Cy(x)) C Ci(Xi(x)), for allt > 0 and v € U (simple cone

invariance);

e strictly J-separated if A;(x)(Cy(z) U Cy(z)) C Cp(Xe(x)), for allt >0 and x € U

(strict cone invariance).
e J-monotone if Jx, () (DX (x)v) > J5(v), for each v € T,M \ {0} and t > 0;

e strictly J-monotone if 0t(8Xt(x)(DXt(x)v)) li=o> 0, for all v € T,M \ {0}, t >0
and r € U;

o J-isometry if Jx,(2)(DXi(x)v) = J2(v), for each v € T,M and x € U.

We say that the flow X, is (strictly) J-separated on U if DX,(x) is (strictly) J-separated
on Ty M. Analogously, the flow of X on U is (strictly) J-monotone if DX, (x) is (strictly)

J-monotone.

Remark 1.9. If a flow is strictly J-separated, then for v € T,M such that J.(v) <
have Jx_,)(DX_4(v)) <0, forallt > 0, and x such that X_,(x) € U for every s € [ ]
Indeed, otherwise Jx_,z)(DX_¢(v)) > 0 would imply J.(v) = (DX, (DX_4(v))) >
contradicting the assumption that v was a non-positive vector.

This means that a flow X; is strictly J-separated if, and only if, its time reversal

X_4 is strictly (—J)-separated.

Remark 1.10. Let V' be a real finite dimensional vector space, and L : V. — V be a
d-separated linear operator. Then L can be uniquely represented by L = RT', where T
is a J-isometry (i.e. J(T(v)) = (J(Tv),Tv) = (J.(v),v) = J(v),v € V) and R is
J-symmetric (i.e. (J.(Rv),w) = (v, J,Rw), for v,w € V) with positive spectrum,; the
operator R can be diagonalized by a J-isometry, and there exist constants r— and ry such
that the operator L is (strictly) §-monotonous if, and only, if r— < (<) 1 andry > (>) 1.

For more details see [, Proposition 2.4] and comments below of the Theorem 1.2 in [T7].
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A vector field X is J-non-negative on U if J(X(x)) > 0 for all z € U, and J-non-
positive on U if J(X (x)) < 0 for all x € U. When the quadratic form used in the context
is clear, we will simply say that X is non-negative or non-positive.

We say that a C! family J of indefinite and non-degenerate quadratic forms is
compatible with a continuous splitting Er @ Fr = F of a vector bundle over some compact

subset I' if E, is a J-negative subspace and F} is a J-positive subspace for all x € T.

Proposition 1.11. [7, Proposition 1.3] A J-non-negative vector field X on U is strictly
d-separated if, and only if, there exists a compatible family do of forms and there exists a
function & : U — R such that the operator Jo, = Jo - DX (z) + DX (z)* - Jy satisfies

jO,m —(x)Jy is positive definite, x € U,

where DX (z)* is the adjoint of DX (x) with respect to the adapted inner product.

Remark 1.12. The expression for jO,ac in terms of Jo and the infinitesimal generator of
DX, 1s, in fact, the time deriwative of Jy along the flow direction at the point x, which we

denote O, Jy; see item 1 of Proposition[I.18. We keep this notation in what follows.

A characterization of dominated splittings, via quadratic forms is given in [7] (see
also [77]) as follow.

Theorem 1.13. [7, Theorem 2.13] The cocycle A,(x) is strictly J-separated if, and only if,
Ey admits a dominated splitting F— & F'y with respect to Ai(x) on the maximal invariant

subset A of U, with constant dimensions dim F_ = ¢,dim Fy = p,dim M = p + q.

This is an algebraic/geometrical way to prove the existence of dominated split-
tings. As we have said in the introduction, proving existence of some hyperbolic structure
is not an easy work to do, in general. One of the most habitual way is to use cone field
techniques, see for instance [50, 42} [59).

In [8, Example 5], L. Salgado and V. Araijo checked out the singular hyperbolicity
of geometric Lorenz attractor, in a most simple way, by using Theorem [L.1]. It was proved
by Tucker [69], under computer assistance, that the Lorenz attractor exist for the classical
parameters.

In fact, we have an analogous result about partial hyperbolic splittings, as follow.

We say that a compact invariant subset A is non-trivial if
e cither A does not contain singularities;

e or A contains at most finitely many singularities, A contains some regular orbit and

is connected.
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Theorem 1.14. [7, Theorem A] A non-trivial compact invariant subset I" is a partially
hyperbolic set for a flow X, if, and only if, there is a C' field J of non-degenerate and in-
definite quadratic forms with constant index, equal to the dimension of the stable subspace
of I, such that X; is a non-negative strictly J-separated flow on a neighborhood U of T'.
Moreover E is a negative subspace, F' a positive subspace and the splitting can be

made almost orthogonal.

Here strict J-separation corresponds to strict cone invariance under the action of
DX, and (-,-) is a Riemannian inner product in the ambient manifold. We recall that the
index of a field quadratic forms J on a set I' is the dimension of the J-negative space at
every tangent space 1, M for x € U. Moreover, we say that the splitting TtM = E & F
is almost orthogonal if, given £ > 0, there exists a smooth inner product (-, -) on TrM so
that |(u,v)| < e, for all u € E,v € F, with |Ju|| =1 = ||v]|.

We note that the condition stated in Theorem [1.14] allows us to obtain partial
hyperbolicity checking a condition at every point of the compact invariant set that depends
only on the tangent map DX to the vector field X together with a family J of quadratic
forms without using the flow X; or its derivative DX,;. This is akin to checking the
stability of singularity of a vector field using a Lyapunov function. For example, it is
well known by Lyapunov’s Stability Theorem that if a singularity o of a C! vector field
Y : U C R* — R", defined over an open set U, admits a strict Lyapunov funtion on o,
then this is a asymptotically stable singularity. Lewowicz, in [48], used this idea replacing

stability of a singularity by topological stability of Anosov diffeomorphisms.

1.1.4 Exterior powers

We note that if £ @ F is a DX;-invariant splitting of Tr M, with {ey,..., e/} a
family of basis for E and {fi,..., fn} a family of basis for F, then F = A*F generated
by {fi, A+ A fi, Ji<iy<..<i,<n is naturally AFD X-invariant by construction. In addition,
E generated by {e; A -+ A e; t1<ij<..<i,<¢ together with all the exterior products of i
basis elements of E with j basis elements of F', where ¢ + 7 = k and 4,5 > 1, is also
AF D X,-invariant and, moreover, E®F gives a splitting of the kth exterior power A¥TH M
of the subbundle T-M. Let Tt M = Er @ Fr be a D X;-invariant splitting over the compact
Xi-invariant subset I' such that dim F' = k > 2. Let F = AFF be the AFD X,-invariant
subspace generated by the vectors of F' and E be the A¥D X -invariant subspace such that
E®Fisa splitting of the kth exterior power A¥TrM of the subbundle T M.

We consider the action of the cocycle DX;(x) on k-vector that is the k-exterior
AEDX, of the cocycle acting on AT+ M.
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We denote by || - || the standard norm on k-vectors induced by the Riemannian

norm of M, see [12].

Remark 1.15. Let V' to be a vector space of dimension N.

N
(i) The dimension of space A"V is dim A"V = ( > If{e1, - ,en} is a basis of V,
r

N
so the set {ex, N---Neg, 1 <k <--- <k, <N} isa basis in NV wz’th( >
,

elements.

(it) If V' has the inner product (,), then the bilinear extension of

<U1 A A Uy, V1 FANERIRIVA UT> = det(<uiavj>)7“><r

defines a inner product in A"V In particular, ||[ug A -+ A ]| = y/det({us, u;))rxr
1s the volume of r-dimensional parallelepiped H spanned by uy,--- ,u,, we write
vol(uy, -+ ,u,) = vol(H) = det(H) = |det(uy,- - ,u,)|.

(iti) If A:V — V is a linear operator then the linear extension of AN"A(uy A+ - Au,) =
A(ug) A -+ AN A(u,) defines a linear operator N"A on NV

(iv) Let A:V — V, and N"A : N'V — A"V linear operators with G spanned by
v1,--,vs € V. Define H := A|g, then H is spanned by A(vy), -+, A(vs) . So
|det Alg| = vol(A|g) = vol(H) = vol(A(vy), -+, A(vs)) = [|[A(vy) A+ A Avy)|| =
[| A% A(vg A+ Awg)ll.

When DX, (u;) = v;(t) = v;, where G is spanned by uy, -+ ,u, € T M, and H is
spanned by vy, -+, v, we have H = DX;(G) = DX|g. Thus,

| det(DX,|¢)| = vol(DX,(u1), - , DXy(u,)) =
IDX,(u1) A -+ A DX,(w,)]| = || A" DX, (us A -+ Auy)l.

It is natural to consider the linear multiplicative cocyle A¥DX, over the flow X,
of X on U, that is, for any k choice, u, us, -+ ,ug of vectors in T,M,x € U and t € R
such that X;(z) € U we set

see [12 Chapter 3, Section 2.3] or [74] for more details and standard results on exterior

algebra and exterior products of linear operator.
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In [8], L. Salgado and V. Aratijo proved the following relation between a domi-

nated splitting and its exterior power.

Theorem 1.16. [8, Theorem A] The splitting TrM = E @& F is dominated for DX, if,
and only if, NFTr M = E & F is a dominated splitting for N*DX,.

Hence, the existence of a dominated splitting TrM = Er @ Fr over the compact
X,-invariant subset I, is equivalent to the bundle A*T+M admits a dominated splitting
with respect to A¥DX, : A¥TT- M — AFTR M.

As a consequence, they obtain the next characterization of three-dimensional

singular sets.

Corollary 1.17. [8, Corollary 1.5] Assume that M has dimension 3, E is uniformly
contracted by DX;, and that k = 2. Then E® F is a singular-hyperbolic splitting for DX,
if, and only if, E®F is partially hyperbolic splitting for NA2DX, such that Fis uniformly
ezpanded by N2DX,.

1.1.5 Properties of J-separated linear multiplicative cocycles

We present some useful properties about J-separated linear cocycles whose proofs
can be found in [7].
Let Ai(x) be a linear multiplicative cocycle over X;. We define the infinitesimal
generator of A;(x) by
A —Id
D(x) := lim L

t—0

(1.5)

The following is the basis for arguments given by L. Salgado and V. Aratjo in [7]
to prove the Theorem [1.14]

Proposition 1.18. [7, Proposition 2.7] Let Ai(z) be a cocycle over X, defined on an open

subset U and D(z) its infinitesimal generator. Then

1. J(v) = 0:3(Au(x)v) = (Jx, @) Ar()v, Ap(2)v) for allv € E, and x € U, where
Jy:=J-D(x)+ D(z)*-J (1.6)

and D(x)* denotes the adjoint of the linear map D(z) : E, — E, with respect to the

adapted inner product at x;
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2. the cocycle Ay(x) is J-separated if, and only if, there exists a neighborhood V' of A,
V Cc U and a function § : V — R such that

Jo > 0(x)d, forall zeV. (1.7)

In particular we get 0;log |J(Ai(z)v)| > 0(Xy(x)), v € Ep,x € Vit > 0;

3. if the inequalities in the previous item are strict, then the cocycle Ay(z) is strictly J-
separated. Reciprocally, if Ay(z) is strictly d-separated, then there exists a compatible

family o of forms on V' satisfying the strict inequalities of item (2).

exp Az (z) for allv € E, and
ta, where AP (z) was defined

4. For a J-separated cocycle Ai(x), we have |3(At2(x)z;

1d( Aty ()
reals t1 < tg so that J(A(x)v) # 0 for all t; <t

5. we can bound ¢ at every x € I' by inf,cc, (2) % < d(z) <supec () %

>
<

l

Remark 1.19. We stress that the necessary and sufficient condition in items (2-3) of
Proposition for (strict) J-separation, shows that a cocycle Ai(x) is (strictly) J-
separated if, and only if, its inverse A_(x) is (strictly) (—J)-separated.

Remark 1.20. [tem (2) above of Proposition shows that 0 is a measure of the

“minimal instantaneous expansion rate” of |J o Ay(x)|.

The area under the function ¢ provided by Proposition [1.18] allows us to detect

different dominated splittings with respect to linear multiplicative cocycles on vector
bundles (Proposition [1.21]). For this, define the function

Ab(z) = /b 0(Xs(x))ds, zeTl,a,beR. (1.8)

Proposition 1.21. [7, Theorem 2.23] Let T be a compact invariant set for X; admitting
a dominated splitting Er = F_ ® F, for Ai(z), a linear multiplicative cocycle over T' with
values in E. Let § be a C family of indefinite quadratic forms such that As(x) is strictly
d-separated. Then

1. F_ & F, is partially hyperbolic with F. uniformly expanding if Ak(z) —t——+——> —+00
—r+00
forallz € T.

2. F_ & F. is partially hyperbolic with F_ uniformly contracting if Af(x) —— —o0

t—+o00
forallz € T.
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3. F_ & Fy is uniformly hyperbolic if, and only if, there exists a compatible family Jo
of quadratic forms in a neighborhood of ' such that gi(v) > 0 for allv € E, and all
rzel.

For the proof and more details about the Proposition [1.21} see [7].

1.2 Auxiliary results

1.2.1 Exterior products and main Lemma

From now, we present some properties about exterior products and the main
lemma to prove the Theorem [A] Next, we are going to use Proposition to obtain
sufficient conditions for a flow X; on a m-manifold M to have a A™ 'DX,-invariant
one-dimensional uniformly expanding direction orthogonal to the (m — 1)-dimensional
center-unstable bundle.

Let V' a m-dimensional vector space, we denote V by V™, consider AFV™ where

2<k<m. Let B={ey, - ,en}tabasisof V™. So{e;A---Aej :1<j3 < - <jp <m}

is a basis of AKV™ and J := {(ji, -+ ,jk) ENF: 1 <ji <+ < <m}. Let | = (ZJ),

so we have [ combination of k vectors in {ey, - ,e,}, and |J| = L.
Take uy, ug, -+ ,u, € V™ where u; = (u]l,u?, ,uf')s for all j € {1,--- k}.
Define
uj U
C:= (1.9)
uy w')

uy uy,
L (1.10)
u{k ui’“ kxk
The following result holds
up A\ ANy = Z det(C7 %) (ej, A+ Aej,). (1.11)
(J1y-sdr)EJ

Let A: V™ — V™ a linear operator with matrix in basis B given by
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(1.12)

Am1 Am2 ... Amm
(mxm)

We will denote this matrix by A too.
Consider AFA : AFV™ — AFV™ note that A(up)A- - -AA(ug) = AFA(ug A~ - Ay,
by (1.11)) and the linearity of Ak¥A, we have that

Alw) A NAwg) = D det(CIR) AR Afey A Aey,) (1.13)

(J1,dk)€J

Define A; := A(e;), so A; is the j-th column of A, i.e., A(e;) = A; = (ayj, -+, amj)7,
so A(ej) = [aijlmx1- Let Aj ., == (A4, -+ A} )mxr Where (ji,---,jx) € J. For each

(11 1x), (j1- -+ Jk) € J consider

o Qivgy - Qiggy
AV (1.14)

J1Jk
@iy - Qigg )
Using that A*A(e;, A~ Aej) = A(ej,) A+ - A A(ej,) with matrix

Ajl"‘jk = (Ajl T Ajk)ka7

by (1.11]) we obtain that

Ale) N NA(e;) = Y det(AT %) (e, A+ Aeyy). (1.15)

J1-Jk
(i1, ik )EJS
Lemma 1.22. Let V' to be vector space and A : V. — V to be a linear operator then
AU A = det(A) - (A71H)*.
Under suitable identification, the announced formula holds for differential of a

diffeomorphism of a compact finite dimensional manifold.

Proof. Consider k =m — 1. We use the following identification between A~ DV and V.
For each (j1,- -+, jm-1) € J, we identify e;, A--- A €y D1 AM=DV by §,e, in V, where
pé& {j1, s jm}, 6, = 1if pis odd, and 8, = —1 if p is even.

We must show that for each (ji, -+ ,jm_1) € J the exterior product A™=Y A(e;, A

== Aej,._,,) corresponds to the det(A) - (A71)*(dpe,), where dye, is given as above.
Define S := det(A) - (A™")*, using that A" = 7= Adj(4), we obtain that

S = cof (A) where cof (A) = [(—=1)" M;;],nxm and M;; is the determinant of the submatrix



CHAPTER 1. SINGULAR HYPERBOLIC FLOWS 19

formed by deleting the i-th row and j-th column. We have that M;; = det(A71*) where

518
i {ry,---,rp}and j & {s1, -, sk}
Note that

cof(A)(dpep) = 0, cof(A)(e,) = 6p((_1)1+pM1p= (_1)2+pM2p7 SR (_1)m+pMmp)B'

In case p is odd, 6, = 1 and cof(A)(d,e,) = (Mip, =My, - -+, (=1)"PM,,,) 5.
We obtain that

cof (A)(0pep) = Miper + Map(—e2) + -+ + Mypy(=1)" ey, =
Mlp(61(51> + Mgp(6252) + -+ Mmp(emp5mp).

Using that

Alej) A+ N Alej,) = Z de’c(Al1 Zk)(ezl “Ne,)
(%1,

and M;; = det(A77F) where @ ¢ {ri,---,r} and j ¢ {s1,---,s,}, we have that

S1°+S
cof (A)(dpep) = Alejy) A+ A Alej,).
This concludes the proof. O

The result below generalizes Corollary to arbitrary m and k. The main

difficulty here is working on the dimensions of the subbundles and its exterior powers.

Lemma 1.23. The subbundle Fr is volume expanding by DX, if, and only if, F is uni-
formly expanded by N*DX,.

In particular, EGF is a singular hyperbolic splitting, where F' is volume expanding
for DX, if, and only if, E&F is partially hyperbolic splitting for AN*DX, such that F s
uniformly expanded by \FDX,.

Proof. We consider the action of the cocycle DX;(x) on k-vector that is the k-exterior
power A*DX, of the cocycle acting on AFTTM.

Denote by || - || the standard norm on k-vectors induced by the Riemannian norm
of M; see, e.g. [12]. We write m = dim M.

Suppose that Ty M admits a splitting Er @ Fr with dim Fr = m—k and dim Fr =

We note that if £'@ F is a DX;-invariant splitting of Tr M, with {e1,. .., e@m—_r)}
a family of basis for F and {fi,..., fx} a family of basis for F', then F=AFF generated
by {fi, A+ A fi, bi<iy<-<ip<k is naturally A*DX;-invariant by construction. Then, the

dimension of F is one with basis given by the vector fi A--- A fi.
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Assume that Fr is volume expanding by DX;. We must show that there exist C'
and A > 0 such that | A* DX,|p| > Ce*, for all t > 0, where P is spanned by fi A« A fi.
Note that

| A" DXilpl| = | A¥ DXo(fi Ao A fi)ll = [IDXe(f1) A= A DXG(fu)l.

But fi1,---, fr is a basis for F', by hypothesis there exist constants C' and A > 0
such that | det(DX;|r)| > C.eM for all t > 0. So,

|det(DXi| )| = vol(DX,(f1), -+, DX:(£)) = IDXi(f1) A A DX(fll

The reciprocal statement is straightforward.

Given a basis {f1,---, fx} of F', we have that

| det(DXy|r)| =
vol(DXy(f1), -+ s DXu(fr)) = [[DXe(f1) A ADXy(fi)l] =
A DXy(fy A A fo)ll = || A* DXy p|

where P is spanned by fi A -+ A f.
However, by hypothesis, there exist C'and A > 0 such that || A*¥ DX;|p|| > Ce,
for all £ > 0. O

Corollary 1.24. Assume that E is uniformly contracted by DX;. E @ F is a singular-
hyperbolic splitting for DX, if, and only if, E&F is partially hyperbolic splitting for
NEDX, such that F s uniformly expanded by N*DX,.

Let M be a Riemannian manifold m-dimensional with (-, -) inner product in T M,
and (-,-), the inner product in A*TrM induced by (-,-) where AFTY M = |, AFT, M.
So for z € T', we have that (-,-) is defined on T, M, and (-, -), is defined on AT, M.

Lemma 1.25. Let M be a Riemannian m-dimensional manifold. Then, for each inner

m—1)

product [-, -], in Al Tr M there exists an inner product [-,-] on TrM such that [-, -], is

induced by [-,-].

Proof. Let M be a Riemannian m-dimensional manifold with an inner product (-,-) in
TrM, and (-,-), the inner product in A YT M induced by (-, -).

Take [, -], an arbitrary inner product in A™~VTrM. Using that [-, ], and (-, -).
are inner products in A DTLM there exists a linear isomorphism J : A VT-M —
AM=DTRM such that [u, v],. = (J(u), J(v))..

Define ¢ : GL(TrM) — GL(A™ VTr M) given by A +— AM~D A,

Note that ¢ is an injective linear homomorphism, and due to the dimensions of

the spaces, ¢ is a linear isomorphism.
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Hence, there exists A € GL(TrM) such that A DA = J,

Consider [z,y] = (A(x),A(y)) for z,y € T,M and z € I'. Then if u =
Up A - A U1y and v = v Ao AUy we get [u,v] = det([ug, v)]) me1)x(m-1) =
det((Au;, Av;)) m—1)x(m-1)-

We have that

0] = det({A (), A03)))mrysmery = (A0 Aw), A" A(w)),.
On the other hand,
[, V] = (T (w), T (0)) = (AT A(w), AT D A(0)).

Therefore, |-, ], = [+, ]«, and we are done. O

1.3 Proofs of main results

We are now able to prove our main results.

1.3.1 Proof of Theorem [Al

Proof. Consider a m-manifold M and I a compact X;-invariant subset having a singular-
hyperbolic splitting TrM = Er @& Fr with dim Er = 1 . By Theorem we have a
A=Y D X,-invariant partial hyperbolic splitting A™ DT M = E & F with dimF = 1
and F uniformly expanded. Following the proof of Theorem m, if we write e for a
unit vector in E, and {uy,us, - ,u,_1} an orthonormal base for F,, = € T, then Em
is a (m — 1)-dimensional vector space spanned by set {e A u;; A uiyy, A -+ Aw;,, , with
i1 imes € {1, ,m — 1}

From Theorem and the existence of adapted metrics (see e.g. [34]), there
exists a field J of quadratic forms so that X is J-non-negative, DX is strictly J-separated
on a neighborhood U of I', Er is a negative subbundle, FT is a positive subbundle and
these subspaces are almost orthogonal. In other words, there exists a function § : I' = R
such that J, — 6(x)Jd, > 0,2 € T and we can locally write J(v) = (J(v),v) where J =
diag{—1,1,--- ,1} with respect to the basis {e,uq, - ,u,_1} and (-,-) is the adapted
inner product; see [7].

By lemma [1.22) A DA = det(A) - (A~")* with respect to the adapted inner
product which trivializes d, for any linear transformation A : T, M — T,M. Hence
A" IDX,(7) = det(DX,(x)) - (DX_; 0 X;)* and the infinitesimal generator D™~ (x) of
A=V DX, is the same as tr(DX (z)) - Id — DX (x)*.
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Therefore, using the identification between A DT, M and T,M through the

adapted inner product, and Proposition [1.18

A

J.(v) = 0, (=A™ VDX, - v) | = (—(J - D™ V(x) + D"V ()" . J)v,v)
=([(d-DX(z)+ DX(z)"-J) —2tr(DX(z))d]v,v)

= (§ - 2t(DX(2)))(v). (1.16)

To obtain strict (—J)-separation of AM=D DX, we search a function dm-1) : I' = R so
that

([ —2tr(DX)J) — Sm_1y(—=3) >0 or J— (2tr(DX) = 5n_1))d > 0.

Hence it is enough to make 04,1y = 2tr(DX) — 6. This shows that in our setting
AT D X, is always strictly (—J)-separated.

Finally, according to Proposition [I.21] to obtain the partial hyperbolic splitting
of Alm=1) D X, which ensures singular-hyperbolicity, it is sufficient that either J. is positive
definite or AL (z) = fab d(m—1)(Xs(x)) ds satisfies item (1) of Proposition|1.21} for all z € T'.

This amounts precisely to the sufficient condition in the statement of Theorem [A] and we

are done. O

Finally, we present the proof of Theorem [B]

1.3.2 Proof of Theorem [Bl

Let (-, -) to be a Riemannian metric on 7'M and denote (-, ), : T.M x T, M — R
the induced inner product on T, M. We denote by (-, -), . the induced metric on A*T, M
as in Subsection m In particular, |[ul|,. == \/{(u, u),. for u € AFT, M.

Define the k-exterior tangent bundle AT'M by |, {z} X A*T,M and the k-
exterior unit tangent bundle A¥TM by {(z,u) € A¥T'M : u € A*T,M and |u|,. < 1}.

We are now ready to present the proof of Theorem

Proof of Theorem[B. Let a singular-hyperbolic set T for a C! vector field X be given with
a splitting Er & Fr with dim EFr = m — k and dim Fr = k.

Then F = AFF generated by {fi, A --+ A fi, }i<iy<.<i,<k is naturally A*DX;-
invariant by construction, where {f1,..., fx} a basis for F. So dim(f ) = 1 with basis
given by the vector fi A--- A fg.

By Corollary |2.2 we have a partially hyperbolic splitting E®F for A*DX, such
that F is uniformly expanded by A*DX;. Hence, from [34, Theorem 1], there exists an
adapted inner product [-,-] for A*DX; over T, that is, there exists A > 0 satisfying
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IN'DX,y | ] [NFDX_, ’FXt(z)] <eMand [N'DX; [p]>eM, VE>0,z €T,

By Lemma [1.25] there exists an inner product [[-,-]] on TrM such that [-,-] is
induced by [[-,]].

So there exists an inner product ((-,-)) on 7rM with induced inner product
((-,-))s on A" DT M and A > 0 such that

A" DXy |g, Il | A" DXy |5 ) s < €7 and | A" DXy |5 |lo 2 €, V>
0,z € I" where || - || is the norm induced by ((-,-)).

Assuming the existence of this inner product defined on TrM we prove the fol-

lowing Lemma.

Lemma 1.26. Suppose that there exists an inner product ((-,-)) on TrM with induced
inmer product {{-,-)), on A VTL M and A > 0 such that we have the following inequalities
| AF DX, | [l | A" DX |FXt(w) |« < e and || \* DXy |5 |l > € forallt € R and
x € I'. Then there exists an inner product (-,-) in TrM such that for all t > 0

1 ADX |, |- 1DX o [, | €
2. |NF DXy |g, |+ | AF DX, |Fxm) . <e M and
3. | AF DXy | |« > eM.

where | - | is the norm induced by (-, -).

Proof. Let u € E, and v € FX,(y) be such that ||u|| = 1 = [jv||. We observe that for a
given fixed t € R

DXl - || DX_w| = || A" DXp(u Aug A~ Aug)|| - | A¥ DX (v Avg A= Al
if we choose uy, -+ ,u, € T, M and vy, --- , v € Fx,(») such that:

o (DXyu, DXyuj) =0 for 2 < j < k and (DXyuj, DXyw) = 65 for 2 < 4,1 < k;

o (DX_ v, DX _4v;) =0for 2 <j<kand (DX _,v;, DX_4v) =6 for 2 <j, 1 <k.

Consequently we obtain

| DXl - [[DX_v|| < AF DXl AF DX _y||flu Aug A= AN - [[o Avg A+ A g

<eMunuz Ao Augll - o Avp Ao Ay

We note that ||u;|| < [[DX_.(z)|| since | DX || = 1 and analogously ||v;|| < ||DX(X;x)]
since ||DX_yv,|| =1 for 2 < j < k with |ju|| = ||v]| = 1.
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We now set R = max{1, s}, where

= DX
and define B[0, R] = {n € TT : |n| < R} a compact subset of TT.
Note that if we set t € [—1, 1], then we get u, ug, -+ ,ug,v,v9,- - , v € B0, R]
in the argument above.
Moreover [[_, B[0, R] is a compact subset of [[f_, 7T = > per Il % Fox ,r
and let 7 : H,’f:l TT — AFTT be the natural injection given by

(wy, -+, wg) = wp A A Wy

We can now define |- | =~ - || (or (-,-) = +*[[",]]) where 7 is a positive number

such that

sup [ Z(w)]| <7
weTF_, B[O,R]

It follows that

|IDXu| - |[DX_yw| =v|| A* DXy(uAug A - Aug)|| -y A" DX _y(v Avg A=+ Awg)||

<e MylluAug A Augll -yl Ava A A < e

and note that the choice of v does not change any of the previous relations involving || - ||.
Then for any given fixed ¢ € [—1, 1] we have obtained an adapted metric | - | that satisfies
the statement of the lemma.

For general ¢ > 0, suppose first that ¢t = n € Z*. Then by invariance of the
subbundles

n—1 n—1
IDX,ul - DX | < | [[(DX10X:) - ul - | [[(DX_1 0 Xomi) - 0]
=0 =0

H DX gy, |+ IDX 1 Lpy, o 1) -l o] < Jul - ule™.

=0

Now for non-integer ¢ > 0 write ¢ = [t| + « where « € (0,1) and [t] = sup{n € Z* : n < t}

is the integer part function. Then

\DXtu] : ]DX,tv| = |DXM 9] DXau\ . ‘DX_[t] o DX,QU‘

< |DXu| - |DX_qvle ™ < |u| - [v]e e = |u| - [v]e™

We have obtained a metric | - | satisfying item (1) in the statement of the Lemma. Analo-
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gously, it satisfies items (2) and (3) of the statement of the Lemma, and we are done. [

From Lemma we obtained an inner product (-,-) in TrM adapted to the
dominated splitting £ @& F for DX, and this metric induces a metric in E @ F which is
an adapted metric to the partially hyperbolic splitting E® F for NeDX,.

Moreover, from the definition of the inner product and exterior power, it follows
that for all t > 0

[ det(DX; [,)| = [(NDX)(fr A~ A fi)l = [(NDXy) [ | = €

since F' is spanned by fi,..., fx. So |- | is adapted to the volume expansion along F.

To conclude, we are left to show that E admits a constant w > 0 such that
|IDX; |g | < e for all t > 0. But since E is uniformly contracted, we know that
X(z) € F, forall z €T

Lemma 1.27. Let T’ be a compact invariant set for a flow X of a C* vector field X on
M. Given a continuous splitting TrM = E & F' such that E is uniformly contracted, then
X(x) € Fy forallz €.

Proof. See [4, Lemma 5.1] and [7, Lemma 3.3]. O
On the one hand, on each non-singular point = of I' we obtain for w € E,

) > |DXtU)’ _ |DXt'LU‘ > ’DXtU)’
DXy - X(2)| [ X(Xy(@))] T sup{|X(2)] : 2 €T}

Now we define | - |, = £| - |, where £ is a small positive constant such that sup{|X(z)|. :
z € I'} < 1. We note that the choice of the positive constant £ does not change any of
the previous relations involving | - |, except that now |DX; - w|, < e .

On the other hand, for o € I" such that X (o) = 0, we fix ¢ > 0 and, since I' is
a non-trivial invariant set, we can find a sequence xz,, — o of regular points of I". The
continuity of the derivative cocycle ensures |DX; |g, |« = nh_}rgo DX, |g,, |« <e . Since
t > 0 was arbitrarily chosen, we see that | - |. is adapted for the contraction along E,.

This completes the proof of Theorem [B] O



Chapter 2
Kingman-like Theorem

As it is well-known, the Kingman Theorem is a striking tool to average the limit
of a subadditivity sequence if the system is equipped with an invariant measure. The
aim of this chapter is to provide a Kingman-like Theorem for an arbitrary finite measure
assuming some conditions. As an application we proved a version of Birkhoff’s Theorem
for bounded observables.

Let us describe one interesting consequence of this Theorem. Let X : M xR — M
be a continuous flow, and M to be a compact metric space. Consider X; : M — M given
by Xi(z) = X(t,z), and f; : M — M defined by f, = X,. Suppose that M is a compact
metric space, ¢ : M — R is a continuous function, and fix x € M. If the following
inequality holds limsup = [ ¢ o fi(y,)dt < limninf L [ ¢ o filz)dt for all y, € w(z), then
the limit lim z fOT @ o fi(z)dt exists.

We emphasize that our result sheds some new light on the problem of Birkhoff
average for a continuous observable in compact metric spaces.

The chapter is organized as follows: in Section we give the statements of
main results. In Section [2.2] we provide the proof of results about continuous flow on
compact metric spaces. In Section [2.3] we prove the Corollary 2.6 Finally, in Section [2.4]
we present the proof of Theorem [C]

2.1 Statements of main results of Chapter

In [29], Derriennic obtained a general version of Fekete’s Lemma (as we described

in the introduction) and proved a generalization of Kingman’s Theorem as follows.

Theorem 2.1. [29, Theorem 4] Let (M, A, ) be a measure space, f : M — M be a

measurable function, u be a finite measure, (o), be a sequence of measurable functions

where @, : M — R for each n in N. If the following conditions are satisfied:

26
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(i) 1 is an invariant measure;
(it) n is p-integrable for all n in N;

(iii) for alln,k € N
Otk — Pn —pro [ < fThy
where (hy)y, is a sequence of positive functions such that sup [ hydp < +00;
k

(iv) igf%f(pndu > —00.

Then the sequence (£%), converges p-almost everywhere and in L'-norm to a

f-invariant function ¢ such that [ dp = lim % [ endp.

First of all, we introduce some definitions and notations that will be appear on
text. Let (), be a sequence of measurable functions where ¢,, : M — R for each n in
N. We say that (p,), is a subadditive sequence for f if @,in < @m + @, o f7 for all
m,n > 1.

We consider a function ¢_ : M — [—00, 00| given by ¢_(z) = liminf “’"T(x). For
each € > 0 fixed and k£ € N we define

E,={x € M:yp;(z) <jlp_(z)+e¢) for some j € {1,....k}}.
Note that Ej; C B, and M = |J Ej.
k=1
Theorem C. Let (M, A, i) be a measure space, f: M — M be a measurable function, p

be a finite measure. Suppose that (o), is a subadditive sequence for [ such that p1 < f
for some B € R. If the following conditions are satisfied:

(a) for all j € N we have that p_(f(x)) = p_(x) pu—almost everywhere x in M;

1

() klim limsup%n_i_ pu(f~H M\ Ek%)) =0 for each £ € N\ {0}.
— 00 n i=0

Then [ p_dp = inf%fgpnd,u. Moreover, if there exists v > 0 such that for all
n>0,% > —ythen [o_dp=inf L [p,dp=1lm2< [p,dpu.

Remark 2.2. Under hyphotesis of Theorem@ if [p_dp=—o0 or <0 then [ o_du=
inf % [ ¢ndp = lim % [ pndp. (See subsection|2.4.1

Our goal is to provide a Kingman-like Theorem for an arbitrary measure assuming
only the conditions (a) and (b). Moreover, we obtain the convergence of integrals even
without a subadditive sequence of real numbers given by Fekete’s Lemma (or same version

of this result) as is usual when we work with invariant measures.
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Let (M, A, 1) be a measure space, f : M — M be a measurable transformation,

i be a probability measure. Let ¢ : M — R be a measurable function, we consider (¢,,),
n—1

the additive sequence for f given by ¢, := @o fI for each nin N, and ¢_, ¢, functions
=0

J
defined from M to [—o0, o0] given by ¢_(x) = lim inf “’"T(x), and ¢, (z) = limsup “O”T(z).

Note that for every bounded function ¢ : M — R we have that ¢_(f/(x)) =
¢_(x) p—almost everywhere z in M for all j € N. In fact, by definition,

n—1 ) o n—1 )
p-(f(x)) = lim inf 2, o' (f(x)) = lim inf (% 2 pof(x)+5lp(fw)—e(z)]) = ¢-(2).
j= j=
Remark 2.3. Under the the same hypotheses of Theorem [( with condition (b) replaced
by condition (c), that says
() p(f~“(M\ E;)) < u(M\ E) for alli € N, for any k € N, and € > 0,

we obtain the conclusion of Theorem Q. This follows immediately by the lemma

below.

Lemma 2.4. Fized ¢ > 0. If p(f~(M \ E})) < w(M \ E) for all i in N, then
n—k—1
0.

lim limsup > p(f~(M\ E}))
k—+o00 n i=0

Proof. Suppose that u(f~(M \ E)) < u(M \ E%) so

n—k—1 ) n—k—1
< ;) p(f M\ Ep)) <+ 20 (M \ E;) = (1 - 5)u(M\ Ef),
and then
n—k—1
klim limsup= > w(M\ f7H(Ef)) = lim u(M\ Ef).

But p(E%) tends to 1 if k& tends to infinity, so u(M \ Ef) tends to zero as k tends
to infinity. n

We say that an observable ¢ satisfies hypothesis (c) if for all i,k € N and ¢ > 0,
the following inequality u(f~"(M \ E5)) < u(M \ E%) holds when we consider (), an
additive sequence for f. We observe that if the measure y is an invariant measure, then
every observable satisfies hypothesis (c).

Since every bounded observable satisfies hypothesis (a), we deduce Birkhoff’s

Theorem for finite measures and bounded observables as follows.

Corollary D. Let (M, A, ) be a measure space, f : M — M be a measurable transfor-
mation, @ be a probability measure. If o : M — R is a bounded measurable function that
satisfies the hypothesis (b) or (c). Then
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n—1 n—1
Jo—dp=limi [ > o fidu=infl [ 3 o fidpu.
" j=0 n §=0

Remark 2.5. In [22], Carvalho and Moreira introduced the notion of half-invariant mea-

sure i, that means that

u(f1(B)) < w(B) (2.1)

for all measurable set B. Note that this implies that (u(f~7(B))) en is a decreasing se-
quence. The authors showed that for any bounded observable ¢ : M — R and a half-
wmvariant measure, the limit hgl%nilgp o fi(x) exists for p a.e. point x in M. Here,
Corollary [D) tell us that condition 2].:10 can be relaxed to consider only the sets of the type

M\ E5 for anye >0 and k € N.

Let us mention one important consequence of Corollary

Let (W, d) be a metric space, g : W — W be a function, and z € W. The set
O*x is the forward orbit of x, and it is given by Otz := {¢"(z) }pen. A point x € W is
a periodic point if there exists m € N such that ¢™x = x. More generally, we say that a
point « € W is eventually periodic if there exists j, € N such that ¢/°z is a periodic point.

Let S be a subset of W, and let ¢ : W — W be a continuous function. The
w-limit of S, denoted by w(S, g), is the set of points y € W for which there are z € S and
a strictly increasing sequence of natural number {ny}rey such that ¢z — y as k — oo.
Note that w(S,g9) = J w({z},9)-

z€S
Consider Ef = {w € M : %(w) < p_(w)+e for some j € {1,....k}}, (¢¥n)n is the

n—1

additive sequence for f given by ¢, := > @ o f7 for each n in N, and ¢_ is the function
7=0

defined from M to [—o0, 00) given by ¢ (w) = liminf

@nu”'

Corollary 2.6. Let (M, A) be a measurable space for M metric space, f: M — M be a
measurable transformation, and ¢ : M — R be a bounded measurable function. If one of
the following conditions is true

n—k—1

(i) klim limsupt > 8, (f /(M \ Ek%)) = 0 for each ¢ € N\ {0} where 6, the Dirac
— 00 n i=0

measure of poz’ngsc e M;

(ii) Suppose that there exists x € M such that for any € > 0 there exist j.,k. € N
satisfying that f7(x) € E;_ for j > je;

(iii) If M is a compact metric space, and there exists x € M such that for any ¢ > 0
there exists k. € N satisfying that w({z}, f) is contained in the interior of Ej_;

(iv) Suppose that M is a compact metric space, f,p,p_ are continuous functions, and
w({z}, f) is a finite set for some x € M.
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n—1
Then the limit lim L 3~ @ o fi(x) ezists.
=0

n—oo

Remark 2.7. For each € > 0 fixed and k € N we define

Fi={x e M:9j(x) > jlps(r) —¢) for some j € {1,...,k}}.
We say that an observable ¢ satisfies the hypothesis (c') if

() for all i,k € N and € > 0, the following inequality u(f~"(M \ Ff)) < p(M \ F)

holds when we consider (), the additive sequence for f.

The next result is a direct application of Corollary [D}

Corollary 2.8. Let (M, A, i) be a measure space, f : M — M be a measurable transfor-

mation, p be a probability measure. If o : M — R is a measurable bounded function that

n—1 )
satisfies the hypothesis (c) and ('), then there exists the limit o(z) = lim L 3~ @ o fi(z)
for p almost every point x in M. Moreover, the function © defined as above is invariant

n—1
under f, integrable and satisfies [ @dp =1lim [+ 5~ ¢ o fidpu.

Proof. Note that ¢_ < ¢4, and v = —¢ is also a bounded function. By Corollary [D]
n—1

limt [ > po fidu= [@idu. So

n =0

n—1 )
lim - f 2‘6 po fldu= [oidu= [_dp.
]:

Then [¢_du = [ ¢idu, and consequently, the functions ¢_ and ¢, coincide in

“""T(x) = lim sup “D”T(m) for p a.e. xin

p-a.e. So, o = p_ =@, for pa.e. zin M, ie., liminf

M, then lim ‘@Em exists for p a.e. x in M, define ¢(z) := lim “’”T(z). This completes the
proof of corollary.
[

Now, we are going to introduce a version of item (i) of Corollary for contin-
uous flow on compact metric spaces. Let X : M x R — M be a continuous flow, and
M to be a compact metric space. Consider X; : M — M given by X;(x) = X (¢,z), and
ft + M — M defined by f; = X;. Let ¢ : M — R be a bounded measurable function, we
consider the following objects.

0. (y) = liigiogf L "o fiy)dt for each y € M;

Erf={yeM:+ [ po fi(y)dt < p._(y)+e forsomene{l, - k}}.

Given x € M, we denote the Dirac measure of point = by J,.
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Corollary 2.9. Let ¢ : M — R be a bounded measurable function, and fix x € M. If for
any € > 0 there exist t. € R and k. € N satisfying that 0,(f—_;(E.")) = 1 for j > t. and
. T T .

j €N, then the limit Zlggo%fo o fy(x)dt exists.

If ¢ is a continuous function, we obtain an interesting criterion to provide the

existence of Birkhoff’s limit as follows.

Theorem E. Suppose that M is a compact metric space, ¢ : M — R is a continuous
function, and fir v € M. If limsup = [*po fi(y,)dt < limninf L[ po flx)dt for ally, €
w(z), then for any e > 0 therenexz'st t. € R and k. € N satisfying that 0.(f_;(E.”)) =1
for 7 >t. and 5 € N. In particular, the limit Tlgrolo % fOT @ o fiy(x)dt exists.

Before we give our examples, we introduce some definition and result. We say
that x € M is a 2d-point if for any y, € w(z) we have that w(y,) is a fixed point (i.e.,
there exists ¢ € M such that w(y,) = {¢} and f;(q) = ¢ for all ¢ € R). Define the fixed
point under X by Fix X = {q € M : ¢ is a fixed point}.

Let M be a compact metric space M, and ¢ : M — R be a continuous function.
Recall that if p,q € M and w(p) = {¢} then jlglgo T fOT o fi(p)dt = ¢(q). This allows us

to consider the next result.

Corollary 2.10. Suppose that M is a compact metric space, p : M — R is a continuous
function, and take a 2d-point x € M. Suppose that ¢ satisfies that Y| @)nrixx = min .
Then for any € > 0 there exist t. € R and k. € N satisfying that 6,(f_;(E.")) = 1 for
j >t. and j € N. In particular, the limit 711_{1;0 :lp fOTgp o fy(x)dt exists.

Example 2.11. In the ezample by Bowen (the compact subset of R? denoted by Eg),
if (fi(x))i>o converges to the cycle, and ¢ is a continuous function on the plane, taking

different values in the saddle points A and B, the time average
. T
Jim £ [0 fulx)dt

does not exist. This means that in this ezample there is an open set of initial states such
that the corresponding orbits define non-stationary time series (whenever one uses an

observable which has a different values in two saddle points).
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Figure 1: Phase portrait of the example by Bowen.

We denote, for the example of Bowen given in figure 1, the expanding and con-
tracting eigenvalues of the linearized vector field in A by oy and a_, and in B by B,
and B_. We recall that the saddle points are denoted by A and B. The condition on the
ergenvalues which makes the cycle attracting is that the contracting eigenvalues dominate:
a_f- > ayfy.

The modolus associated with the upper, respectively lower, saddle connection s

denoted by A, respectively o. They are defined by

A=a_ /By and o = B_/ay,

their values are positive and their products is bigger than 1, assuming the cycle
to be attracting. Gaunersdorfer([31], 1992) and Takens ([68],1994) proved the following.

Theorem 2.12. If ¢ is a continuous function on R? with ¢(A) > ¢(B), and (fi(x))i>o

15 an orbit converging to the cycle, then we have for the partial averares of p:

1 [T o 1
it - dt — A B
l?fipT/o 00 et = T p(A) + ——¢(B)
liminfl/T o fi( )dzf—L (B)+L (A)
Toe T Jy ©0/N T N7 T+ A"

Here, Corollary provides some information about the existence of Birkhoff’s

Limit if we take a continuous function as follows.

Corollary 2.13. Suppose that ¢ : Eg — R is a continuous function with ¢(A) = p(B) =
min ¢, and (fi(x))i>0 is an orbit converging to the cycle. Then for any € > 0 there exist
t. € R and k. € N satisfying that 6,(f—;(E.")) = 1 for j > t. and j € N. In particular,

the limit lim T fOT @ o fi(z)dt exists.
—00

Remark 2.14. This example also shows that for any x € Eg\{A, B} such that (fi(x))i>0
18 an orbit converging to the cycle the Dirac measure of point x, ., is not an invariant
measure (since x is not a fized point under X ), but this measure satisfies that for any
e > 0 there exist t. € R and k. € N satisfying that 6,(f_;(E.”)) =1 for j > t. and j € N.

2.2 Continuous flow on compact metric spaces

Now, we are going to provide a version of item (iz) of Corollary [2.6|for continuous

flow on compact metric space. Let X : M x R — M be a continuous flow, and M to be a
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compact metric space. Consider X; : M — M given by X;(z) = X (¢,z), and f, : M — M
defined by f; = X;.

We say that a measure p is invariant under flow (f;)er if p(F) = p(f-+(E)) for
any mensurable set F/ and for all £ € R. Note that p is an invariant measure under flow
if, and only if, [pdu = [ o fidu for all ¢ : M — R p-integrable and for all ¢ € R.

A fixed point of (f;)ier is a point ¢ € M such that f;(¢) = ¢ for all t € R.

Lemma 2.15. Fix x € M. Then the Dirac measure of point x, d,, is an invariant

measure if, and only if, x is a fized point.

Proof. Suppose that the Dirac measure of point x, d,, is an invariant measure. Then
0. (f_i{z}) = 0,x = 1 for all t € R, this implies that J,(f_{z}) = 1, and then z € f_,{z}
for all t € R, so fi(x) =z for all t € R. O

Let ¢ : M — R be a bounded measurable function, we consider the following
objects.

@i (y) = liminf £ [“@o fi(y)dt for each y € M;

B ={y eanoz L[ po fily)dt < p._(y) +e for some n € {1,---,k}}.

Note that M = Ej E,.° for each ¢ > 0. Given z € M, we denote the Dirac

k=1
measure of point x by d,. We observe the following result.

Lemma 2.16. If 6, is an invariant measure for some x € M, then for any € > 0 there
evist t. € R and k. € N satisfying that 0,(f_;(E.")) =1 for j > t. and j € N.

Proof. Fix ¢ > 0. Using that M = |J E°, there exists k. € N such that 2 € E". But
k=1

fi(z) = x for all t € R, and we are done. O

The following is a version of item (i7) of Corollary [2.6|for flows on compact metric

spaces.

Corollary 2.17. Let ¢ : M — R be a bounded measurable function, and fiv x € M. If
for any e > 0 there exist t. € R and k. € N satisfying that 0,(f—;(E,")) =1 for j > t.
and j € N, then the limit 71im %IOT o fi(z)dt erists.

—00

Proof. Let ¢ : M — R be a bounded function, define ¢ : M — R by ¥(y) = fol o fi(y)dt
for each y € M. Fix T' > 0, and note that

7]-1 .
Flo wofilwdt =1 X [T o flv)dt+ 1 gy oo fily)at
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Considering t = j + s for s € [0, 1], we see that

j+1 1
/ po fily)dt = /SOOfs(ij)ds
J 0
1 /7 (T]-1 T
7| eo it = —Z/ oo filtwt+ g [ oo niw

=

1 T T
— o fily)dt = = i — o fi(y)d 2.2
T/o o fily)dt Z@/} fily /]so fily)dt (2:2)

Take T' = n, by equation Z Yo fily) == [, ¢o fily

Observe that ¢ is a bounded functlon since ¢ is a bounded function. Recall that

n—1
V_(y) = limninf% Zo Yo fi(y) for y € M. Now, for each £ > 0 and k € N define
J:

n—1
={yeM:1 Z{)wofj(y) <v_(y)+e¢ for some n € {1,---  k}}.
j:
={ye M: L[ pofily)dt < e+liminfL ["¢o fi(y)dt for some n €
{1,-- ,k}}, so Bf = E;".

By hypothesis, there exist t. € R and k. € N satisfying that f;(z) € E.” for j > t.
(T]- [T]-1

and j € N. Then, by Corollary the limit hm % Z Yo fi(y) = lim % Z Vo fi(y)
T—o0

exists since
[T]—1 [T]—1 1

%Zalpofj(y):m Zoibofj(y): Z¢Ofﬂ()

T 7

for some fr € (0,1] such that T' = [T] + Br.
Note that

T[T T[]
\—/ oo fily dt|-|—/ o S fu( dt|<1/ 00 flfiry(w))ldt <
/ o st < 120 o

as T tends to infinity, and we are done. O]

If ¢ is a continuous function, we obtain an interesting criterion to provide the

existence of Birkhoff’s limit as follows.
Theorem F. Suppose that M is a compact metric space, ¢ : M — R is a continuous
function, and fix x € M. If limsup = [* o fi(y,)dt <liminf L [*po fi(z)dt for all y, €
w(x), then for any € > 0 there exist t. € R and k. € N satisfying that 6,(f—;(E.")) =1
for j >t. and j € N. In particular, the limit Tlim %fOT @ o fi(x)dt exists.

—00



CHAPTER 2. KINGMAN-LIKE THEOREM 35

Proof. Suppose that M is a compact metric space, and ¢ : M — R is a continuous
function (so ¢ is a bounded function). Take x € M, and suppose, by contradiction, that
there exists € > 0 such that for any £ € N, and for any ¢ € R there exists j, € N with
Jk > t such that f; (z) ¢ E°.

In particular, for each k € N, taking ¢t = k, there exists j, > k and j, € N such
that f;, (z) ¢ E;°. This implies that j, — +00 as k tends to infinity.

By compactness of M, there exists a subsequence of (fj, (z))ren that converges

to some y, € w(z), suppose that
fjks (l’) s Yz (23)

where ji, tends to infinity as s tends to infinity, f;, (=) ¢ E;° and ji, > k.. Without loss
of generality, we may assume that ky < ky < -+ < kg < kgy1---
We recall that E;° = {y € M : L ["po fi(y)dt < ¢, _(y) + ¢ for some n €

(Lo k)
For each s € N, by definition of £,
L[ o fil fi, (@)dt > pu _(fi, (x) +¢
for any n € {1,---, k.} since f;, () & E},”.
Recall that ¢, _(2) = hgi{gf%fo"go o fi(z)dt = ligi;}lf%;i:d) o fi(z) = ¥_(2),
where 1 is a bounded function. Then ¢_(f;(2)) = ¥_(2) for all j > 0 and z € M, so

0u—(fjz) = @u_(2) for all j > 0.
Using that kl < /{32 < el < ks < k5+1---, we see that k;l c {]_, 7ks} for any
s > 1, and then

& I3t @0 fil i (2))dt > n _(f(x)) +€ = ¢u_(x) +¢.
Recall that * Z Yo fily) =1 fo o fi(y)dt where ¥(y fo o fi(y)dt for each
s

y € M. This implies that - 0 Yoo fi(y)dt In Z Yo f;(y) for each y € M.

Jf

Lemma 2.18. ¢ : M — R is uniformly continuous.

Proof. Take yy,2z € M and v > 0. By compactness, ¢ is uniformly continuous, then there
exists & > 0 such that for every p,q € M with d(p, q) < &, we have that |p(p) — ¢(q)| < 7.
Note that

(=) — (o) = | / oo fulz)di - / oo filyo)dt] = | / 00 filz) — o fulyo)dt] <
/0 0o filz) — po filyo)ldr.
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Now, ([0,1] x M, D) is a compact metric space where for any (t, 2), (s, w) € [0, 1] x
M we define D((t, 2), (s,w)) := |t — 5| + d(z,w), and Xjo1) = X|jo1)xm : [0, 1] x M — M
is a continuous function, then Xy ) is uniformly continuous. Then there exists § > 0
such that for any (¢, 2), (s,w) € [0,1] x M that satisfies D((¢, z), (s, w)) < § we have that

d(X1(2), Xs(w)) = d(fi(2), fow) <&
So, for any yo,z € M such that d(yo,z) < ¢ we have that D((t,z2),(t,y0)) =
d(yo, 2z) < 6, and then d(X(z), Xi(v0)) = d(f(2), fr(y0)) < &, and we are done. O

ey —1
0 k—ll fokl o fi(-)dt = kil Z Yo f;(-) is a continuous function because it is a finite

sum of continuous functions. By contlnulty of - fo @ o fi(-)dt, we have that
k
= Jo o Sl @)t = 3 fy @ o filya)dt > (o) + e

So using that k1 < ko < -+ < kg < kgyq1---, we see that k, € {1,--- | k,} for any
s > { for each ¢ € N, and then

B @0 fulft (@)t = 5 [ 9o filya)dt > o (w) + e
This implies that k%g fok’“’ o fi(y,)dt > p. _(x) + ¢ for any £ € N, and then
lim sup % fon @ o fi(yz)dt 2 @i () + € > ¢, —(x) = liminf % fon po fi(x)dt

and we are done.

Here, we recall the following natural lemma.

Lemma 2.19. Suppose that M is a compact metric space, and ¢ : M — R is a continuous
function. If p,q € M and w(p) = {q} then Ylirn %fOT o fi(p)dt = ¢(q).
—00

Proof. First, note that

lim fi(p) = q.

t—+00

In fact, suppose that there exists € > 0 and (tx); such that ¢, — +oo as k tends to
infinity and d(f;,,q) > €. By compactness of M, there exists a subsequence of (f;, ) that
converges to some z € M. Without loss of generality, (f;, )r converges to z. Using the

continuity of metric, we obtain that

e < lim d(fy,,q) =d(z,q).
k—o0
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But z € w(p) = {q}, and then z = ¢. This proves that tEeroo fi(p) = q. This
implies that f;(q) = ¢ for any ¢t € R.

Define ¢ : M — R by ¥(y) = fol @ o fi(y)dt for each y € M. By Lemma , 0
is uniformly continuous, and then tLifrnoo Yo fi(p) = ¥(q).

(Take v > 0, there exists £ > 0 such that for all x,y € M with d(z,y) < & we
have that d(¢(x), ¥ (y)) < .

Using that tEeroo fi(p) = q, we have that there exists @ > 0 such that for any
t > o we have that |fi(p) —¢| <¢&.

Then for any ¢ > « we have that d(¢¥(f:(p)),¥(q)) < 7.)

n—1
In particular, lim o f,(p) = ¥(g), and then lim £ 3= ¢ o f;(p) = ¥(q).
n——+00o n—-+o0o =0
Fix T' > 0, and note that
1T 1 ! J+1 1T
7 Jo wo fily)dt = ;} o fily)dt + 7 [0 fily)dt
]:

Considering t = j + s for s € [0, 1], we see that

j+1 1
/ wo fily)dt = / wo fi(fjy)ds
1 0
[T]-1

J

1 g 1 1 1 T

_ Ot d = _— ot ] d — ot d
T/O @ o fuly)dt T;/ﬁw f(fy)t+T/msD fely)dt

1 (7 1[T]—1 1 [T
7| eonmar - 72 el g [ ot

[

Before we give our examples, we introduce some definition and result. We say
that € M is a 2d-point if for any y, € w(x) we have that w(y,) is a fixed point (i.e.,
there exists ¢ € M such that w(y,) = {q} and fi(q) = ¢ for all ¢ € R). Define the fixed
point under X by Fix X = {q € M : ¢ is a fixed point}.

Corollary 2.20. Suppose that M is a compact metric space, @ : M — R is a continuous
function, and take a 2d-point x € M. Suppose that ¢ satisfies that Y|, (@)nrixx = min .
Then for any € > 0 there exist t. € R and k. € N satisfying that 6,(f_;(E.")) = 1 for
j >t and j € N. In particular, the limit 711_{1;0 :lp fOTgo o fy(x)dt exists.

Proof. For each y, € w(z), there exists a fixed point ¢,, such that w(y,) = {g,.}, so
¢y, € w(zr) NFix X, and then ¢(g,,) = min ¢.
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. T .
Now, by Lemma [2.19] 711_1)1;) % Jo wo filyz)dt = ¢(gy,) = ming.
Note that min ¢ < lin}Iinf L [ o fi(x)dt, and then, by Theorem we are done.

2.3 Proof of Corollary

Let (M, A) be a measurable space for M compact metric space, and f: M — M
be a measurable transformation, ¢ : M — R be a bounded measurable function.

We are going to show that if one of the following conditions is true

(1) l1m lim sup— Z 5 (f~4(M \ Ek%)) = 0 for each ¢ € N\ {0} where ¢, the Dirac

measure of pomt 3: e M,

(i) Suppose that there exists z € M such that for any € > 0 there exist j., k. € N
satisfying that f/z € E}_for j > j.;

(737) If M is a compact metric space, and there exists z € M such that for any ¢ > 0

there exists k. € N satisfying that (O*x)’ is contained in the interior of Ej_;

(17v) Suppose that M is a compact metric space, f, ¢, p_ are continuous functions, and

(Otz) is a finite set for some x € M.

n—oo

Then the limit lim & z_: fI(z) exists.

Proof of Corollary[2.6. Fix ¢ : M — R, and consider (¢,), to be the additive sequence
n—1

for f given by ¢, = > ¢ o f/ for each n in N. Consider ¢_ : M — R given by
=0

n—1
¢_(w) =liminf £ 3~ po fi(w) for w € M.

For each 5; 0 fixed and k € N we define

={weM:pjw) <jle_(w)+e¢) for some j € {1,...,k}}.

Consider the measure u = d, where ¢, is the Dirac measure of point x.

To apply Corollary @ it is sufficient to prove that ¢ satisfies condition (b), i.e.,
131{20 limnsup 1 ni_ioldx(f_i(M \ Ek%)) =0 for each £ € N\ {0}.

(73) If x is an eventually periodic point, there is nothing to show. Suppose that x
is not an eventually periodic point. Fixed e > 0, there exist j., k. € N such that fiz € E}.
for 7 > j.. This implies that (OTx) N M \ Ej is a finite set for k > k..

Claim 1: {j e N:xz € f/(M\ Ef)} is a finite set.
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Suppose the claim would be false. Then we could find a sequence (js)sen such
that fisx € M\ Ef for all s € N. So fi(z) € (OTz) N M \ Ef for all s € N. Then for
s > #((OTz) N M \ Ef) there exists t € N such that t < s and f/*z = fi*z. Using that =
is not an eventually periodic point, we are done.

By Claim 1, there exists jo € N such that for j > j, we must have the following
x €M\ f(M\ ES), and then u(f~(M \ E)) =0 for j > jo.

Using that Ej C Ej ., we see that u(f~7/(M \ E%)) = 0 for all k> k. and j > jo.

Now, take k£ such that k+1> Jo - It easy to see that there exists n € N such
that n > jo + k+ 1, and note that

E WO B = 8 w0 B+ 3 i )

Jj=0

Using that p(f~7 (M \ EZ )) = 0 for all k> k. and j > jo,

k- Jo—1 . ‘
<1’ Z PN ED) = 3 X w7 (MNE) < 3
=0 =
and then
n—k—1 ) _
limsup L > p(f7H M\ ES)) =0 for k +1 > jo,
n i=0
This implies that

—k—

hm lim sup Z M\ E)) =0, (2.4)

this completes the proof of item (ii).

(731) Suppose that M is a compact metric space. For any € > 0 there exists
k. € N such that w({x}, f) is contained in the interior of £} _.

We are going to verify condition (i7).

Claim 2: Consider k > k.. Then (Otz) N M \ Ef is a finite set.

Suppose, contrary to our claim, that there exists a sequence {ns}sen such that
frx ¢ Ef. By compactness of M, there exists a subsequence of sequence (f™x)sen
that converges to some p € M. Without loss generality, the sequence converges to p €
w({z}, f), so p is an element of interior of E}_, i.e., p € int £} . Using that int E}_is an
open set, there exists n, > 0 such that for n, > n, we have that f"x € int £ . But
int B C Ej_ C Ej and f™x ¢ I for all s € N, this contradiction concludes the proof of
the Claim 2, and we are done.

(iv) For each ¢ > 0 fixed and k € N we define

={weM: pjw) < jle_(w)+e¢) for some j € {1,...,k}}
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where EE C E;.
By continuity of f,p and ¢_, we see that EE is an open set of M. Using that

M= E’\,‘i and w({z}, f) is a finite set, there exists k. such that w({z}, f) C E,’Z By
keN
item (iii), we are done. This completes the proof of Corollary [2.6]

]

2.4 Proof of Theorem

Let (M, A, 1) be a measure space, f: M — M be a measurable function, u be a
finite measure. Suppose that (¢,), is a subadditive sequence for f such that ¢; < 3 for
some [ € R. Without loss of generality, we assume that g > 0.

Under the conditions stated above, and supposing that the following conditions

are satisfied:

(a) for all j € N we have that p_(f7(z)) = ¢_(z) p—almost everywhere z in M;
n—k—1 1
(b) klim limsupt > u(f7 (M \ Ef)) =0 for each £ € N\ {0}.
—00 n i=0
Then Theorem (C| ensures that inf & [ ¢,du = [ ¢_du. Moreover, if there exists
7 > 0 such that for all n > 0, £ > —v then

Jo—dp=inf 3 [ondp=1lm [ ndp.

The proof will be divided into two steps. In first step, we show the particular
version of Theorem |C| when the sequence (%), is uniformly bounded from below, i.e.,
there exists a > 0 such that £* > —a for all n € N. In the second step, using a truncation
argument we conclude from step 1 the proof of the Theorem.

We begin by proving the following theorem.

Theorem 2.21. Let (M, A, p) be a measure space, f : M — M be a measurable function,
w be a finite measure. Suppose that (), is a subadditive sequence for f such that p; <
for some B > 0. If the following conditions are satisfied:

(a) for all j € N we have that p_(f’(x)) = ¢_(x) pu—almost everywhere x in M;

n—k—1 1
() klim limsup< > p(f~{(M\ Ef)) =0 for each ¢ € N\ {0};
— 00 n i=0

(d) there exists v > 0 such that for all n >0, £ > —~.

Then lim % [ ¢ndp = inf % [ ondp = [ o_du.
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Proof of Theorem [2.21. First, without loss of generality, we consider § = . Using that

m—1

(¢on)n is a subadditive sequence for f, we obtain that ¢, < Z 10 f7 for all m € N, but

o1 < B,s0 = <2 < B and - < - fgpmdu < p for all m in N. In particular, ¢ is
integrable. Define ¢_ : M — [—03,5] by p_(z) = hmmf “0” . So B> ¢ (x) > —p for
all x in M, and then ¢_ is integrable.

Fixed € > 0, define for each k € N

El . ={x e M:¢;jx) <jlp_(z) +¢) for some j € {1,...,k}}

It is clear that Ef C E; , for all k. Note that by definition of ¢_, we have that
M = |J E;. Define ¢ (z) = p_(x) + e if x € Ef, and ¢ (z) = ¢1(x) if ¢ Ef. Suppose
that xk¢ E%, then ¢y (z) = ¢1(z), but by Ef’s definition we have that ¢1(z) > ¢_(z) +¢.
It imples that ¢y, > ¢p_ + ¢ in M. Now, using that M = UEZ, we see that hm U(x) =
@_(x) + ¢ for each x € M.

Now, let L be a fixed and arbitrary point of accumulation of sequence (% J ndpp)n,
so there exists (n;)en such that tliglo n% [ ¢n,dp = L and L € [—, B]. The basic idea of the
proof is to verify that [¢_dpy < L < }}1_}1210 J Wrdp. Later, an easy computation will show
that [¢_du = L. Observing that L is an arbitrary point of accumulation of sequence
(% [ ¢ndpt)n, we conclude that this sequence converges to [ ¢_dp. This will end the proof
of Theorem 2.21]

From the above we are going to show that [¢_dp < L and L < ;}LIEof¢de
First, we observe that [ ¢_du < L. By hypothesis, there exists 3 > 0 such that £ > —f
for all n. We have that 2* > —f. Define f,(r) := £*(x) + # > 0 and note that

YA 4
(o) = timind(£2 () 4 8) = o (a) + .
By Fatou’s Lemma, we have that f(x) = ¢_(x) + § is an integrable funcion, and

/liminf(fn)d,u < liminf/fndu < liminf/fntdu
/go_(x) + Bdp < liminf/(flnt + B)dp
ne t

Then

/gp_ (x)dp < liminf d — lim [ £ du = L.

/gp_(x)du < L. (2.5)
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Now, we show that L < klim [ rdp + 26Rh(€). We need of the following result.
—00

Lemma 2.22. For eachn >k > 1 and p-a.e. x € M,
n—k—1 ] n—1 )
(1) < 20 r(f(2)) + kaax{% p1}(f(z))
Proof. Use the subadditivity of sequence (¢, )n, and the fact that ¢_ is invariant in orbit

of x in p-a.e., see Lemma 1 in [13]. O

Note that 1), is integrable. We have that —f < £= for all n, so — < ¢_ and
—B<¢1. Now, =< =B +¢e < p_+e¢, then =3 < 9.

Note that —8 < ¢, < max{yp_+¢, ¢} < max{yp_+e¢, 5}, where max{p_+e¢, 5}
is integrable, so 1 is integrable. Note that

max{i1, Ux}of' < max{pr, ¢ +e, fyof = max{p_+e, fyof = max{p_+e, 5}
because ¢_ is invariant in orbit of x in p-a.e.

But max{p_ + ¢, 3} is integrable, then max{¢y, 1} o f* is integrable too for all
i in N. By Lemma [2.22]

> entwn< > [ontrnin / max{ye, o } (@) (20
Define ¢ = max{0, ¢}, and note that
£ Jmax{in ) () Z_jkfmax{so el HI )
Define S ={z € M : p_(z) +e > ¢ (x)}, s
5 Juax(e- +eol = S yo- et et o Fil

Using that —3 < ¢_ and [¢_du < L € [-f3,00), then [ p_du < co. So,

n—1
;Zk[fs o_ +edu + fM\S o o fldu] < k[[gp— +edp+ f],

and

k
L Z [ max{ e £ @) < S o+ edut ). 2.7
i=n—~k S
Now, we are going to show that

n—k—1 n—k—-1

LTS a)di < (1= 8 [ nd 28 z u(f-i(M\ E2)
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Define F, := f~*(E%) for each i € {0,....,n — k — 1}, so
Jon(fi@)dn = [p, o-(f(2) + edp + [y, Ur(f(@))dp. Using that o_ is

invariant in orbit of x in p-a.e., we have that

fwk(fl<x))dﬂ - szk 90—(1‘) + 6d,LL + fM\Fz‘,k ¢k(fl($))dﬂ
But ¢_(z) + ¢ <9y in M, so

/kaf"dué/ ¢kdﬂ+/ Yo fldu =
Fi M\F;
/ Yrdp + / Yrdp — / Yrdp + / Yo fldu =
Fi M\F; M\F; 1, M\F;
/wkdlﬁ + / Yo fldu+ / —rdp =
M\Fi,k M\Fi,k
/wkdu + / p10 fldu+ / —dp <
M\F, 1 M\F, 1

/wkdw/ 5du+/ By <
M\F; i, M\F;

/wkdu +2Bu(M \ Fi ).

since —f8 < ¢, < max{p_ +¢,5}. Then

J e o fldp < [rdp+28pu(M \ Fy),

we obtain that

1 n—k—1

Jonofans=2) [dn28- 0 S wM\Fa) (28)
1=0

n <
=0
By (2.6), (2.7)), and the inequality above we have that

n—k—1

L on(@)dp < E(fyo- +edu+B)+ (1 =) [rdp+25- 1 > M\ Fi).

=0

Passing lim sup in the previous inequality
n

1 1
L =limsup — [ ¢p,(z)dp < limsup — / on(@)dp <
N Uz n n

n—k—1

[+ 251msup S~ (O ED),

1=0

By equation ([2.5)),
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n—k—1

: 1 —1 3
[e-tu<r< [vdus28tmmp S a0 ED)
n i=0
Taking ¢ = § for £ € N\ {0},
. L 1! » 1
[o-tu<r< tim [ 25 fim imsup > us O\ ED)

By hypothesis (b),

/@—(x)d,u <L < lim /%du-
k—oo

Lemma 2.23. [p_du=1L
o 1

Proof. Using that M = |J EJ, we obtain that ¢, —4 ¢_ + 7 in each point. But
k=1

—6 < ¢ <max{p_ + 7,07 },

we define g := max{¢_+7, 8}. So g is integrable and || < g. By dominated convergence

theorem, we have that
liinfwkd,u = [p_+ %d,u.
We obtain that
Jo-dp < L <lim [dydp = [-dp+ 3.

Making ¢ tend to infinity,

Jo_dp <L < [o_du
O

Since [ ¢_dp = L for all accumulation point L of the sequence (% [ ndp)y,, we
have that lim + [ ¢,dp = inf L [,dp = [¢_dp. This concludes the proof of Theorem

2211
[l

Now, we are going to use a truncation argument to finish the proof of Theorem
. For each k in N define of = max{y,, —kn} and ¢* = max{p_, —k}. For each ¢ > 0
fixed and r € N we define G = {z € M : §(z) < j(¢" (z) + ) for some j € {1,...,7}}.

To finish we need of the following Lemma.
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Lemma 2.24. The following conditions are satisfied:

(i) ("), is a subadditive sequence for any k fized.

(i) o is upper bounded for any k fized.
(vi1) (‘p—f)n is uniformly bounded by below for any k fized.
(iv) " (r) = liminf “0" ) for any k fized.

(v) For each j € N we have that o* (f(x )) =% (2) p—a.e. z in M where o* : M —
[—00, 00] is given by ©F (z) = hm inf “’" ) for any k fized.

(vi) Ef C GE for every e >0 and r € N.

(vii) Fized n, (¢F)x is a nonincreasing monotonic sequence.

(viti) Fized n, li]{;n ©oF(x) = n(x) for all x in M, (then ©F \u ¢n).
(iz) (o) is a nonincreasing monotonic sequence.
(x) liin ©* (x) = o_(x) for all x in M, (then ©* \u ©_).

(x1) (¢*)T(x) = ()" (x) for all x in M and for all k in N.

[ |
In section [2.5, after the end of this proof, we present the demonstration of this

Lemma.
By (vi), E5 C G¢ for every € > 0 and r € N. In particular, f~/(M \ G%) C
JTHM \ E%) for all i > 0. Note that

u(f~(M\ G2)) < p(f~(M\ E2)), and then

n—r—1 n—r—1

lim hmsup— Z u(M\f~(G ))< hm hmsup— ST u(M\fY(E?)). There-

r—+00 i=0

fore for each k we have that the sequence (gpn)n Satlsﬁes the hypothesis of Theorem m,

SO
k k
/hmmf #n( )d,u /cpkd,u:lim/&d,u:inf/&d,u. (2.9)
n n n n

We claim that
ir’;f/goﬁd,u: /gpnd,u. (2.10)

To see this recall that ¢f . ¢, with ©f = max{y,, —kn}, so ¢. > ©* for
all k. Consider v, = oL — ©F > 0, and note that v, = oL — ©F < pl — ATl = ~, ).
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Thus (1) is nondecreasing monotonic sequence and v, ' ©: — ¢, , and by monotone
convergence theorem, [} —@,dp= [ klim Yedp = klim [ wdp = klirn [ ot — @kdu, and
—00 —00 —00
then [ ,dp = klim fgprd,u and klim [ @kdp = infy, [ oEdu
—00 —00

Similarly, using monotone convergence theorem,

irk%f/gplidp: /go_dp (2.11)

By (2.9), (2.10) and (2.11)), we have that

Jp_dp = ir’;f(f erdp) = irk%f(inff %ﬁdu) = inf %(Hklff hdp) = inf ([ pndp)

Then

1
/gp_d,u = inf — /gpndu. (2.12)
non
This concludes the proof of Theorem [C]

2.4.1 Proof of remark 2.2

We are going to show that if [ ¢_du = —ocor f < 0then [¢_du=infL [@,du=
lim% [ endp.

Suppose that [ p_du = inf%fgpndu = —o0, then there exists a subsequence
(%f(pnkdu)keN such that ]}Lrgloéf@nkdu = —o0. Recall that (¢,), is a subadditive

m—1

sequence for f, so ¢, < > ¢y 0 f7 for all m € N, but ¢; < 3, and then £m < 3 for all
=0
m € N.
Let N be an arbitrary natural number, there exists a number s = s(N) > 0 such

that 8 — sN < —N. There exists ky > 0 such that for k > kg, we have that

1
—/gpnkdu < —sN. (2.13)
N

Let n > ny,, so n = ng, +r with r > 1. By subadditivity of sequence (¢, )m,

On = Pringy < Py, +@r 0 10
1 1 1

< +1 fnk0<—1 +1 B
—¥n = “Pring, = " Fn —®r 0 > n =T
n T g Prtnee = e TP nkogo )

Note that %r <1,
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1 1 1
—/wndu < —/sonkodu+—rﬁ
n Ny n

1
—/gpndug—sN+ﬂ<—N
n

so for n > ny,, we obtain that + [ ,du < —N. This shows that lim * [ ¢,du =

Now, suppose that 5 < 0. We are going to show that [¢_du = inf 1 [¢,du =
lim%f@ndu. !
' If inf 2 [p,dp = [¢_du = —oo there is nothing to show. Suppose that g < 0
and i%f % frglond,u = [¢_du € R, then there exists a subsequence (n—lk [ @n,dpt)ren such
that klggoi [ ondp = [o_dpand 0 <+ [@udu — [p_dp for all n € N. Recall that

m—1

(©n)n is a subadditive sequence for f, so ¢, < > @10 f7 for all m € N, but ¢; < 3, and
=0

then 2= < 3 for all m € N.

Let € > 0, there exists ky > 0 such that for k > ko, we have that

1
—/cpnkd,u—/go_d,u < e. (2.14)
g

Let n > ny,, so n = ng, +r with » > 1. By subadditivity of sequence (¢, )m,

Pn = @r+nk0 < (Pnko + ¢ © fnko

1 1 1 1 - 1 1
—Pn = —Priny, < ~—Prg, + —ppo fo < P, +—rp3
n n n n Ny n

Note that %r <1,

1 1 1
—/wndu—/w—du < —/cpnkodwr—rﬁ—/so—du
n nko n

1 1
—/sondu—/wdqu—rﬂéaJrﬁge
n n

so for n > ny,, we obtain that * [¢,du — [@_du < e. This shows that
lim+ [ @,dp = [¢_du, and we are done.
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2.5 Proof of Lemma [2.24]

We are going to verify a sequence of technical results that were stated by Lemma
2.24 First, recall that ¢* = max{p,, —kn}.
(i) (¢F), is a subadditive sequence for any k fixed.

We must to show that ¢f (z) < ¢k (z) + ¢F, o f"(x). We have to consider the
following cases.

If of, (z) = —k(n+m) then ¢* . (z) = —k(n+m) = —kn — km < oF(z) +
o (f"2)-

If o (7)) = nim(@) then ©F | (2) = Poim(@) < @a(@) + o f"(2) < @h(2) +
om0 [(2).

This proves the item ().
(ii) ¥ is upper bounded for any k fixed.

Just observe that ¥ = max{yp;, —k} < 8.
(ui1) (%)n is uniformly bounded by below for any k fixed.

Note that “’]’i = 1<pr = max{ip,, —k} > —k.
wn

(iv) " (z) = hrn inf £29) for any k fixed.
It follows frorn an easy computation. In fact,

lim inf @”n = lim inf w = lim inf max{£*= en(®) ) =

= max{hmlnf en@) _pd — max{p_(z), —k} =: ¢* (z).
(v) For each j € N we have that ¢* (ff( ) = ¢*(x) p—ae xin M where @* : M —
[—00, o0] is given by ©F (z) = hrn inf ‘p" ) for any k fixed.

The proof is straightforward frorn condition (a). So,

% (r) = max{p_(x), -k} = max{p_(fix),—k} = ¢*(f/z) for all j € N since
(a) holds.
(vi) EZ C G5 for every e > 0 and r € N. Recall that G = {z € M : ¢}(z) < j(¢* (z)+¢)
for some j € {1,...,r}}; and Ef, ={z € M : ¢;(z) < j(p_(z)+¢) for some j € {1,....k}}.

To see this take z € EZ, so ¢,(z) < j(p_(x) + ¢) for some j € {1,...,k}. The
following two cases completes the proof of item (vi).

Case @h(x) = ¢3(x), then Wh(z) = ¢;(x) < j(p_(2) +2) < (o (2) + ) since
©* (r) = max{p_(x),—k}, so x € GE.

Case ¢¥(x) = —k, we have that ¢¥(z) = —k < ¢ (z) < ¢* (x) + ¢ then z € G
with j = 1.
(vii) Fixed n, (¢¥); is a nonincreasing monotonic sequence.

We are going to show that ¢F > i+l

(Case I): —kn < pu(z) = ¢j(2)

Now, —n(k + 1) = —nk —n < —kn < @, (x) = " 1(x). So p"(z) = ok (z).
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(Case II): p,(z) < —kn = ()

Subcase I1.1: —(k + 1)n < ¢, (x) = o+ (2)

Then @)™ (z) = pn(2) < —kn = @ (2). So, i (z) < gp(@).

Subcase 11.2: ¢, () < —(k + 1)n = @ (z)

We have that o1 (x) = —(k + 1)n < —kn = ¢F(x). So, ¥ (z) < ok (z).

The item (vi?) is proved.
(viii) Fixed n, we have that the 1i]£n ok (x) = pu(x) for all x in M, (then ©f \ ©,).

Fix x in M, given € > 0, there exists ky € N such that for £ > ky we have that
¢n(r) > —kn. So for k > kg one has ¢ (x) = ¢, ().

For k > ko we have that % (z) — ¢, ()| = 0 < &, this concludes the verification
of (viii).
(iz) (¢®)x is a nonincreasing monotonic sequence.

We have that ¢ (z) = max{p_(z), —k}.

(Case I): @ () = ¢_(x) > —k

So —(k+1) < —k < ¢_(x) , and then " (z) = ¢_(z)(= p* (2)).

(Case II): o* (z) = =k > ¢_(z)

(Subcase I1.1) "™ (z) = —(k + 1) > ¢_(2)

So !t l(z) = —(k+1) < —k = ¢ (2).

(Subcase 11.2) " (2) = p_(2) > —(k + 1)

Then *(z) = ¢_(2) < —k = ¢" (2).

The item (ix) is proved
(x) lilgn " (r) = p_(z) for all z in M, (and then ¢* N4 o).

(Case I): p_(z) > —o0

Let € > 0, then there exists ko in N such that ¢p_(x) > —kq. For k > ko we have
that ©* (v) = o_(x) > —ko > —k.

For k > ko, we see that |¢* (v) — p_(2)] =0 < .

(Case II): p_(z) = —o0

Thus " (r) = —k and limy ©* (2) = limy, —k = —00 = ¢_(x).

The item (z) is proved.
(zi) (¢" ) (x) = (p_)"(z) for all z in M and for all k in N.

We have that ©* = max{¢_, =k}, (" )" = max{¢*,0} and (¢_)* = max{p_,0}.

(Case T): ¢k () = ¢ (2)

But ()% (z) = max{¢* (z),0} = max{p_(2),0} = (p-)*(2).

(Case II): o* (z) = —k > o_(z) (s0 0 > p_(x))

But (¢%)*(2) = max{p® (v),0} = max{—k,0} = 0 = max{p_(z),0} = (¢-)*(2)

This completes the proof of item (z7), and we are done.



Chapter 3
Existence of invariant measures

One of the most celebrated results of invariant measure theory was proved by
Krylov and Bogolyubov [17] for compact metric space. Precisely, they showed that if
f: M — M is a continuous map, then f admits an invariant Borel probability measure
where M is a compact metric space. Since there exists an invariant measure we can apply
the Kingman Theorem (and so the Birkhoff Theorem) to study the statistical properties
of the system. Other fundamental results that hold in the context of finite invariant
measures are the Poincaré Recurrence Theorem and Kac’s Theorem.

With these theorems in mind, we give necessary conditions to guarantee the exis-
tence of invariant measures in locally compact and separable metric space for continuous
proper maps. Moreover, we use the Perron-Frobenius operator and the techniques de-
veloped here to obtain other criteria to guarantee the existence of invariant measures
for continuous maps (not necessarily a proper map) in locally compact separable metric
space.

The chapter is organized as follows: in Section we give the statements of
main results. In section [3.2], we provide some applications and examples for our results.
In Section [3.3] we state some auxiliary results needed to proof of Theorem [G]and Theorem
H] In Section 3.4 and [3.6 we present the proofs of Theorem [G] and Theorem [H|respectively.

3.1 Statements of main results of Chapter

Let M be a metric space, a map f: M — M is a proper map if the preimage of
every compact set in M is compact in M.

In what follows we consider X to be a locally compact separable metric space.
Let Cy(X,R) be the set of functions that vanishes at “infinity” given by

Co(X,R) =Co(X) ={p e C(X,R): {x € X : |p(x)| > e} is compact for all ¢ > 0}

20
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where C'(X,R) is the set of all continuous function from X to R. We denote the set of all
continuous functions ¢ : X — R with compact support by C.(X,R), or C.(X). Our result

allow us to obtain a characterization for the existence of invariant measures as follows.

Theorem G. Suppose that f : X — X is a continuous proper map on locally compact

separable metric space. Then the following conditions are equivalents.

(i) there exist p € Co(X;R) with 0 < ¢ <1 and o € X such that the following number
n—1
lim ;. 3= ¢ o fI(zo) > 0;
n =0
(ii) there exist p € Co(X;R) with 0 < ¢ <1 and zo € X such that the following number
n—1
liminf £ 3~ @o fi(zg) > 0;
(1ii) there exist a probability measure v on X and an observable ¢ € Cy(X,R) such that
n—1
liminf L [ po fidv > 0;
(1v) there ezists an invariant probability measure.

Our goal is to provide a natural way to obtain invariant measures for continuous
proper maps in this spaces. Moreover, our proof does not use the tightness property of

Prokhorov’s Theorem to obtain the convergence in the space of Borel finite measures.

Remark 3.1. Actually, Theorem [Gl holds for any measurable function f: X — X such
that po f € Co(X,R) for all ¢ € Co(X,R) where X is a locally compact separable metric

space. In Lemma |3.29, we see that continuous proper maps satisfy this condition.

Remark 3.2. Note that the following conditions are equivalents.

(1i1) there exist a probability measure v on X and an observable ¢ € Cy(X,R) such that
n—1

liminf L [ 3™ po fidv > 0;

n j=0

(13i") there exist a probability measure v on X and an observable ¥ € Co(X,R) such that
n—1 )

limsup = [ 3" ¥ o fidv <0.

Remark 3.3. Using Corollary[D} and Theorem[G|, we obtain that if there exist a probability
measure v on X and an observable ¢ in Co(X,R) such that ¢ satisfies hypothesis (b) and
[ @_dv # 0, then there exists an invariant probability measure, where (X,d) is a locally

compact separable metric space, and f : X — X is a continuous proper map.

Remark 3.4. Let (M, A, 1) be a measure metric space, f be a measurable transformation
where p is a finite measure (not necessarily an invariant measure under f). The system

(M, A, p, f) is said to be mixing if for any bounded measurable maps o, : M — R,
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one has lim [ o f"-du = [du [Ydu. For a continuous proper map f: X — X on
n—oo

locally compact separable metric space, we are able to show that if there exists a probability

measure 1 (not necessarily an invariant measure under f ) such that (X, A, f,n) is a mizing

system, then there exists an invariant probability measure. (See subsection|3.5.1].)

Remark 3.5. Since homeomorphisms are continuous proper maps, the conditions stated
by Theorem|[G| are also equivalents for homeomorphisms on locally compact separable met-

T1C Space.

Remark 3.6. Let X be a locally compact separable metric space and let p be a Borel
measure on X. We will say that p is arealike if p(z) = 0 for all x in X, u(U) > 0 for
all nonempty open subsets U of X, and u(K) is finite for all compact subsets K of X. In
|1, Baldwin provided a topological criterion that guarantees the existence of an arealike
imwvariant measure for a given fized homeomorphism of X.

The following example admits a unique invariant measure that is not arealike
measure. Consider the homeomorphism f : [0,+00) — [0,400) given by f(z) = 5, note

that [0,400) is a locally compact separable metric space.

We use the Perron-Frobenius operator and the techniques developed here in the
proof of the Theorem [G] to obtain other criteria to guarantee the existence of invariant
measures for locally compact separable metric space and continuous maps (not necessarily
a proper map).

Let f: X — X to be a continuous function. A bounded operator £ : Cy(X) —
Co(X) is called Perron-Frobenius-like operator for f if L£(g) > 0 whenever g > 0 for
g € Co(X), and L((g1 © f)g2) = 91L(g2) for all g1, g2 € Cp(X). (In Lemma [3.36, we show
that the Perron-Frobenius-like operator £ is well defined i.e., if f is a continuous function
and g1, g2 € Co(X) then (g1 f)g2 € Co(X)).

Theorem H. Suppose that f : X — X is a continuous function, and L : Co(X) — Co(X)
is a Perron-Frobenius-like operator. If |L| is an eigenvalue of L, then there exists an

mwvariant probability measure.

The important point to note here is the form of the boundedness of the Perron-
Frobenius-like operator is used to drop the proper condition of map of Theorem [G]

Our goal is to provide a relation between the existence of a Perron-Frobenius
operator and the existence of invariant measures for continuous maps on locally compact

separable metric spaces.
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3.2 Applications

The characterization for the existence of invariant measures, Theorem [G] allows

us to obtain the following consequences.

Example 3.7. Theorem [G implies the Theorem of Krylov and Bogolyubov for compact
metric space. In fact, suppose that M is a compact metric space, and f : M — M is a
continuous function. Since closed in compact is compact, we see that f is a proper map,
and all continuous function ¢ : M — R is a continuous function with compact support.
This implies that C(X,R) = Co(X,R). Taking ¢ = 1, the constant function, and any

non-null finite Borel measure p of M, by item (i) of Theorem@ we are done.

Example 3.8. Consider the homeomorphism f : (0,400) — (0,+00) given by f(x) = 3,
and note that M = (0,+00) is a locally compact and separable metric space. Then does
not exist an invariant measure, therefore, by Remarksm and. for any go G Co(M,R)

and for any v € M, we have that hmlnf L Z po fi(z) <0< hmsup Z o fi(x).

Now, for any ¢ € Co(M,R) with M = (0, +oo) we have that hII(l) gp( ) = 0 Observing
z—
that for all x € M, fi(x) goes to 0 as j tends to infinity, we see that lim ¢ o fI(x) = 0,
j—o00

n—1
and then lim 1 % @o fi(z) =0
n—oo ™ i

Example 3.9. Suppose that f : X — X is a continuous proper map on locally compact
separable metric space. If there exist v € X, ng in N and a compact set K contained in
X such that for n > ng, f"(x) € K then there exists an invariant probability measure.
In fact, suppose that there exist xo € X, ng in N and K compact set such that for
n > ng, f"(xg) € K. Without loss generality, f"(zo) € K for alln € N, since X is a
locally compact separable metric space. By Urysohn Lemma, Lemma there exists a
function ¢ € C.(X) such that 0 < p(y) <1 for ally € X, and p(z) =1 forallz € K,
then o(f"xo) =1 for alln € N. We obtain that 1 = ¢(xo) > @(f"xo) =1 for alln € N,

50
L n—1 ) L= )
S po fl(mg) = ;E o f(xo) = 1.
i=0 =0 " j=0
Using Theorem [Gl, there exists an invariant measure, and we are done.

In view of Example , we say that a system (X, f) is a non-trivial example if X
is a locally compact separable metric space and f : X — X is a continuous proper map
that admits an invariant finite measure such that for any compact set K and x € X there
exists (K, r) = n € N such that f"(z) ¢ K. The next result shows that if X = R, it is

not possible.
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Corollary 3.10. Suppose that f : R — R is a continuous proper map. Then the following

conditions are equivalents.

(1) there exist x € R, ng in N and a compact set K contained in R such that for n > ng,

f(z) e K

(13) there exists an invariant probability measure.

Proof. By Example we have that (i) implies (7). So we are reduced to proving that
(1) implies (7).
Suppose that there exists an invariant probability measure. By Theorem [G] there

exist p € C.(R;R) with 0 < ¢ <1 and 2y € X such that hmlnf— Z o fi(xg) > 0.

We have that supp ¢ is a compact set of R, so there ex1st ¢,d € R such that
suppp C [¢,d]. If f(x) = x for some = € R, then K = {z} is the compact set desired.
Suppose that f(z) # x for any x € R. By continuity, we have that R is either A = {x €
R: f(z) >z} or B= {:L‘E]R f( ) < x}.

Using that hmlnf L Z @ o fi(zg) > 0, we see that {n : f"(z¢) € [c,d]} is an

]—0
infinite set.

(Case I). Suppose that R=A = {z € R: f(z) > z}.

Claim 1: f%(zo) ¢ (d,+o0) for all i € N. In fact, if f(z9) € (d,+o0) for
some i € N, then d < fi(xg) < fi™(xg) for any j > 0 since f(x) > x for any z, but
{n: f"(xy) € [c,d]} is an infinite set.

Claim 2: For any z € R, if f(z) € [¢,d] then f/(x) ¢ (—o0,c) for all j > 1. In
fact, we have that f7(z) > --- > f?(z) > f(z) > c for any j € N.

Using that {n : f"(z¢) € [c,d]} is an infinite set. There exists 7 € N such
that fi(zo) € [c,d]. By Claim 2, fi(fi(zo)) ¢ (—oo,c) for all j > 0. By Claim 1,
FI(f(w0)) ¢ (d,+00) for all j > 0. We obtain that 77 (zo) € [c,d] for all j > 0.

(Case II). Suppose that R=B ={z € R: f(x) < x}.

Claim 3: f'(zg) ¢ (—oo,c) for all @ € N. In fact, if f'(zg) € (—o0,c) for
some i € N, then [ (zy) < f'(zy) < ¢ for any j > 0 since f(r) < x for any z, but
{n: f"(xy) € [c,d]} is an infinite set.

Claim 4: For any = € R, if f(z) € [¢,d] then fI(z) ¢ (d,4o0) for all j > 1. In
fact, we have that f7(z) < --- < f*(z) < f(z) < d for any j € N.

Using that {n : f"(z¢) € [c,d]} is an infinite set. There exists 7 € N such
that fi(zo) € [c,d]. By Claim 3, fi(fi(zo)) ¢ (—o0,c) for all j > 0. By Claim 4,
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Fi(fi(w)) ¢ (d,+00) for all j > 0. We obtain that fi*+i(zo) € [c,d] for all j > 0, and we
are done.

]

The special linear group SL(n,R) of degree n over R is the set of n x n matrices
with determinant 1, with the group operations of ordinary matrix multiplication and
matrix inversion. We denote by SL(n,Z) the group of n X n matrices with integer entries
and determinant equals 1. Note that SL(n,Z) is a discrete subgroup of SL(n,R). Using

Theorem [G], we can prove the following result

Corollary 3.11. For each A € SL(n,R) there exist B4 SL(n,Z) € SL(n,R)/SL(n,Z) and
n—1

an observable ¢ 4 € Co(SL(n,R)/SL(n, Z),R) such that lim + >~ ©4(A’B, SL(n,Z)) > 0.
n =0

In general, we can state this below result.

Corollary 3.12. Suppose that G is a locally compact second countable Hausdorff group,
and I' is a lattice in G. For each g € G there exist a,I' € G/I" and ¢, € C.(G/T',R) such

n—1 )
that 1171111% Z% 0s(g?a,l) > 0.
]:

In section [3.7, we give the proofs of Corollary and Corollary

3.3 Preliminary definitions and results

3.3.1 Locally compact Hausdorff spaces

Recall some definitions from Topology.
Definition 3.13. Let W be a topological space.
(i) A neigborhood of a point p in W is any open subset of W which contains p.

(ii) W is a Hausdorff space if the following condition is true: If p € W, g € W, and
p # q then p has a neighborhood U and q has a neigborhood V' such that UNV = ().

(iii) W is a locally compact if every point of W has a neighborhood whose closure is

compact.

(iv) Let o : W — R be a continuos function. The support of ¢, denoted by supp(p), is
the closure of {y € W : p(y) # 0}, i.e., supp(¢) = {y € Y : ¢(y) # 0}.

(v) Let Z be a locally compact Hausdorff space. We denote the set of all continuous
functions ¢ : Z — R with compact support by C.(Z,R), or C.(Z).
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(vi) A topological space W is o-compact if it is a countable union of compact sets.
(vii) A second countable space is a topological space whose topology has a countable base.

(viii) A topological space is called separable if it contains a countable, dense subset; that
is, there exists a sequence {x,}°° | of elements of the space such that every nonempty

open subset of the space contains at least one element of the sequence.

Let W be a set equipped with a o-algebra A. A measure on A (or on (W, A), or
simply on W if A is understood) is a function u : A — [0, 00 such that

(i) p(@) =0
(43) if {E;}52, is a sequence of disjoint sets in A then g Ej E;) = i w(Ej).
j=1 j=1

Property (i7) is called countable additivity.

If W is a set and A is a o-algebra, (W, A) is called a measurable space and the
sets in A are called measurable sets. If 1 is a measure on (W, A), then (W, A, 1) is called
a measure space. If W is a metric space, and (W, A, 1) is a measure space, then (W, A, )
is called a measure metric space.

Let Z be a locally compact Hausdorff space. We assume this terminolgies, B will
denote the Borel g-algebra on Z, that is, the o-algebra generated by open sets; measures
on Bz will be called Borel measures.

Let p be a Borel measure on Z and E a Borel subset of Z. The measure pu is

called outer reqular on FE if
u(E) =inf{u(U) : U D E,U open}
and inner reqular on E if
u(E) =sup{u(K) : K C E, K compact}.

If 1 is outer and inner regular on all Borel sets, p is called regular. A Radon
measure on Z is a Borel measure that is finite on all compact sets, outer regular on all
Borel sets, and inner regular on all open sets.

Given a subset A of Z, recall that the indicator function 14 : Z — R is defined
by setting 14(z) =1, for z € A; and 14(x) =0, for x ¢ A.

Definition 3.14. [30] Let U C Z be an open set and ¢ be a function in C.(Z). If ¢
satisfies 0 < ¢ < 1 and supp(y) C U we use the notation ¢ < U.
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The notation K < ¢ will mean that K is a compact subset of X, that ¢ € C.(X),
that 0 < ¢p(x) <1 for all z € X, and that ¢(x) =1 for all z € K.
The notation K < ¢ < U will be used to indicate that K < ¢ and ¢ < U hold.

An useful result is the Urysohn Lemma:

Lemma 3.15. [61, Lemma 2.12] Suppose X is a locally compact Hausdorff space, V is
open in X, K CV, and K is a compact. Then there exists a function ¢ € C.(X), such
that

K<p=<V.

A linear functional I on C.(Z) will be called positive if I(p) > 0 whenever ¢ > 0

where C.(Z) is a normed space equipped with the uniform norm:
lll = sup |@(z)].
r€Z

Let p be a Radon Measure, then I : C.(Z;R) — R given by I(p) = [¢@du is a
positive linear functional. The Riesz Representation Theorem tell us that this reciprocal

is true as follows.

Theorem 3.16. [30, Theorem 7.2] If I : C.(Z;R) — R be a positive linear functional.

Then there is a unique Radon measure p on Z such that

I(p) = [ wdp

for all ¢ € C.(Z). Moreover, i satisfies

w(U) —sup{/godu:goeCc(Z),go< U} (3.1)

for all open U C Z, and

u(K) = inf{/ wdp :p € Co(Z),p > 1k} (3.2)

for all compact K C Z.
Now, recall the following results.

Lemma 3.17. [30, Corollary 7.6] Let Z be a locally compact Hausdorff space. If Z is

o-compact, every Radon measure on Z is reqular.

Theorem 3.18. [30, Theorem 7.8] Let Z be a second countable locally compact Hausdorff
space. Then every Borel measure on Z that is finite on compact sets is reqular and hence
Radon.
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In what follows we consider X to be a locally compact separable metric space.

Let u be a finite measure on X. Recall that for locally compact metric space,
the condition of o-compactness is equivalent to be second countable (that is equivalent to
be a separable space). By Lemma and Theorem 1 is a Radon measure if, only
if, 1 is a Borel measure. The following Lemma characterizes the bounded positive linear

functionals of C.(X).

Lemma 3.19. [40, p. 36] Let I : C.(X) — R be a positive linear functional, and let p
be the Radon Measure such that I(f) = [ fdu for all f € Co(X). Then I is a bounded
operator if, and only if, u(X) < occ.

Proof. Suppose that I is a bounded operator. By Theorem [3.16

p(X) =sup{l(p) 1 ¢ € Ce(X), p < 1y =1} <
sup{[/()] : p € Ce(X), 0 < p < 1} <
sup [I()] = [[]| < oo

llell<1

Then p(X) < 0.

Now, suppose that u(X) < oco. Let (p,), be a sequence in C.(X) such that
uniformly converges to ¢ in C.(X). By Dominated Convergence Theorem, 7}1_)1{)10 [ pndp =
[ edu. So T}LH;Q I(p,) = nhjEOf ondp = [ pdp = I(p), and then I is a bounded operator.

[

Let Co(X,R) be the set of functions that vanishes at infinity given by
Co(X,R) ={p e C(X,R): {x € X : |p(x)| > e} is compact for all € > 0}

where C(X,R) is the set of all continuous function from X to R. Note that Cy(X) is the
uniform closure of C.(X) (see [30, Proposition 4.35]).

Let RM to be the set of all finite Radon measures on X. By Lemma we
may consider the linear operator Z : RM — C.(X;R)" given by

I(p)e =Tup = [ wdu

for all ¢ in C.(X) where C.(X;R)" is the dual of C.(X;R), the set of all bounded linear
functional from C.(X;R) to R. Then Z, : C.(X;R) — R is a bounded linear functional.
But Cy(X) is the uniform closure of C.(X), so there exists a continuous extension of 7,
from Cy(X) to R with norm [|Z,|. We abuse the notation and write this extension by
Z, too. Then our linear operator Z is defined from RM to Co(X;R)’, ie., T : RM —
Co(X;R)".
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Remark 3.20. Note that the Riesz Representation Theorem (Theorem provides that

T is an injective function.

3.3.2 Duality

Now, we recall the standard results and definitions of functional analysis.
Let (Y, || - ||) be a normed space. We define the dual of Y by

Y'={¢:Y = R| ¢is a continuous and linear function}.
Y" ={n:Y" — R| nis a continuous and linear function}.

Define J : Y — YY" given by J(y)(¢) = ¢(y) for all y in Y and ¢ in Y.

Definition 3.21. The weak topology in'Y, o(Y,Y"), is the topology spanned by continuous

linear functions ¢ in Y.

Recall that

Vly,F.el = N ()~ (B(fi(y).¢))

fieF

is a basic open of (Y,o(Y,Y”)) where F' = {fi,..., fo} and f; € Y/ for i € {1,...,n}.

VIf,T,el = N (T)(B(Ti(f),))

T;el’

is a basic open of (Y, o(Y",Y")) where I' = {T},...,T,,} and T; € Y" for i € {1,...,n}.

‘{;[f’(l)’g] = .
NI BT = NUE) ™ (BUG:) = N ) B ).e)

is a basic open of (Y, 0(Y",Y)) where T; € J(Y) for all i, ® = {y1,...,y,} and y1, ...,y €
Y. We have that

V[qu)ag] = ﬂ (J(yl))_l(B(f(yz)vg))

y;€d

is a basic open of (Y, o(Y",Y)) where ® = {y1,...,y,} and y1,...,y, € Y.
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3.3.3 Locally compact separable metric spaces space versus Du-
ality

Let X be a locally compact separable metric space, recall that Cy(X) is a normed
space equipped with the uniform norm. We define the linear operator Z : RM —
Co(X;R) where Z(1)p = L, = [du for all ¢ in C.(X;R) (note that this operator
extends the previous operator Z, to see this recall the Bounded Linear Transformation
Theorem, since Co(X;R) is the closure of C.(X;R)), and (Co(X;R),]|| - ||) is a Banach
space. Set (Y, [| - [|) = (Co(X;R), || - [|) and Y’ = Co(X;R)".

Consider 71 := o(Y",Y)|zrm), and take Zy € Y’ for some p € RM, & =
{¢1,yon} CY and € > 0. Then V[Zp, ®, ] is an open basic of o(Y’,Y). We have that

VIZp, @] = N (J(:) (B(Zp(ei)€))

pi €D

is a basic open of (Y, o(Y",Y)).
So,

VIZp, el ={ne Y :|n(pi) — [ pidu] <eforallie {1,..n}t}

and

VIZp,®,e] NZ(RM) ={Iv € Z(RM) : | [ gidv — [ pidu| < e for all i € {1,...,n}}

is an open basic set of 71 = o(Y',Y)|z(rA)-

In what follows we consider Cy(X;R)" with the *-weak topology. So the notation
A for some A C Cy(X;R)" will mean the closure of A with respect to the *-weak topology
of Co(X;R) =Y.

Lemma 3.22. Z(RM) is x-weak closed in Co(X;R) =Y.

Proof. Let T € Cy(X;R)" be a bounded linear operator T' : Co(X;R) — R such that
T € Z(RM). Note that T := T)c.xr) : Ce(X,R) = R is a linear operator.

Let ¢ in C.(X,R) such that ¢ : X — R is a positive function, i.e., for all z in X,
¢(x) > 0. Then for all n € N there exists p,, € RM such that

Tpn € VT {¢}, 2] = {R € Co(X;R)": |R(p) — T(¢)| < £}.
In other words,

> 1 Z(un) () = T(o)| = | [ edpn = T ()],
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we obtain that nh_{{)lof@dﬂn = T(¢). Using that [ @du, > 0 for all n, we have
that T(p) > 0. But T := T|c.(xr), SO T(¢) = T(g) >0, and T : Co(X,R) — R is a
positive linear functional on C.(X,R). By Riesz Representation Theorem (Theorem|3.16]),
there is a unique Radon measure p on X such that T (0) = [@du for all ¢ € C.(X).
But 7 is a positive bounded linear operator, by Lemma m, u(X) < o0, so p € RM.
Now, T is the continuous extension of 7' on Cy(X,R), and then T’ = Z, € Z(RM). This

completes the proof of Lemma. O

Let RM; be the set of all probability Radon measure on X, so it is a subset of
RM.

Remark 3.23. Note that Z(RM;) C Z(RM).

The following classical property of locally compact separable metric spaces is

required for proof of our results.

Proposition 3.24. [28] Let (X,d) be a locally compact separable metric space, then the
space (Co(X), || - 1) is separable. Moreover, (Co(X), | -||) is separable.

Let (X,d) be a locally compact separable metric space, so Co(X) = Y is a
separable space, and then (By+,o(Y’,Y)) is meatrizable where By, = {£ € Y . ||€|| < 1}.
This implies that (By+,o(Y’,Y)) is a compact metric space.

Proposition 3.25. Z(RM,) is a compact metric space.

Proof. Just note that Z(RM;) C By-. In fact, let u € RMj,

|Zul| = sup |Zu(e)| = sup | [ edu| < 1.
lell<1 lpll<1

3.3.4 Dynamic of f

Here, we discuss the way to obtain invariant measures.

Let g : X — X be a measurable function, and let y be a measure in X, we denote
by g.p the measure defined by g.u(B) := u(g~'B) for all measurable set B in X.

Let g : X — X be a measurable function, and consider ¢, : Z(RM) — Z(RM)
defined by g.(Zn) = Z(g.n) for all n in RM.

Let v be a measure in RM;, let (u,), be a sequence of probabilities given by

1n—l )
Hn = o Z fﬁy
j=0
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So Zii, in Z(RM,) for all n in N, but Z(RM,) is a compact metric space, and

Z(RM;) C Z(RM;). There exists a subsequence (Ziy,, )ren of sequence (Zu,), that
converges in x-weak topology to some T in Z(RM;). But Z(RM;) C Z(RM), then
there is p in RM such that Zy =1T.

Note that

n—1 n—1
Z(pn)p = %Zo/soijdv= %ZOIJZZV(@D) (3.3)
j= Jj=

~

n—1 n
Je@pn)p = I(fopin) o = Lpn(po f) = L ZO Jeo fittdy =1 ZIIﬁZV(sO)-
j= j=

If ﬁ|m : Z(RM;y) — Z(RM;) is a continuous function in x-weak topology,

we showed that the limit of sequence of probability measures given as before provide us

an invariant measure as follows.

Lemma 3.26. Let v be a probability measure in RM;y, and p be a finite measure such
n—1

that Z is a point of accumalation of sequence (Ziiy), where i, is given by fi, = % > flv.
j=0

If ﬁ|m : Z(RMy) — Z(RM,) is a continuous function in x-weak topology, then p

1s an f-invariant measure.

Proof. We are going to show that Zu = ﬁ(Iu). By hypothesis, (Zji,, ), converges in
x-weak topology to some Zu. Using that ﬁ is a x-weak continuous function in a compact
metric space Z(RM;), we obtain that (ﬁIunk)k converges in x-weak topology to ﬁI,u.
Then

ne—1

Z(ptny,) = n_lk ZO Zflv—TIp

j=
-~ Nk . ~
i, = 5 STy = LI
j=1

Let V[Zu, ®, €] be an arbitrary neighborhood of Zy where ® = {¢q, -+ , ¢, } such
that ¢; in C.(X) for any ¢ in {1,--- ,r}. There exists ko in N such that for k£ > kg
(@) 2. sup |p] <35
i€f1, - r}

np—1 ) o
() [Zpni (i) = Zulpi)| = |5 EO Ifiv(e:) — Zu(ps)| < 5 foralliin {1,--- 7}
j:
and note that for £ > kg
—~ ng—1 ) ng )
Zlun )i = FiZumpil = 5 30 J o fPdv =030 [ @io fldv]
j= J=
= | [idv — [pio frrdv] < E - sup gi| <3,

7’6{17 77-}
we obtain that
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|Z(pn )i — ]/”;Iunkgoi\ < Sforalliin {1,---,r}if k> ko.
For k > ko, and ¢ in {1--- ,r} fixed,

| [iZpin, i — (i) | < | fiZping i — L(pin )il + 1L i, )0 — Zu(pi)| < 5+ 5 =¢

So ﬁI,unk € V[Zp, ®,¢] for k > ko, and then (ﬁI,unk)keN converges in *-weak
topology to Zu. But (]/”;I fin,, )k coOnverges in x-weak topology to ]/”;I (. By unicity of limit,
we obtain that J?*I,u =Tpu.

Recall that ﬁ(Zu) = Zf.p. We obtain that Zf.u = Zu, but Z is an injective
function (see Remark , so i = fu, and we are done. ]

Remark 3.27. The Lemmal[3.26 is an adaptation of the Lemma 2.2.4 in [73].

3.4 Proof of Theorem

Suppose that f : X — X is a continuous proper map on locally compact separable

metric space. Theorem [G] states that the following conditions are equivalents.

(i) there exist ¢ € C.(X;R) with 0 < ¢ < 1 and 2o € X such that the following

n—1
number lim £ 3~ ¢ o f(zg) > 0;
n =0

(17) there exist ¢ € C.(X;R) with 0 < ¢ < 1 and xy € X such that the following

n—1 .
number liminf £ 3~ ¢ o fi(zy) > 0;
(77i) there exist a probability measure v on X and an observable ¢ € Cy(X,R) such that
n—1
liminf 2 [ 3" ¢ o fidv > 0;
n j=0
(iv) there exists an invariant probability measure.

To prove Theorem [G] suppose that the following lemma is proved.

Lemma 1. Suppose that f : X — X is a continuous proper map. If there exist a

probability measure v on X and an observable ¢ in Cy(X,R) such that the following
n—1
number lim inf% > [po fidv >0, then there exists an invariant probability measure.
n =0

Using Lemma [I, we have that (i) — (i1) — (i13) — (iv). To deduce (éi7) from
(1), take the Dirac measure of point xy. So we are reduced to proving that (iv) implies

Suppose that (iv) holds, so there exists an invariant probability measure u. By
Birkhoff’s Theorem for invariant measures, for each ¢ € C.(X;R) such that 0 < ¢ <1,
there exists a function ¢ from a set of full measure X, contained in X to the real line R
defined by
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n—1
Bx) =lim LY po Pla)
j=

such that [ @dp = [ pdu. We claim that for some ¢ € C.(X;R) such that 0 < ¢ <1

n—1 )
there exists z € Xy, such that lim% Y>> 1o fI(x) > 0. Suppose the assertion of the claim
n =0

n—1
is false. So for any ¢ € C.(X) such that 0 < ¢ < 1, we have that lim = >~ o fi(z) =0
n =0
for all z € X,,. Then 0 = [0du = [ @du = [ edp.
It implies that [ pdp = 0 for all ¢ in C,(X, R) such that 0 < ¢ < 1. By Theorem

(X)) =sup{ [ @du : p € Ce(X), 0 < 1x = 1}, so u(X) = 0, but u(X) = 1. This
completes the proof of Theorem [G]

3.5 Proof of Lemma [I

In what follows we consider X to be a locally compact separable metric space.

To prove the Lemmal [[, we need of the following result.

Theorem 3.28. Suppose that f : X — X is a measurable function such that ¢ o f €
C(X,R) for all ¢ € C.(X,R). If there exist a probability measure v on X and an

n—1
observable ¢ in Co(X,R) such that liminf X > [@ o fidv > 0, then there exists an
n =0

imwvariant probability measure.

So, to obtain the Lemma [, we have to prove Theorem [3.28] and the following

lemma about continuous proper map and continuous functions with compact support.

Lemma 3.29. Suppose that f : X — X be a continuous proper map. Then po f €
C.(X,R) for all p € C.(X,R).

Proof. Let v : X — R be a continuous function with compact support, so ¢ o f is a

continuous function. Note that
{ve X o f(y) #0}=f({zr € X :¢(x) #0}) C f~(supp¥)

So, supp(¢ o f) C f~1(supp) = f~!(supp ), by continuity of f since supp ¢
is closed in X. Now, f is a proper map, and supp ' is compact in X, so f~!(supp ) is
compact in X. But supp(¢ o f) is closed in X, it implies that supp(¢) o f) is compact in

X, and we are done. O]

From this moment, we are going to discuss the proof of Theorem |3.28] In the

course of this, we will indicate to the reader the verification of some auxiliary results
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in section . Recall that Cy(X) is a normed space equipped with the uniform norm,
liell = sup [ ()] for ¢ € Co(X).
BAS
We define the linear operator Z : RM — Co(X:R)" by

L(p)p = Tup = [ wdu

for all ¢ in C.(X;R) where RM is the set of all finite Radon measures on X, and RM;

is the set of all probability Radon measure on X.
Set (V.|| - 1) = (Co(X:R), || - [[) and Y = Co(X;R)'.

Note that the Riesz Representation Theorem provides that Z is an injective func-
tion.

In what follows we consider Cy(X;R)" with the -weak topology. So the notation
A for some A C Cy(X; R), will mean the closure of A with respect to the x-weak topology
of Co(X;R) =Y.

In our proof, an essential result is that the set Z(RM) is x-weak closed in
Co(X;R) =Y’ (see Lemma . This implies that Z(RM;) C Z(RM).

By Corollary , we conclude that (Z(RM;)),o(Y’,Y)) is a compact metric
space.

Let g : X — X be a measurable function, and let ;4 be a measure in X, we denote
by g.p the measure defined by g.u(B) := u(g~'B) for all measurable set B in X.

Let g : X — X be a measurable function, and consider ¢, : Z(RM) — Z(RM)
defined by ¢.(Zn) = Z(g.n) for all n in RM.

We would like to apply the Lemma |3.26, so we have to show that ﬁ\zi :

(RMq) -
Z(RM;) — Z(RM,) is a continuous function in x-weak topology. The following result

give us this.

Lemma 3.30. Let X be a locally compact separable metric space, and f : X — X be a
function such that p o f € C.(X,R) for all p € C.(X,R). Then

(i) Yo feCo(X,R) for all iy in Cy(X,R)

(73) the map fo: Z(RM) — Z(RM) defined by ﬁ(In) = Z(f.n) is a continuous function

i x-weak topology.

(ii) f.(Z(RMy)) C Z(RM).

Due to the technicality of the Lemma [3.30] we will give the proof of this at the

end of this Section.
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Using the Lemma [3.30, we have that f*'W : Z(RMy) — Z(RM,) is a
continuous function in x-weak topology, and then, by Lemma for any v probability

measure in RM;, and p be a finite measure such that Zp is a point of accumalation of
sequence (Zuy,), where p, is given by u, = %ni:l fiv, we have that p is a f-invariant
measure. 7=

Now, we are going to verify certain conditions to provide that the limit of sequence
Tu, given as above for some 7 is not the null measure. The next result completes the

proof of Lemma I

Lemma 3.31. Let (X,d) be a locally compact separable metric space, and f : X —

X be a function such that ¢ o f € C.(X,R) for all p € C(X,R). If there exist a

probability measure v on X and an observable ¢ in Co(X,R) such that the following
n—1

number lim inf% > [po fidv >0, then there exists an invariant probability measure.

Proof. Suppose that there exist a probability measure v on X and an observable ¢ in
n—1
Co(X,R) such that liminf £ 3~ [po fidv > 0,
Let u be a finite measure such that Zp is a point of accumalation of sequence

n—1
(Zpin)n, where p, is given by p, = % >~ fin. So there exists a subsequence (Zuy, )ken of
=0
sequence (Zy,), that converges in x-weak topology to some Zu.

Suppose that p is the null-measure, and consider the function ¢ in Cy(X,R). For
the family of neighborhood of Z(0) = 0 given by (V[0,{¢}, 1])een, we have that for each
¢ fixed, there exists k;, > 0 such that for k > ky,

ng—1

k .
7 > T = Z0)p| = [Z(pn,) el = |5 > [ o fidn|, so
P=

1 ne—1 '
1 g
kILHJO - j; /gpof dn = 0. (3.4)

and note that

ng—1

n—1
0 <liminfl > [po fidv < lim = > [po fidn=0.

This shows that p is not the null-measure, and the Lemma is proved.

3.5.1 Proof of remark [3.4]

Suppose that 7 is a probability measure (not necessarily an invariant measure
under f) such that (X, A, f,n) is a mixing system. We are going to show that there exists

an invariant probability measure.
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By definition of mixing system, for any bounded and measurable functions ¢, :

X — R, we have that

nlggo/wf”l/)dnz /wdn/wdn (3.5)

Let 1 be a finite measure such that Zp is a point of accumalation of sequence
n—1

(Zpn)n where p, is given by p, = % i fin. So there exists a subsequence (Zji,, )ren Of
7=0
sequence (Zy,), that converges in x-weak topology to some Zp.

Suppose that p is the null-measure and fix ¢ in Cy(X,R). Consider the family
of neighborhood of Z(0) = 0 given by (V;[0, {¢}, §])sen.

Now, for each ¢ fixed, there exists k, > 0 such that for k > £k,

ng—1

7> [Zlm)e = ZO)¢l = Z(um)el = |5 X [ oo fidnl, so
j:

1 ne—1 '
S jo
klggo - JZ:; /gpof dn = 0. (3.6)

By equation ((3.5))

lim [po f*dn= lim [po f* 1xdn=n(X) [¢dn= [ dn, then

1 )
1 —_ J =
Jim — E /sOOf dn /wdn (3.7)
J_

By equations and , [ @dn = 0 for all ¢ in Cy(X,R). By Theorem m,
n(X) = sup{[edn : ¢ € Ce(X), 0o < 1x = 1}, so n(X) = 0, but n(X) = 1. This
completes the proof of item (7).

The following sequence of technical lemmas proves the Lemma [3.30]

3.5.2 Proof of Lemma [3.30]

Lemma 3.32. Suppose that o f € C.(X,R) for allip € Co(X,R). Thenvof € Co(X,R)
for all v in Co(X,R).

Proof. Let 1 in Cy(X,R), using that X is a locally compact space, we have that C.(X,R)
is dense in Cy(X,R), so there exists a sequence (1,),en of continuous functions with
compact support that converges uniformly to ¢, and then (¢, 0 f),en converges uniformly
to ¢ o f. By hypothesis, ¢, o f € C.(X,R) for each n, so ) o f in Cy(X,R), and we are
done. O]
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Lemma 3.33. |75, Lemma 2.2.1] Let p be a finite measure in X, and ¢ : X — R be a

bounded measurable function. Then

/cbdg*u - /aﬁogdu. (3.8)

Proof. Suppose that ¢ is a characteristic function of a mensurable set B then the relation
(3.8) means that g.u(B) = pu(g~'(B)), that is true. By linearity of integral, (3.8) holds
for any simple function. Finally, from the fact that every bounded measurable function

can be uniformly approximated by simple fucntions, we are done. O

Lemma 3.34. [75, Proposition 2.2.2] If [ : X — X is a function such that ¢ o f €
Co(X,R) for all p € Co.(X,R), then the map ﬁ cI(RM) — Z(RM) defined by ﬁ(Zn) =
Z(f«n) is a continuous function in (Z(RM), ).

~

Proof. Let Zp in Z(RM) fixed, and let V[f.(Zu), ®,e] N Z(RM) be an arbitrary neigh-
borhood of f,(Zu) in Z(RM) where ® = {¢y, -+ , ¢, } is a finite family of Cy(X,R).

Using that ¢ o f € C.(X,R) for all ¢ € C.(X,R), by Lemma [3.32] we have that
U ={pof -, ,p,o0 f}is a finite family of Cy(X,R) too. Note that

~

F(VIZp, V. e] NI(RM)) C V[f(Tp), @,e] NZ(RM)
In fact, let Zn € V[Zp, ¥, €|, by definition
| [pio fdn— [@io fdu| <eforallie {1,..,n}.

By lemma[3.33] we obtain that € > | [ ;o fdn— [ ;o fdu|l = | [ pidf.n— [ @idf.pl

foralli € {1,...,n}, and then Z(f.n) € VIZ(f.p), ®,¢], but Z(fip) = fu(Zp) and Z(fun) =
ﬁ(Zn), SO ﬁ(In) € V[ﬁ(I,u), ®, ¢], and we are done. O

Lemma 3.35. f.(Z(RM,)) C Z(RM;)
Proof. Let T in m , so there exists 1 in RM such that T = Zu (by remark ,
and let V[f,(Zu),®,¢] be an arbitrary neighborhood of ﬁ(I,u) in Co(X,R)" where & =
{¢1, -+ ,pn} is a finite family of Cy(X,R).

Using that ¢ o f € C.(X,R) for all ¢ € C.(X,R), by Lemma[3.32] we have that
U= {piof, - ,¢,0 f} is a finite family of Cy(X,R) too. Note that

~

F(VIZp, ¥, e) N T(RMy)) C V[f(Tp), ®, el NT(RM;) (3.9)
In fact, let Zn € V[Zp, ¥, €] with n € RM;, by definition

| [pio fdn— [@io fdu| <eforallie {1,..,n}.
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By lemmal[3.33] we obtain that & > | [ ;0 fdn— [ @0 fdu| = | [ idfin— [ @idf.pl
foralli € {1,...,n}, and then Z(f.n) € VIZ(f.p), ®, ], but Z(f.u) = ]?*(I,u) and Z(f.n) =
F.(Tn), so f.(In) GAV[J?*(IM)? D, .

Note that f.(Z(RM;)) C Z(RM,). First, observe that for v € RM;, we have
that fuv(X) =v(f~1(X)) =v(X) =1, so0 fuiv € RM; if v € RM;. Then for v € RM,
we have that ﬁ(Iu) = Z(f.v), but fivr € RM; if v € RM; (by Theorem , SO
f(Zv) € Z(RM;). Then f.(In) € Z(RM,). This completes the proof of the inclusion

B9).

But T'=Zp in Z(RM,), then V[Zu, ¥, e] NZ(RM;) # (), we obtain that

~

VIf(Zp), @, el NI(RMy) # 0

So ]?*(T) = ﬁ(Iu) € Z(RM;), and we are done. This completes the proof of
Lemma [3.30]
O]

3.6 Proof of Theorem

Let X be a locally compact separable metric space, and f : X — X be a contin-
uous function. A bounded operator £ : Co(X) — Co(X) is called Perron-Frobenius-like
operator for f if L£(g) > 0 whenever g > 0 for g € Cy(X), and L((g1 0 f)g2) = 91L(g2)
for all g1, g2 € Co(X). Now, we are going to prove the Theorem , first we show that the

Perron-Frobenius-like operator £ is well defined as follows.

Lemma 3.36. L is well defined, i.e., if f is a continuous function and g1, g2 € Co(X)
then (g1 0 f)g2 € Co(X).

Proof. First we prove that if g3 € Co(X) and g, € C.(X), then (g1 o f)gs € C.(X). So,

{r € X :(g10f)(x)g2(x) # 0} C{z € X : g2(x) # 0} C supp g,

and then supp(g; o f)g2 € supp go. This implies that supp(g; o f)gs is a compact
set, since supp g, is a compact set. To finish suppose that g1, ¢> in Co(X), and use that
Ce(X) is dense in Cy(X). So, there exists a sequence (h,,), in C.(X) that converges to gs.
By first part, we have that (g; o f)h, € C.(X) for all n in N. So ((g; o f)h,), converges
to (g1 © f)ge, and then (g o f)gs2 € Co(X), and we are done. ]

Theorem [H| may be proved in much the same way as Theorem ??. However,
our proof makes no appeal to proper maps, and it forces us to explore the properties of
Perron-Frobenius operators, topological properties of this spaces, and tools of Functional

Analysis as follows.
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Proof of Theorem[H. Suppose that X is a locally compact separable metric space, f :
X — X is a continuous function, and £ : Cy(X) — Cy(X) is a Perron-Frobenius-like
operator such that ||£|| is an eigenvalue of L.

Recall that if £ : Cy(X) — Cy(X) is a Perron-Frobenius-like operator then

L((g10 f)g2) = 9g1L(go) for all g1, go € Cy(X) and

L(g) > 0 whenever g > 0. Note that if £ is a Perron-Frobenius-like operator then oL is
a Perron-Frobenius-like operator for all positive real number a.
So, without loss generality, £ is a Perron-Frobenius-like operator such that || £|| =

1 is an eigenvalue of L.
Consider the linear operator Z : RM — Co(X;R) by

L(p)p = Tup = [ wdp

for all ¢ in C.(X;R) where RM is the set of all finite Radon measures on X, and RM;
is the set of all probability Radon measure on X. Set (Y, - ||) = (Co(X;R), || - ||) and
Y' = Co(X;R).

In what follows we consider Co(X;R)" with the *weak topology. So the notation
A for some A C Cy(X; R)' will mean the closure of A with respect to the x-weak topology
of Co(X;R) =Y.

By boundedness of £, the dual Banach operator L, : Cy(X) — Cy(X)" given by
(L.T)(g) =T(Lyg) for all g € Cy(X) is a bounded operator, and then L, is a continuous

operator in x-weak topology.

Lemma 3.37. L. (Z(RM)) CZ(RM).

Proof. Let pin RM, by definition of L., we note that L.(Zu) € Co(X)', so L.(Zp) is
a bounded linear operator, moreover, £,(Zu) is a positive operator, i.e., L.(Zu)(p) > 0
whenever ¢ > 0 for ¢ in C.(X). Note that L£.(Zu)(p) = (Zu)(L(p)) = [ L(p)dp.
Now, L : Co(X) — Co(X) is a Perron-Frobenius-like operator, so L£(¢) > 0, and then
J L(¢)dp > 0. This implies that £,(Zyu) is a bounded positive operator, by The Riesz
Representation Theorem (Theorem , there exists a finite measure ;i in RM such
that

Jedii = L(Zp)(p) = [ L(p)dp for all p € C(X).

Recall that Z(R1M) is a compact metric space in x-weak topology.

Let v be a measure in R1 M, and consider the sequence

n—1
2 Ll(Zv).
7=0
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By Lemma |3.37, for each n in N, there exists p, in RM such that Z(u,) =
n—1
L3 LI(Zv). We claim that Z(u,) € Z(R1M). In fact, by Theorem 3.16]
j=0

fin(X) = Sup{/sodun =Zpn(p) : p € Co(X), o < 1x =1} <

sup{|Zpn ()] 1 p € Ce(X), 0 < <1} <

n—1
1 )
sup |Zpin(9)] = | Zpall = 1|= D LUTV)|| <
el <1 n/jzo

n—1 n—1

1 , 1 1

EZ 1L 1(Zv)] < 521 @)l = —nl(Zv)] <1
j=0 Jj=0

where |(Zv)| = sup [@dv < sup [dv|¢| = 1.
lell=1 lll=1

Then 1, (X) < 1 for all n in N. So p,, in RyM for all n in N, but Z(R;M) is
a compact metric space. There exists a subsequence (Zpiy, )ren of sequence (Zpy,), that
converges in x-weak topology to some 7" in Z(R1M). But Z(RyM) C Z(RM) = Z(RM)
(see Lemma . So there exists p in RM such that T' = Zp.

Using that 1 = ||£]|, and L, is a continuous function on Z(RM), we are going to

show that the limit of sequence of measures given as before provide us that £,.Zp = Zpu.

Note that
1 n—1 1 n—1
Tun) =5 Y [ Dloddy =1 3 LiTu(e) (3.10)
n = n<=
and

L(Zpn)p = (LZitn)p = Lpn(Ly) =

n

n—1 n

1 , 1 - 1 .

LS cie) = > L) = 3 Y [ L
j=0 j=1 j=1

Lemma 3.38. Let v be a probability measure in RiM, and i be a finite measure such that
n—1

Zu is a point of accumalation of sequence (L i), where Ly, is given by Ly, = % S LiTv.
j=0

Then L. Zp = Zu.

Proof. We are going to show that £.Zy = Zu. By hypothesis, (Zji,, ), converges in -

weak topology to some Zp. Using that L, is a #-weak continuous function in Z(RM), we
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obtain that (L£,Z,, ), converges in *-weak topology to £, Zu. Then

ne—1

Lity, = — Z LITv — T
ng =0
1 &
L. Ty, = o > LTy — L.Ip
j=1

Let V[Zu, ®,¢] be an arbitrary neighborhood of Zy where ® = {¢q,- -+ , .} such
that ¢; in Cy(X) for any 7 in {1,--- ,r}. There exists ko in N such that for & > kg

(a) Z- sup ol <35
i€{l, 1}

nk—l

(0) [Zpny (i) = Zplpi)| = |5 > LITv(pi) — Iu(ypi)| < § forall i in {1,---,r}.
]:

and note that for £ > kg
ng—1 ) ng )
(Zpin,) i = LuZpin, 0] = 17 > [ L(p)dv — - Zlfﬁ’(SO)dVI
J= J=
= ool [pidv — [ L (pi)dv| < -+ sup il + -

1€{1,,r} i€

sup || < §
{1,“',7“}

we obtain that
| Z(piny, )i — LT pin, i < § for all @ in {1,--- r}if b > k.
For k > kg, and 7 in {1--- 7} fixed,

| L ZLpin,, 00 — Li(pi)| < |LaZpin,0i — L(piny, )il + | Z(piny )i — (i) < 5+ 5 =¢€

So L. Ly, € V[Zp, ®,¢] for k > ko, and then (L£.Zp,, )ren converges in *-weak
topology to Zu. But (L, )x converges in x-weak topology to £,Zu. By unicity of limit,
we obtain that £.Zu = Zpu. [

But 1 is an eigenvalue of L, so there exists h # 0 in Co(X) such that Lh = h.
Let ¥ in X such that h(y) # 0. Consider v = d; the Dirac measure of point ¥.
Let (Zp,), be a sequence given by

iy, = %nz_:l LITv.
=0
So p, in RyM for all n in N, but W is a compact metric space. There
exists a subsequence (Zu,, Jken of sequence (Zpy,), that converges in *-weak topology to
some Zp where g in RM, and by Lemma [3.38, £.Zp = Zu.
We claim that p is not the null-measure. In fact, suppose that = 0, so for every

¢ in Cy(X) we have that
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ne—1 ne—1

nkZﬁu( Efﬁ Ydv — 0.

In particular, for ¢ = h = Lh,
nk—l nk—l

é 3 fﬁjhduzé > [ hdv — 0,
. =

and then 0 = [ hdv = [ hddy; = h(y) # 0. This contradiction proves that p is
not the null measure.

We are going to verify 7 = hp is an invariant measure where Lh = h and L, Zu =
Tu.

Recall that for any g1, g2 € Co(X), one has L((g1 © f)g2) = g1Lgo. Then for all
g: X — Rin Cy(X),

Zfn(g fgdf 77 = f(g o f)dn= [(go f)hdu =Tu((go f)h) = L. Iu((go f)h) =
Iu(ﬁ((g o f)h)) = [L((go f)h)du = [ gLhdp = [ ghdp = [ gdn = Tn(g).

We obtain that Z f,n = Zn, and by injectivity of Z, f,n = n. This proves that n

is an invariant measure, and completes the proof of Theorem [H] O

3.7 Topological Groups

We need of some theory to introduce the Haar measures of a locally compact
Hausdorff Group. Let G be a group endowed endowed with a topology 7 where e is the
identity element of group G. (G, 7) is said to be a topological group if the multiplication
map P : G x G — G defined by (g, h) — gh and the inversion map ¢ : G — G defined by
g g
defined by g € G is the map L, : G — G, Ly(h) = gh. Similarly, the right translation
defined by g € G is the map R, : G — G, Ry(h) = hg. Note that the continuity of
P ensures the continuity of L, and R, for any g € G. Moreover, L, : G — G and

are continuous when GG x G carries the product topology. The left translation

R, : G — G are homeomorphism for any g € GG. In fact, first note that L, is one-to-one.
Suppose that Ly(h) = Ly(w) for some h,w € G, so gh = gw, and then h = w. Now, L,

is a surjective map. Take w € G, but L,(g~*

w) = w. We showed that L, is a bijective
function.

Note that T, : G — G given by h + g~'h is the inverse map of L,. Observe that
TyLg(h) = Ty(gh) = g~*(gh) = h, and LyTy(h) = Le(g~'h) = g(g~h) = h. Actually,
Ty = Lg—1, and then Ty is a continuous function. This proves that L, is a homeomorphism

for any g € G.
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If G is a topological group and H is a subgroup of G, we equip the set of cosets
G/H with the quotient topology, i.e., U C G/H is open if, and only if, 771 (U) is open in
G where 7 : G — G/H, g — gH, then 7 is a continuous function.

Let W be a topological space.

(1) A neigborhood of a point p in W is any open subset of W which contains p.

(i7) W is a Hausdorff space if the following condition is true: If p € W, ¢ € W, and
p # ¢ then p has a neighborhood U and ¢ has a neighorhood V' such that UNV = (.

(1ii) W is a locally compact if every point of W has a neighborhood whose closure is

compact.
(1v) a second countable space is a topological space whose topology has a countable base.

Lemma 3.39. Let G to be a topological group and H to be a subgroup of G. Then

(i) 7 is an open map;
(i) If G is a locally compact space then G/H is a locally compact space;
(11i) If G is a second countable space then G/H is a second countable space;

(iv) L, : G/H — G/H, gH — agH is a homeomorphism for each a € G.

Proof. (i) Let U to be an open set of G, and note that 7= (7(U)) = |J (Ry)"'(U) (this

heH
implies that 7~ (7(U)) is an open set in G since it is an union of open sets, and then 7(U)

is an open set in G/H). In fact, note that if g € 7~ (w(U)), then 7(g) € 7(U). There
exists x € U such that 7(z) = 7(g), that is xtH = gH, so xhy = gh, for some hg,hy € H
and then z = ghy = Ry,(g) where hy = hy(ho)™' € H. Using that x € U, we see that

Ry, (g) € U, we obtain that g € (Rp,) " (U) C U (Rn)"Y(U).
heH
Now, take y € |J (Ry)~'(U), by definition, there exists h € H such that Ry,(y) =
heH
yh € U, and then yhH = w(yh) € w(U). Note that n(y) = yH = yhH = n(yh) € ©(U),

soy € m}(w(U)), this completes the proof of item (i).

(7i) Suppose that G is a locally compact space. Take gH € G/H, by hyphoteses,
there exist a compact set K in G and open set U of G such that ¢ € U C K, and then
7(g9) = gH € w(U) C 7(K). By continuity of 7, 7(K) is a compact set in G/H, and by
openess of m, w(U) is an open set, this completes the proof of item (7).

(7i7) Suppose that G is a second countable space, so there exists a countable basis
{U, : n € N} for G, using that 7 is an open map, we have that w(U,,) is an open set in
G/H. We claim that {7(U,) : n € N} is a countable basis of G/H. In fact, take V to
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be an open set of G/H, so (m)~'(V) is an open set of G, so (7)~(V) = |J U, for some
nel
I C N. Note that

7ﬁﬂ”WD=ﬂUUM§gfwm

nel

using that 7 is a surjective function, we see that 7((7)~'(V)) = V, and then
V C U n(U,). We claim that V' = |J n(U,). Take z € |J n(U,), there exists y € U,

nel nel nel
such that 7(y) = x for some n € N. But (7)"'(V) = | U, then x = 7(y) € V. This
nel
completes the proof of item (ii7).

(iv) Fix a € G, consider L, : G/H — G/H, gH — agH. L, is an injective
function. In fact, suppose that I}\a(gH) = Z;(bH), so agH = abH, there exist hg,hy € H
such that aghy = abhy, and then ghy = bhy. This implies that gH = bH. So Z; is an
injective function.

Z: is an onto map. Just note that for any gH € G/H, we have that Z(a_lgH) =
gH.

Observe that L, : G/H — G/H, gH s a~'gH is the inverse of L.

Z; is a continuous function. Let U to be an open set of G/H. We claim that
(La)"Y(U) is an open set of G/H.

We have to show that (7)~((L,)~}(U)) is an open set of G. Note that

() (L) () =

{r e G :w(x) e (L) N U)} =

(£ €G: Ly(n(z)) e U}y =

{xEG:Z;(a:H)EU}:

{r€G :axH €U} =

{reG:n(ax) e U} =

{r e G:7m(Ly(x)) €U} =

{r€G:molL,(x)eU} =

(mo La)~'(U)

Since m and L, are continuous functions, we have that m o L, is a continuous
function, and then (7o L,)~*(U) is an open set in G. This shows that L, is a continuous
function, so L/a: is also a continuous function, and then Zz is a homeomorphism. This

completes the proof of item (iv). O

Lemma 3.40. Let G to be a topological group and H to be a subgroup of G. Then the

following conditions are equivalents.

(i) if eH # yH with e,y € G, then there exist open neighborhoods U.,U, of e,y such
that U, N U,H = ().
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(i) For all z,w € G such that tH # wH there exist open neighborhoods U,, U, of x,w
such that U, N U,H = 0.

(11i)) G/H is a Hausdorff space.

Proof. We are going to show that (i) implies (ii). Suppose that H # wH with z,w € G,
we claim that eH # z~'wH. In fact, suppose that e = x~'wH, there exists h € H such
that e = 27 'wh, and then x = wh. This implies that xH = wH, but it is a contradiction.

We have that eH # x~'wH, taking y = 2~ 'w. By hypotheses, there exist open
neighborhoods U, U, of e,y such that U. NU,H = 0.

Observe that 2U, and zU, are open sets since L, : G — G is a homeomorphism.
Note that x € zU, (just note that + = ze € zU.) and w € zU, (just note that w =
z(z7'w) € 2U,). We claim that 2U, N zU,H = {).

In fact, suppose that z € 2U. Na2U,H, so z = xu = xb with u € U, and b € U, H,
sor=be U NU,H, but U.NU,H = (). We deduced (i7) from (i).

Suppose that (i7) holds, and take *H # wH with x,w € G. By item (i7), there
exist open neighborhoods U,, U, of z,w such that U, N U,H = (). Since 7 is an open
map, we have that 7(U,), 7(U,) are open sets of G/H.

We claim that 7(U,) N7 (U,) = 0. Suppose that there exists z € w(U,) N 7w(U,),
then for some u € U, and v € U, we have that z = 7(u) = w(v). This implies that
uH = vH, so there exists h € H such that v = vh. Note that u € U, and vh € U,H,
this implies that v = vh € U, NU,H = (. We obtain that = (U,) N7 (U,) = 0, so G/H is
a Hausdorff space.

Now, suppose that G/H is a Hausdorff space, and take eH # yH with e,y € G.
There exist open neighborhoods U, V' of eH, yH such that U NV = (). This implies that
N U)Na 'V =0 with e € 77 }(U) and y € 7 (V), and then 7~ (U) N7~ (V)H = 0.
This completes the proof of Lemma [3.40

]

We recall this technical Lemma.

Lemma 3.41. Let G to be a topological group. Then for any open neighbourhood U of e,
there exists an open neighbourhood V of e such that V. =V=! and V? C U.

Proof. Let V. = U NUy, NU; ' N Uy Y, where Uy x Uy € P~YU) is a neighbourhood of
(e,e), P: G x G — G is the multiplication in G. ]

Lemma 3.42. Let G to be a Hausdorff group and ' to be a closed subgroup of G. Then
G/T is a Hausdorff space.
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Proof. Since Ly : G — G and R, : G — G are homeomorphisms for all g € G, gI' and I'g
are closed sets in G for all g € G. In view to apply Lemma [3.40, we have to show that
for all e,y € G such that eI’ # yI', there exist open neighborhoods U,, U, of e,y such that
U.nU,I'=0.

Take y € G such that I' # yI', so e € G\ yI'. Since yI' is a closed set in G, we
have that U = G \ yI' is an open neighbourhood of e. By Lemma , there exists an
open neighbourhood V of e such that V = V=1 and V2 C U. Note that y € Vy (since
y =ey € Vy), and Vy is an open set of G because R, : G — G is a homeomorphism. We
claim that V N VyI' = (.

In fact, suppose that there exists x € VN Vyl', so v = ayh € V with a € V
and h € T. Then yh = a™(ayh) € V7'V =V? C U and U = G \ yI', this contradiction

completes the proof of Lemma. O

Remark 3.43. If G is a Hausdorff group and I is a discrete subgroup of G, we have that
[ is a closed set in G (see e.g. [52]), and then G /T is a Hausdorff space.

Let W be a topological space. If W is a locally compact second countable Haus-
dorff space, then, by [45, Theorem 5.3, p. 33|, W is also a complete metric space. So, we

proved the following result.

Corollary 3.44. If G s a locally compact second countable Hausdorff group and I" is a

closed subgroup of G then G /T is a locally compact second countable metric space.

3.7.1 Haar measures

A Borel measure i on a locally compact space is called regular when it holds that
(1) every compact set is p-measurable;
(71) if A is measurable then u(A) = inf{u(U)|A C U,U open};
(173) u(U) = sup{u(C)|C C U,C compact} for each open set U.

A regular Borel measure i on a locally compact group G is called a left Haar

measure if
(1) p is not the zero measure;
(#7) the measure of a compact set is finite;

(173) for every g € G and all measurable sets E the left translate g£ = L,E = (L
is measurable and p((L,-1)"'(E)) = u(E).
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Given a left Haar measure p, by item (7ii) of above definition, we conclude that
(4 is an invariant measure under left translation L, : G — G for any h € G. We recall the

Haar’s Theorem as follows.

Theorem 3.45 (Haar’s Theorem). For every locally compact Hausdorff group there exists

a left Haar measure.

Let G to be a topological group and H to be a subgroup of G. We will say that
a regular Borel measure p on the quotient G/H is a left invariant Haar measure if for all
Borel sets E C G/H and all g € G we have u(gE) = p(E).

Given a Borel set £ C G/H, note that (ITg:)*l(E) = gE for any g € G. If a
regular Borel measure p on the quotient is a left invariant Haar measure then pu(gE) =

,u(L/g:)_l(E)) = w(E) = u(Ly) " Y(E)) = p(g'E). This means that p is an invariant

measure under Z; for any g € GG, we say that p is a left G-invariant Haar measure.

Definition 3.46. Let G be a locally compact Hausdorff group and I be a discrete subgroup.

We say that T is a lattice in G if G/H carries a finite left G-invariant Harr measure.

Let G be a locally compact Hausdorff group and I' be a discrete subgroup. We
say that I' is cocompact in G if the space G/I" is compact.

Suppose that G is a locally compact second countable Hausdorft group, and I is
a lattice in G, then G/T" is a locally compact second countable metric space. Then, by
Corollary and Definition , G/I" admits a finite invariant measure under homeo-
morphism Ly : G/T' — G/T given by gI' — bgI" for any b € G. By Theorem , we have
that

Corollary 3.47. Suppose that G is a locally compact second countable Hausdorff group,
and I' is a lattice in G. For each g € G there exist a,I' € G/T" and p, € C.(G/T',R) such

n—1 o~ n—1 .
that liin% 'Zo g0 (Lyg) (a,l) = liTan% 'Zo 04(¢?a,l') > 0.
j= =

The special linear group SL(n,R) of degree n over R is the set of n X n matrices
with determinant 1, with the group operations of ordinary matrix multiplication and
matrix inversion. We denote by SL(n,Z) the group of n x n matrices with integer entries
and determinant equals 1. Note that SL(n,Z) is a discrete subgroup of SL(n, R).

Recall that SL(n,Z) is a lattice in SL(n,R). Moreover, SL(n,Z) is a noncocom-
pact lattice in SL(n,R) (see e.g. [71, Corollary 3]). By Corollary [3.47, we have the

following.

Corollary 3.48. For each A € SL(n,R) there exist B4 SL(n,Z) € SL(n,R)/SL(n,Z) and
n—1 .
an observable p4 € C.(SL(n,R)/SL(n,Z),R) such thatlim = >~ ¢ 40(La)’(BaSL(n,Z)) =

n—1
hm% Z QOA(AjBA SL(H,Z)) > 0.
n =0



Chapter 4

Future Perspectives

4.1 From Chapter

Motived by existence of adapted metric for a codimension one singular hyperbolic
set with respect to a C! vector field on finite dimensional compact manifold, we give some

conjectures.

Conjecture 1. Given a singular-hyperbolic set for a C' vector field, then there exists a

singular-hyperbolic adapted metric.

In [63, Definition 3|, L. Salgado has given the following notion of sectional hyper-
bolicity encompassing intermediate dimensions between 2 and the full dimension of the

central subbundle.

Definition 4.1. A compact invariant set A is p-singular hyperbolic (or p-sectionally hy-
perbolic) for a C* flow X if there exists a partially hyperbolic splitting T\M = E® F such
that E is uniformly contracting and the central subbundle F' is p-sectionally expanding,

with 2 < p < dim(F).

Remark 4.2. Note that, if L, is a p-plane with 2 < p < dim(F'), we can see it as
v e NP(F,)\ {0} of norm one.
Hence, to obtain the singular expansion we just need to show that for some A > 0

and every t > 0 holds the following inequality
| AP DX, (2).0]| > Ce™.

We do not address sectional-expanding subbundles with dimension p less than
the full dimension of the central subbundle here, and we conjecture that similar results
should hold true.
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Conjecture 2. Given a p-sectional hyperbolic set I for a C' vector field X, then there

exists a metric such that for some constant > 0 and all t > 0
o DX, |g| <et;
o [DX;|p| < e"|DX, | Fl; and

o | A\’ DXy(2)|,| > e for every p-dimensional linear subspace L, C F,,2 < p <
dimF, z €T,

We stress that the contructions of adapted metrics in 8] 62], via quadratic forms,
is deeply based on the dimension of the singular hyperbolic subbundles. Thus, it is not
clear how to use quadratic forms to obtain adapted metrics when the codimension between
the p-sectional hyperbolic splitting is not equal to one. This drive us to propose the next

conjecture.

Conjecture 3. Consider a riemannian compact manifold M of dimension n > 4. If
' C M is a p-sectional hyperbolic set for a C' wector field, with 2 < p < dim F', then

there exists a singular adapted metric induced by quadratic forms.

4.2 From Chapter

In Corollary [D] we showed that for any measurable bounded function ¢ : M — R
that satisfies the condition (b) then the following limit exists

n—1 n—1
Jo-du="tm3 [ 3 o fdu=infy [ 3 o fldp
J= J=

Let C*°(M;R) be the set of all bounded continuous function from M to R. In
view of Corollary @, fixed a measure u, we consider the set H,, of functions of C*(M;R)

that satisfies the condition (b), namely
H, = {p € C°(M;R) | ¢ satisfies the condition (b)}.

Considering (C®(M;R), || - ||) the normed space where || - || is the uniform norm,
i.e., o] := sup |p(x)| for any ¢ € C°(M;R). We wish to investigate the properties of
xeM

H,. In this sense,
Problem 1. What are the topology properties of H, in C°(M;R)?

Moreover, we may consider H the subset of C*(M;R) given by H= |J H,
nEM;1 (M)
where M (M) is the set of all probabilities measures on M, and ask the same question

for this set.
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Problem 2. What are the topology properties of H in C°(M;R)?

In Corollary 2.6 we gave some conditions to ensure the existence of Birkhoff’s
limit, so the following question is natural.
n—-1 . n—k—1
Problem 3. Is it true that if lim + > o fi(z) exists then klirn limsup (£ > 15z ©

o0 n

fZ(I)) =0 for everye > 07

4.3 From Chapter

Let (M, A, ) be a measure metric space, f be a measurable transformation
where p is a finite measure (not necessarily an invariant measure under f). The sys-
tem (M, A, i, f) is said to be weakly mizing if for any ¢, : M — R bounded measurable

maps, one has

n—oo

n—1
1im%;U@ij-@/)du—fsodﬂf@/)dﬂlzo-

We recall the notions of meager set (or set of first category), and set of second
category in a topological space. Given a topological space W, a subset B of W is nowhere
dense if for each neighbourhood U of W, the set BNU is not dense in U. Equivalently, B
is nowhere dense if its closure contains no nontrivial open set; a subset A of W is meagre
if it can be expressed as the union of countably many nowhere dense subsets of W. A
meagre set is also called a set of first category; a nonmeagre set (that is, a set that is not
meagre) is also called a set of second category.

For the unit interval in the weak topology, Halmos [35] showed that the set of all
mixing measure is a set of first category in the group of measure preserve transformations,
and the set of weakly mixing transformations is of the second category. Motivated by this
result we consider the remark In view of the second result of Halmos, one may

conjecture the following.

Conjecture 4. Let X be a locally compact separable metric space. Suppose that f : X —
X is a continuous proper map. If there exists a probability measure n (not necessarily an
invariant measure under f) such that (X, A, f,n) is a weakly mizing system, then there

exists an invartant probability measure.

In Theorem [G] we used the properties of proper continuous functions to prove the
existence of invariant measures. To drop the condition of proper maps of this theorem we
consider the Perron-Frobenius operator in Theorem [H] In the same spirit, one question
is which hypotheses can be considered to ensure the existence of invariant measures.

Precisely,
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Problem 4. What other conditions can be used to prove the existence of invariant mea-

sures in locally compact separable metric space using only the continuity the dynamics
?

In Theorem [H] under the assumption that the norm of Perron-Frobenius operator
is an eigenvalue of Perron-Frobenius operator we prove the existence of invariant measures.
One may ask whether this still true if we suppose that there exists a real eigenvalue of

Perron-Frobenius operator. In other words,

Problem 5. Suppose that there exists a real eingenvalue of Perron-Frobenius operator.

Can we conclude that there are exist invariant measures?
In view of Theorem [G] we are going to investigate the following natural problem.

Problem 6. Does there exist a similar criteria to guarantee the existence of SRB measures

or Gibbs measures?
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