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pelo apoio e diligência.

Aos colegas e amigos do Doutorado em Matemática (UFBa/UFAl), pelos momen-
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Resumo

É posśıvel mostrar que o conjunto das medidas expansoras para transformações

uniformemente expansoras é compacto e varia continuamente com a dinâmica. No pre-

sente trabalho consideramos famı́lias de transformações em variedades Riemannianas mul-

tidimensionais com comportamento não-uniformemente expansor. Mostramos que o con-

junto de medidas expansoras para essas aplicações é σ−compacto e varia continuamente

em partes compactas. Em particular conclúımos que o conjunto de medidas expansoras

com “parâmetros limitados” para uma dinâmica fixada é compacto. Adotamos a topologia

fraca−∗ no espaço das medidas de probabilidade.

Palavras-chave: Medidas expansoras; Conjunto σ−compacto; Variação cont́ınua; Partições

de Markov; Torre de Young, Expoentes de Lyapunov.



Abstract

One can show that the set of expanding measures for uniformly expanding maps

is a compact set and varies continuously with the map. In this work we consider families of

transformations in multidimensional Riemannian manifolds with non-uniformly expand-

ing behavior. We show that the set of expanding measures for these transformations

is σ−compact and it varies continuously on compact pieces. In particular we conclude

that the set of expanding measures with “bounded parameters” for a fixed dynamics is

compact. We endow the space of probability measures with the weak−∗ topology.

Keywords: Expanding measures; σ−compact set; Continuous variation; Markov parti-

tions; Young Tower; Lyapunov exponents.
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Introduction

One can say that the main goals of Dynamics can be narrowed down into two

parts: To describe for the majority of orbits the behavior as time goes to infinity and to

understand whether this limit behavior is stable under small changes in the evolution law

of the system. In this work we mainly are concerned to the second part.

We study in a broader way the stability (or continuation) for certain classes of

chaotic systems, namely, systems which exhibit non-uniformly expanding (NUE) behavior

on the growth of the derivative for most of its orbits. We study under what conditions one

can observe the continuity of the set of expanding measures with respect to the dynamics.

The context of expanding measures presents a more general setting than the context

involving only Lebesgue measure. Roughly speaking, a probability measure is called

expanding if it gives full weight to the set of points displaying non-uniform expanding

behavior (see Definition 1.2.2 for more details). Examples 9.6 and 9.7 of [24] shows us

that even in lower dimensions the context of expanding measures is much richer than the

context involving Lebesgue measures: There are systems which do not admit invariant

measures that are absolutely continuous with respect to the Lebesgue measure and, even

more, these systems present zero Lyapunov exponent for Lebesgue almost every point, but

they possesses an uncountable number of ergodic invariant probabilities whose supports

are the whole manifold and whose Lyapunov exponents are positive (see Remark 2.4.1

and Theorem 5.2.1). Roughly speaking, our results ensure that considering a NUE system

then NUE behavior holds for every dynamic close enough (this is one direction) and we

also consider the opposite direction: if a dynamic is accumulated by NUE dynamics, this

limit dynamic also presents NUE behavior.

We remark that, although some similarities in a few statements, our approach

can not be regarded as statistical stability, where one attempts to express stability in

terms of persistence of statistical properties of the system. Roughly speaking, in this

case we can compare the average along the orbit with the average of the system in the

ambient space. But one distinctive feature in the statistical stability case is that one

can follows the continuation of a measure with an specific property (for instance, the

absolutely continuous invariant measure with respect to Lebesgue, see [13, 31] for the

1



2

uniformly hyperbolic case, [9, 2, 4] for the non-uniformly expanding case and [15, 33] for

the partially hyperbolic case). On the other hand, in our approach we do not follow the

continuation of measures only with some reference property. One can expect that when

we perturb the dynamics we obtain for each dynamic close infinitely many expanding

measures close to the original expanding measure.

We need some preliminary definitions.

Definition 0.0.1. Let Y be a metric space and let K(Y ) be the collection of compact

subsets of Y . We define the Hausdorff distance on K(Y ) by:

dH(A,B) ∶= inf{ε ≥ 0; A ⊂ Bε and B ⊂ Aε}, (1)

where Aε = ⋃
a∈A

{y ∈ Y ; d(a, y) ≤ ε} is the ε−neighborhood of the compact subset A ⊂ Y .

Definition 0.0.2. Let X and Y be metric spaces. We say that a map Γ ∶X Ð→K(Y ) is a

family of compact sets parameterized by X. If Γ is continuous at some x ∈X, we say that

it is a family of compact sets parameterized by X continuous at x. If Γ ∈ C0(X,K(Y ))

it is said to be a continuous family of compact sets parameterized by X.

In this case we endow K(Y ) with the topology given by the Hausdorff distance.

If Γ ∶ X Ð→ K(Y ) is a continuous family of compact sets parameterized by X

then, for x1, x2 ∈ X close enough, the compact sets Γ(x1) and Γ(x2) will be close with

respect to the Hausdorff distance. It means that for each point of Γ(x1) there is a point

of Γ(x2) close enough and vice versa.

Definition 0.0.3. We say that a metric space Y is σ−compact if Y = ⋃
j∈N
Yj can be written

as the countable union of infinitely many compact sets Yj ⊂ Y .

We denote by d∗ the distance in the space M1(K) of probability measures on a

compact metric space K, which is defined in the following way:

Since K is a compact metric space, there is a countable subset (ϕi)i∈N of C0(K)

which is dense in the unit ball B1 ∶= {ϕ ∈ C0(K); ∣∣ϕ∣∣0 ≤ 1}. Given µ, ν ∈ M1(K), we

define:

d∗(µ, ν) =
+∞
∑
i=1

1

2i
∣∫
K
ϕidµ − ∫

K
ϕidν∣ .

The uniformly expanding case

Lets analyze first what happens in the uniformly expanding/hyperbolic case and

then we will try to understand what happens beyond the uniformly hyperbolic scenario at
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least for some class of transformations. Consider a uniformly hyperbolic diffeomorphism

f ∶ M Ð→ M defined on a compact Riemannian d−dimensional manifold. Denote the

set of all invariant hyperbolic probability measures for f by M1
f,hyp, that is, the set of

probabilities which gives full weight to the hyperbolic set of f (which will be assumed to

be all the manifold M). Since every point belongs to the hyperbolic set, it is clear that

M1
f,hyp coincides with M1

f (the set of every invariant probability measures for f). We

conclude that M1
f,hyp is a compact set of M1(M), the set of every borelian probability

measures on M endowed with the weak−∗ topology. In an analogous way, if we admit that

f is an uniformly expanding endomorphism, we can define the set of expanding invariant

probabilities for f as the set of probabilities that gives full weight to the expanding set of

f (which is, again, all the manifold M).

Theorem 0.0.4. Denote by X the set of C2 uniformly hyperbolic diffeomorphisms g ∶

M Ð→M , Yg ∶= M1
g,hyp and Y ∶= M1(M). Then the map

Γ ∶X Ð→K(Y ),Γ(g) ∶= Yg

is a continuous family of compact sets parameterized by X.

Before we prove Theorem 0.0.4, it is worth to say some words about structural

stability. The notion of structural stability, was proposed by Andronov and Pontryagin,

[11], back in the thirties, and since then much effort has been made to characterize systems

with such property.

Definition 0.0.5. We say that a diffeomorphism f ∶ M Ð→ M is structurally stable

if there is a neighborhood V of f such that for each g ∈ V there is a homeomorphism

h ∶M Ð→M such that

h ○ f = g ○ h.

In the 60′s Palis and Smale conjectured in [23] that: a diffeomorphism (or flow)

is structurally stable if, and only if, it is Axiom A and satisfies the strong transversality

condition. The conjecture proved to be true by the work of authors such as J. Robbin, J.

C. Robinson and R. Mañe (see [28, 29, 18]). This result can be improved: one can show

that the conjugation can be required to depend nicely on the perturbation (see [16]): The

neighborhood V ∋ f can be taken in such a way that for each g ∈ V , the conjugation h = hg

and there is K > 0 (uniform on V ) such that

sup
x∈M

d(hg(x), x) ≤K sup
x∈M

d(g(x), f(x)). (2)

Also, M. Shub studied structural stability for uniformly expanding endomor-

phisms (see [32]): He extended the results on structural stability above for uniformly ex-

panding endomorphism of a compact manifold. In this way, we may enounce the following

result, witch is a version of Theorem 0.0.4 for uniformly expanding endomorphisms.
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Theorem 0.0.6. Denote by X the set of C2 uniformly expanding endomorphisms g ∶

M Ð→M , Yg ∶= M1
g,exp and Y ∶= M1(M). Then the map

Γ ∶X Ð→K(Y ),Γ(g) ∶= Yg

is a continuous family of compact sets parameterized by X.

Proof of Theorem 0.0.6: Since f is uniformly expanding, we conclude by the Corollary

of Theorem α of [32] that there is a neighborhood V ∋ f such that for each g ∈ V there

is a homeomorphism hg satisfying hg ○ f = g ○ hg and 2. Consider µ ∈ Yf = M1
f,hyp. It is

a straightforward fact that the probability measure ν defined as ν ∶= µ ○ h−1 belongs to

Yg = M1
g,hyp. Consider ε > 0. We will show that there is δ > 0 such that d0(g, f) < δ ⇒

d∗(µ, ν) < ε.

Consider i0 > 0 such that
+∞
∑
i=i0

1

2i
< ε/4 (because

+∞
∑
i=1

1

2i
is a convergent series) and

δ > 0 suitable to the uniform continuity of each ϕi, i ∈ {1,⋯, i0}. Precisely, δ > 0 is such

that

∀x1, x2 ∈M, d(x1, x2) < δ⇒ ∣ϕi(x1) − ϕi(x2)∣ < ε/ (2 ⋅
i0−1

∑
k=1

1

2k
) ,∀i ∈ {1,⋯, i0 − 1}, (3)

which is possible since we have a finite number of ϕ′is and each ϕi is uniformly continuous

on the compact M).

Thus, if x ∈M is such that d(hg(x), x) < δ and ν = µ ○ h−1
g , we have that

d∗(µ, ν) =
+∞
∑
i=1

1

2i
∣∫
M
ϕidµ − ∫

M
ϕidν∣

=
+∞
∑
i=1

1

2i
∣∫
M
ϕidµ − ∫

M
ϕidµ ○ h

−1
g ∣

=
+∞
∑
i=1

1

2i
∣∫
M
ϕidµ − ∫

M
ϕi ○ hgdµ∣

=
+∞
∑
i=1

1

2i
∣∫
M
ϕi − ϕi ○ hgdµ∣

=
i0−1

∑
i=1

1

2i
∣∫
M
ϕi − ϕi ○ hgdµ∣ +

+∞
∑
i=i0

1

2i
∣∫
M
ϕi − ϕi ○ hgdµ∣

< ε/2 + 2 ⋅
+∞
∑
i=i0

1

2i
< ε/2 + 2 ⋅ ε/4 = ε.

In the last inequality we used the fact that ∣ϕi(x) − ϕi ○ hg(x)∣ < 2, ∀x ∈M, ∀i ∈

N, because the functions ϕi are taken in the unit ball B1.

So, in view of 2 it is enough to take g ∈ V satisfying sup
x∈M

d(g(x), f(x)) < δ/K and

we are done.
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In an analogous way we prove that given a measure ν ∈ Yg the measure µ ∶= ν ○hg

belongs to Yf and given ε > 0 there is δ > 0 such that supx∈M d(g(x), f(x)) < δ⇒ d∗(µ, ν) <

ε.

With this we conclude that, denoting by d also the distance in the space X,

d(g, f) < δ ⇒ dH(Yg, Yf) < ε (where, in this case, d denotes the distance in X associated

to the C2 topology) and the proof is complete.

◻

Remark 0.0.7. The proof of Theorem 0.0.4 is analogous to the proof of Theorem 0.0.6,

since it is based on the notion of structural stability.

Now that we understand that the set of expanding measures is a compact set that

varies continuously with the dynamics, when we restrict ourselves to uniformly expanding

diffeomorphisms, we will study this phenomenon in another context: Non-uniformly ex-

panding maps (NUE maps). We will conclude in Main Theorem (see Chapter 1) that in

fact the set of expanding measures for a NUE map may not be compact, in general, but

it is σ−compact. Furthermore, this set varies continuously in compact sets, in the sense

of Definition 0.0.2. We will identify some parameters that allows us to control the contin-

uous variation of the set of expanding measures and obtain classes of compact sets inside

it. By fixing the parameters, we will conclude that although the whole set of expanding

measures may not vary continuously, the set of measures with “bounded parameters”

vary continuously (see Theorems A and B and Definition 1.4.1). Theorems A and B both

work in complementary directions. This is connected to the nature of Hausdorff distance:

in order to check if two compact sets are close, we need to compare distance between

points in these sets in both directions (see Equation 1). Theorems A and B are the core

results in this work and they are used to prove our Main Theorem, where we state that

one can observe the continuation of some subsets of the set of expanding measures (or,

equivalently, of the set of measures with positive Lyapunov exponents). These subsets

are described in Definition 1.4 and in a more detailed way in the proof of Main Theorem.

The text is organized as follows. In Chapter 1 we present preliminary definitions

and results and explain formally the statement of the main results in this work. In Chapter

2 we point out some of the main tools utilized in the proofs of the main theorems. We

analyze specially the relation of Markov maps with NUE maps and expanding measures.

In Chapter 3 we prove some results involving the stability for return maps. This is the core

of the technical results present in this work, where we understand how the perturbation of

a dynamics affects the associated induced Markov maps and their properties. We dedicate

Chapters 4 and 5 to the proof of the main theorems. Finally, in Chapter 6 we point out

future perspectives for this work.



Chapter 1

Preliminaries and statement of main

results

1.1 Preliminaries

Let M be a compact Riemannian manifold of dimension d ≥ 1 and f ∶M Ð→M

a map defined on M .

The map f is called non-flat if it is a local C1+ diffeomorphism (i.e., C1+α with

α > 0) in the whole manifold except in a non-degenerated critical/singular set C ⊂M , that

is, a subset for which there is β > 0 such that f behaves like a polynomial of degree β

close to it.

Definition 1.1.1. We say that C ⊂M is a non-degenerated critical/singular set if ∃β,B >

0 such that the following conditions hold:

1
1

B
dist(x,C)β ≤

∥Df(x)v∥

∥v∥
≤ Bdist(x,C)−β

for all v ∈ TxM .

For every x, y ∈M/C with dist(x, y) < dist(x,C)/2 we have:

2

∣ log ∥Df(x)−1∥ − log ∥Df(y)−1∥∣ ≤
B

dist(x,C)β
dist(x, y).

Definition 1.1.2. A map f ∶M Ð→M is called non-flat if it is a C1+α local diffeomor-

phism except in a non-degenerate critical/singular set C ⊂M .

A measure µ is called f−non-singular if f∗µ ≪ µ, where f∗µ = µ ○ f−1 is the

push-forward of µ by f . Consider a non-flat map f with critical/singular set C ⊂ M . A

finite measure µ is called f−non-flat if it is f−non-singular, µ(C) = 0, the Jacobian Jµf(x)
6
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is well defined and positive for µ−almost every x ∈ M , and for µ-almost every x, y ∈ M/

with dist(x, y) < dist(x,C)/2 we have

∥log
Jµf(x)

Jµf(y)
∥ ≤

B

dist(x,C)β
.

Unless otherwise stated, we deal in this work with non-flat dynamics and non-

singular measures.

Definition 1.1.3. We say that a point x ∈M has all Lyapunov exponents positive if

lim sup
n∈N

1

n
log ∣∣(Dfn(x))−1∣∣−1 > 0. (1.1)

Additionally, we say that µ has all of its Lyapunov exponents positive if 1.1 holds

for µ−almost every point x ∈M .

1.2 Non-uniformly expanding (NUE) maps

Definition 1.2.1. A positively invariant set H ⊂M (i.e., f(H) ⊂ H) is called (λ, `)−expanding,

λ ≥ 0, if there exists ` ∈ N with

lim sup
nÐ→∞

1

n

n−1

∑
i=0

log ∥Df̃(f̃ i(x))−1∥−1 > λ, (1.2)

for every x ∈ H (where f̃ = f `), and H satisfies the slow approximation condition, i.e., for

each ε > 0 there is δ > 0 such that

lim sup
nÐ→∞

1

n

n−1

∑
j=0

− log distδ(f
j(x),C) ≤ ε (1.3)

for every x ∈ H, where distδ(x, y) denotes the δ−truncated distance from x to C, defined

as

⎧⎪⎪
⎨
⎪⎪⎩

distδ(x,C) = dist(x,C), if dist(x,C) ≤ δ

distδ(x,C) = 1, if dist(x,C) > δ

When C = ∅, H is (λ, `)−expanding if 1.2 holds for every x ∈ H.

Definition 1.2.2. A probability measure µ is called (λ, `)−expanding measure (with re-

spect to f) if µ is f -non singular (f∗µ ≪ µ) and there exists a (λ, `)−expanding set H

such that µ(M/H) = 0. In this case we also say that f is (non-uniformly) expanding.

We may drop the indexes writing that µ is a λ−expanding measure (or even an

expanding measure) and H is a λ−expanding set (or even an expanding set), when there

is no chance of misunderstanding.
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We denote the set of all ergodic invariant expanding probability measures for f

by M1
exp(f).

If µ ∈ Mexp(f), then by 1.2 the expansion time function

Eλ(x) = min{N ≥ 1;
1

n

n−1

∑
i=0

log ∣∣Df(f i(x))−1∣∣−1 ≥ λ, ∀n ≥ N} (1.4)

is defined and finite for µ−almost every point x ∈M . Also, the recurrence time function

Rε,δ(x) = min{N ≥ 1;
1

n

n−1

∑
i=0

− log distδ(f
i(x),C) ≤ ε, ∀n ≥ N} (1.5)

is defined and finite for µ−almost every point x ∈M . We define the tail set

Γn(λ, ε, δ) = {x; E(x) > n orRε,δ(x) > n} . (1.6)

This is the set of points which at time n have not yet achieved either the uniform

exponential growth of derivative or the uniform slow recurrence. If C = ∅, we ignore the

recurrence time function in the definition of the tail set. We may drop the indexes and

write Γn instead of Γn(λ, ε, δ) when there is no chance of misunderstanding.

1.3 Hyperbolic times

Definition 1.3.1. Let us fix 0 < b = 1
3 min{1,1/β}. Given 0 < σ < 1 and ε > 0, we say that

n is a (σ, ε)-hyperbolic time for a point x ∈M (with respect to the non-flat map f with a

β-non-degenerated critical/singular set C) if for all 1 ≤ k ≤ n we have

n−1

∏
j=n−k

∣∣(Df ○ f j(x))−1∣∣ ≤ σk and distε(f
n−k(x),C) ≥ σbk. (1.7)

We denote the set of points of M such that n ∈ N is a (σ, ε)-hyperbolic time by Hn(σ, ε, f)

or, shortly, by Hn(f).

We point out that in the case C = ∅ the definition of (σ, δ)−hyperbolic time

reduces to the first condition in 1.7 and we simply call it a σ−hyperbolic time.

The following results (Propositions 1.3.2 and 1.3.5), whose proofs can be found

in [3] and [6], give the main properties of hyperbolic times that we shall utilize.

Proposition 1.3.2 (Geometric properties of hyperbolic times). Given σ ∈ (0,1) and

ε > 0, there exists δ > 0, which depends only on σ, ε and on the map f , such that if

x ∈Hn(σ, ε, f) then there is a neighborhood Vn(x) of x satisfying:

1. fn maps Vn(x) diffeomorphically onto the ball Bδ(fn(x));

2. dist(fn−j(y), fn−j(z)) ≤ σj/2 dist(fn(y), fn(z)); ∀y, z ∈ Vn(x) and 1 ≤ j ≤ n,
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The sets Vn(x) are called hyperbolic pre-balls and their images, fn(Vn(x)) =

Bδ(fn(x)), hyperbolic balls. See Figure 1.1. We may refer to items 1) and 2) of

Proposition 1.3.2 as geometric version of hyperbolic times. Since we are dealing with

(λ, `)−expanding measures, sometimes one can consider a geometric version of hyperbolic

times not just for f but also for f̃ ∶= f `, i.e., for every y, z in the hyperbolic pre-ball V (x)

of x one has:

dist(f̃n−j(y), f̃n−j(z)) ≤ σj/2dist(f̃n(y), f̃n(z)); ∀y, z ∈ Vn(x) and 1 ≤ j ≤ n,

Figure 1.1: Example where n = 4 is a hyperbolic time for x.

The following Lemma is a straightforward consequence of the definition of hyper-

bolic times.

Lemma 1.3.3. Hyperbolic times satisfy the following property:

If p ∈Hj(σ, δ, f) and f j(p) ∈Hl(σ, δ, f) then p ∈Hj+l(σ, δ, f).

Remark 1.3.4. a) If n is a hyperbolic time for x ∈ M , chain rule and Proposition

1.3.2 immediately give us that ∣∣(Dfn(x))−1∣∣ < σn.

b) If g ∶M Ð→M is differentiable at a point p ∈M then

∣∣(Dg(p))−1∣∣−1 = lim inf
xÐ→p

d(g(x), g(p))

d(x, p)
.

In fact, if we see in local coordinates then g is differentiable at p if, and only if,
1

∣∣x − p∣∣
(g(x) − g(p) −Dg(p) ⋅ (x − p)) Ð→ 0 when xÐ→ p. But since

1

∣∣x − p∣∣
∥g(x) − g(p) −Dg(p) ⋅ (x − p)∥ ≥

∥Dg(p)⋅(x−p)∥
∣∣x−p∣∣ −

∣∣g(x)−g(p)∣∣
∣∣x−p∣∣ ≥

∣∣Dg(p)−1∣∣−1 ⋅ ∣∣x − p∣∣

∣∣x − p∣∣
−

∣∣g(x) − g(p)∣∣

∣∣x − p∣∣
= ∣∣Dg(p)−1∣∣−1 −

d(g(x),g(p))
d(x,p) ,
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we get that ∣∣Dg(p)−1∣∣−1 −
d(g(x), g(p))

d(x, p)
Ð→ 0 when xÐ→ p, and we are done.

In particular, we obtain that if there are f ∶M Ð→M , x ∈M , 0 < σ < 1 and n > 0 is

such that items (1) and (2) of Proposition 1.3.2 holds, then

∣∣(Dfn(x))−1∣∣−1 > σ−n ≥ σ−1.

As we will see in the proof of Claim 4.1.3, this gives us some sort of an equiva-

lence between the analytical definition of hyperbolic times in 1.7 and the geometric

property they have as described in Proposition 1.3.2. We use the term “some sort

of equivalence” in last sentence because we may recover the analytical feature of

hyperbolic times from the geometrical not for f but for some iterate f ` of it.

c) By using Birkhoff’s Theorem, we get that if µ is an ergodic f−invariant probability

and there is λ > 0 with ∫ log(∣∣(Df)−1∣∣−1)dµ > λ then there exists H ⊂ M with

µ(H) > 0 such that 1.2 holds for µ−almost every point x ∈M .

d) As a consequence of the definition of non-degenerated critical set, we obtain that if

log dist(x,C) is µ−integrable then log(∣∣(Df)−1∣∣−1) is also µ−integrable. In fact, by

condition (1) of Definition 1.1.1 we can obtain that there exists ρ > β such that

∣ log ∣∣(Df)−1∣∣−1∣ ≤ ρ∣ log dist(x,C)∣

for all x in a small open neighborhood V of C. To obtain this it is enough to

take some ρ greater than β (remember that condition (1) of Definition 1.1.1 yields
1
Bdist(x,C)β ≤ ∥Df(x)−1∥ ≤ Bdist(x,C)−β). Since log ∣∣(Df)−1∣∣−1 is bounded on the

compact set M/V , this function must be integrable with respect to µ on M as long

as log dist(x,C) is µ−integrable.

Let

ϕexp,+(x) ∶= lim sup
n∈N

1

n
♯{1 ≤ j ≤ n; x ∈Hj(f)} (1.8)

denote the frequency of hyperbolic times for x ∈M .

1.3.1 Frequency of hyperbolic returns

It is well known that if H is an expanding set for a map f ∶M Ð→M then every

point x of H has infinitely many hyperbolic times. Indeed, they have uniformly bounded

positive frequency of hyperbolic times, as we state in the following result.

Proposition 1.3.5. Given λ > 0, ` ∈ N and a (λ, `)−expanding measure for f there exists

θ′ > 0, σ > 0 and ε0 > 0 such that for µ−a.e.p. x ∈M and ε ∈ (0, ε0]

lim sup
n∈N

1

n
♯{1 ≤ j ≤ n; x ∈Hj(σ, ε, f

`)} > θ′.
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We remark that in this case we can take σ = e−λ/4. The proof of this Proposition

can be found in Alves [3] and Alves, Bonatti, Viana [6]. However we will include this

proof here to emphasize the dependence of the frequency θ′ on f and λ. This result is an

application of a Lemma due to Pliss (see A.0.1).

Proof: Lets suppose that 1.2 holds for some x ∈ M . Then, for N ∈ N large enough we

have that
N−1

∑
j=0

log ∣∣Df(f j(x))−1∣∣−1 ≥ λN.

If we take β > 0 given by Definition 1.1.1 and fix any ρ > β, we get by condition 1 of the

same Definition that

∣log ∣∣Df(x)−1∣∣∣ ≤ ρ ∣log dist(x,C)∣ (1.9)

for every x in a neighborhood V of C.

Fix ε1 > 0 so that ρε1 ≤ λ/2. By 1.3 (hypothesis of slow recurrence to the critical

set) we can take r1 > 0 such that

N−1

∑
j=0

log distr1(f
j(x),C) ≥ −ε1N. (1.10)

Fix any K1 ≥ ρ∣ log r1∣ large enough so that log ∣∣Df(y)−1∣∣−1 ≤ K1, ∀y ∈ M/V .

Then let J be the subset of times 1 ≤ j ≤ N such that log ∣∣Df(f j−1(x))−1∣∣−1 > K1 and

define:

aj =

⎧⎪⎪
⎨
⎪⎪⎩

log ∣∣Df(f j−1(x))−1∣∣−1 if j ∉ J

0 if j ∈ J

By construction, aj ≤ K1 for 1 ≤ j ≤ N . Note that if j ∈ J then f j−1(x) ∈ V .

Moreover, for each j ∈ J we have:

ρ∣ log r1∣ ≤K1 < log ∣∣Df(f j−1(x))−1∣∣ < ρ∣ log dist(f j−1(x),C)∣,

which shows that dist(f j−1(x),C) < r1 for every j ∈ J . In particular we have:

distr1(f
j−1(x),C) = dist(f j−1(x),C) < r1,∀j ∈ J.

Therefore, by 1.9 and 1.10,

∑
j∈J

log ∣∣Df(f j−1(x))−1∣∣−1 ≤ ρ∑
j∈J

∣ log dist(f j−1(x),C)∣ ≤ ρε1N.

See that ε1 was chosen in such a way that the last term is smaller than λN/2.

As a consequence we have that

N

∑
j=1

aj =
N

∑
j=1

log ∣∣Df(f j−1(x))−1∣∣−1 −∑
j∈J

log ∣∣Df(f j−1(x))−1∣∣−1 ≥
λ

2
N.
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Now, set c1 = λ/4, c2 = λ/2 and A =K1. Applying Lemma A.0.1 to the numbers a1,⋯, aN ,

we obtain θ1 > 0 and l1 ≥ θ1N times 1 ≤ p1 < p2⋯ < pl1 ≤ N such that

pi

∑
j=n+1

log ∣∣Df(f j−1(x))−1∣∣−1 ≥

pi

∑
j=n+1

aj ≥
λ

4
(pi − n) (1.11)

for every 0 ≤ n < pi and 1 ≤ i ≤ l1.

Now, fix ε2 > 0 small enough so that ε2 < θ1bλ/4, where b is as in the definition of

hyperbolic times, and let r2 > 0 be such that

N−1

∑
j=0

log distr2(f
j(x),C) ≥ −ε2N. (1.12)

Let c1 = −bλ/4, c2 = −ε2, A = 0 and θ2 =
c2 − c1

A − c1

= 1 −
4ε2

λ
.

Consider the numbers aj = log distr2(f
j−1(x),C), with 1 ≤ j ≤ N . Applying again

Lemma A.0.1 we conclude that there are l2 ≥ θ2N times 1 ≤ q1 < ⋯ < ql2 ≤ N such that

qi−1

∑
j=n

log distr2(f
j(x),C) ≥ −

bλ

4
(qi − n) (1.13)

for every 0 ≤ n < qi and 1 ≤ i ≤ l2.

We can easily see that our condition on ε2 means that θ1+θ2 > 1. Let θ′ = θ1+θ2−1.

Then there exists l = (l1 + l2 −N) ≥ θ′N times 1 ≤ n1 < ⋯ < nl ≤ N at which 1.11 and 1.13

occur simultaneously:
ni−1

∑
j=n

log ∣∣Df(f j(x))−1∣∣−1 ≥
λ

4
(ni − n)

and
ni−1

∑
j=n

log distr2(f
j(x),C) ≥ −

bλ

4
(ni − n),

for every 0 ≤ n < ni and 1 ≤ i ≤ l. Letting σ = e−λ/4 we easily obtain from the inequalities

above that

ni−1

∏
j=ni−k

∣∣Df(f j(x))−1∣∣ ≤ σk and distr2(f
ni−k(x),C) ≥ σbk

for every 1 ≤ i ≤ l and 1 ≤ k ≤ ni. In other words, all those ni are (σ, δ)−hyperbolic times

for x, with δ = r2.

◻

Remark 1.3.6. From the proof of Proposition 1.3.5 on easily sees that condition 1.3 in

the definition of non-uniformly expanding map is not needed in all its strength for the

proof work. Actually, the only places where we have used 1.3 are 1.12 and 1.10. Hence,

it is enough that 1.3 holds for ε = min{ε1, ε2} and δ = max{r1, r2}.
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Remark 1.3.7. Note that the proof of Proposition 1.3.5 gives more precisely that if for

some x ∈M and N ∈ N one has

N−1

∑
j=0

log ∣∣Df(f j(x))−1∣∣−1 ≥ λN and
N−1

∑
j=0

log distδ(f
j(x),C) ≥ −εN

(where ε and δ are chosen according to Remark 1.3.6), then there exist integers 0 < n1 <

⋯ < nl < N , θ′ > 0 and δ > 0 such that l > θ′N and x ∈Hni(σ, δ, f) for each 1 ≤ i ≤ l.

Now, following [24], consider x ∈ M and a subset U(x) ⊂ O+(x) of the positive

orbit of x.

Definition 1.3.8. The collection U = (U(x))x∈M is called asymptotically invariant if for

every x ∈M ,

1 ♯{j ∈ N; f j(x) ∈ U(x)} = ∞, and

2 U(x) ∩ O+
f (f

n(x)) = U(f(x)) ∩ O+
f (f

n(x)) for every big n ∈ N.

Define ωf(x) as usual (the set of accumulation points of O+
f (x)) and ωf,U(x) as

the set of accumulation points of U(x)

Remark 1.3.9. We can conclude by using Lemma 1.3.3 that the collection of hyperbolic

iterates in the orbit of each x ∈ H, i.e., the collection h = (h(x))x∈H of sets h(x) ∶=

{fn(x); n ≥ 1, x ∈Hn(σ, δ, f)}, is an example of asymptotically invariant collection.

Definition 1.3.10. The collection U has positive frequency if lim sup 1
n ♯{1 ≤ j ≤ n; f j(x) ∈

U(x)} > 0 for every x ∈ H.

In this case we define the set of U -frequently visited points of the orbit O+(x) as

the set of points p ∈ M such that lim sup
nÐ→+∞

1

n
♯{1 ≤ j ≤ n; f j(x) ∈ U(x) ∩ V } > 0 for every

neighborhood V of p. This set is denoted by ω+,f,U .

Notation 1.3.11. In the sequel we denote

ϕVU (x) ∶= lim sup
nÐ→+∞

1

n
♯{1 ≤ j ≤ n; f j(x) ∈ U(x) ∩ V } > 0 (1.14)

The function ϕVU (x) denotes the frequency of visits of the orbit of x to the set V ,

but not considering every iterates, only those who belong to the collection U (we refer to

this by using the term U−visits of x to the set V ). In an analogous way, if x ∈ V , ϕVU (x)

denotes the frequency of U−returns of the orbit of x to the set V . If necessary, we use the

notation ϕVU ,f to emphasize the dynamics used in the required context.
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Proposition 1.3.12. Assume that (f, µ) is ergodic. There is a compact set A ⊂M such

that ωf(x) = A for µ−a.e.p. x ∈M .

Proposition 1.3.13. Let U = (U(x))x∈M be an asymptotically invariant collection and

let A be the attractor associated to M (as in Proposition 1.3.12). There exists a compact

AU ⊂ M such that ωf,U(x) = AU for µ−a.e.p. of M . Furthermore, if U has positive

frequency then there is also a compact set AU ,+ ⊂M such that ωf,U ,+(x) = AU ,+ for µ−a.e.p.

of M .

A proof for the last two results can be found in Section 3 of [24]. The set A is

called an ergodic attractor whereas the sets AU and AU ,+ are called U−ergodic attractor

and statistical U−ergodic attractor, respectively. In our context one cannot expect that

both AU and AU ,+ have positive measure, but one always have µ(A) > 0 (see Proposition

3.12 of [24]).

Figure 1.2: U is an ergodic component with attractor A and ωU -limit set AU .

Remark 1.3.14. It is worth to note that Propositions 1.3.12 and 1.3.13 are valid even if

µ is an ergodic measure not necessarily invariant. When we consider the case where µ is

an ergodic invariant measure, one can show that the ergodic attractor coincides with the

support suppµ of µ.
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Remark 1.3.15. Consider a non-flat expanding map f ∶M Ð→M and µ ∈ M1
exp(f). For

each x ∈ M consider the collection of hyperbolic images of x, h = (h(x))x∈M , defined as

h(x) = {fn(x), x ∈ Hn(σ, ε, f)} (see Definition 1.3.1). It is easy to see (by using Lemma

1.3.3) that in fact the collection h is an asymptotically invariant collection. Thus by

Proposition 1.3.13 we obtain an h−ergodic attractor, that we call a hyperbolic ergodic

attractor and denote by Afhyp, such that ωf,h(x) = A
f
hyp for µ−a.e.p. x ∈M . Furthermore

there is an h−statistical ergodic attractor, that we call a statistical hyperbolic ergodic

attractor and denote by Afhyp,+, such that ωf,h,+(x) = A
f
hyp,+ for µ−a.e.p. x ∈M .

Lemma 1.3.16. Consider µ ∈ Mexp(f) and suppose that the frequency of hyperbolic times

of x is bounded from below by θ′ > 0 for µ−a.e. point x ∈M . Then, there exists N > 1 and

a set B ⊂M with ϕBh,f(x) ≥ θ
′ ⋅ 1

N for µ−a.e.p. x ∈M .

Proof: Consider a finite cover of M by open balls B1,B2,⋯BN . Let Af,+,hyp be the

statistical attractor for f on M given by Proposition 1.3.13. We can see by definition

of Af,+,hyp that if Bi ∩ Af,+,hyp = ∅ then ϕBif,hyp(x) = 0 for µ− a.e.p. x ∈ M . In this way,

we can assume with no loss of generality that Bi ∩ Af,+,hyp ≠ ∅ ∀1 ≤ i ≤ N (we are not

counting the sets Bi such that Bi∩Af,+,hyp = ∅). Since the collection h = (h(x))x∈M of the

hyperbolic iterates in the orbit of each x ∈M is asymptotically invariant (see Definition

1.3.8 and Remark 1.3.9), we obtain that ϕBif,hyp is f−invariant ∀1 ≤ i ≤ N . Then, from the

ergodicity of µ we know that for each j there is kj > 0 such that ϕ
Bj
f,hyp ≡ kj( mod µ).

Now, consider a point x ∈ M typical for µ. Since the proportion of hyperbolic

iterates in O+
f (x) is higher than θ′ we have

ϕB1∪⋯∪BN
f,hyp (x) ≥ θ′.

Take B ∈ {B1,⋯,BN} with

ϕBf,hyp(x) = max
1≤j≤k

{ϕ
Bj
f,hyp(x)}.

Then:

θ′ ≤ ϕB1∪⋯∪BN
f,hyp (x) ≤

N

∑
j=1

ϕ
Bj
f,hyp(x) ≤ N ⋅ ϕBf,hyp(x),

that is, ϕBf,hyp(x) ≥ θ
′ ⋅

1

N
.

◻

We stress that by Lemma 1.3.16 we conclude that for the set B obtained, not only

the frequency of hyperbolic visits but the frequency of hyperbolic returns is bounded by
θ′

N
. Now fix 0 < r < δ, where δ is the radius of hyperbolic balls given by Proposition 1.3.2.

If we take a finite cover of M with balls of radius r one can see, arguing by induction

on the dimension of the manifold, that the cardinality of this cover can be taken as
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(
diamM + 1

2
√
dr

)

d

, where d is the dimension of the compact Riemannian manifold M . Then

we may assume that N in Lemma 1.3.16 satisfies

N = (
diamM + 1

2
√
dr

)

d

(1.15)

Consider an ergodic invariant expanding probability µ ∈ M1
exp(f).

Definition 1.3.17. Denote B ∶= {Br(p), p ∈ M, Br(p) ∩ A
f
hyp,+ ≠ ∅} as the collection of

every balls with radius r that intersects the statistical attractor Afhyp,+ given by Remark

1.3.15. We define the µ−frequency of hyperbolic returns as

θf ∶= sup
Br(p)∈B

{ϕ
Br(p)
f,hyp } .

See that we only need to consider balls that intersect the statistical attractor

because the frequency of hyperbolic visits to open sets that do not intersect this attractor

is always zero. Also, since the set B obtained by Lemma 1.3.16 satisfies ϕBf,hyp(x) ≥

(
diamM

2
√
dr

)

−d

⋅ θ′ for µ−almost every x ∈ B, we conclude that

θf ≥ (
diamM + 1

2
√
dr

)

−d

⋅ θ′ (1.16)

As we will see later, the frequency of hyperbolic returns θf plays a key role in our

constructions, since it is related to the integrability of return time functions with respect

to suitable measures. For further details, see Chapters 3 and 4.

1.3.2 First hyperbolic time

Consider a non-flat map f and suppose that there exists (σ, δ)−hyperbolic times

for almost every point with respect to a given f−invariant ergodic reference measure µ.

This allows us to introduce a map h ∶ M Ð→ Z+ defined µ−almost everywhere which

assigns to x ∈ M its first (σ, δ)−hyperbolic time (in other words, h(x) ∶= min{n ∈ N; x ∈

Hn(σ, δ, f)}).

1.4 Main Results

Denote byMexp(σ1/2, `, δ, θ, f) the set of all ergodic invariant expanding measures

associated to a map f for which the following requests are satisfied:

1 The frequency of hyperbolic returns θf is bounded from below by θ > 0,
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2 Almost every point x ∈M belongs to some pre-ball Vn(x′) that expands with respect

to f̃ ∶= f ` in a rate controlled by σ1/2, i.e.:

dist(f̃n−j(y), f̃n−j(z)) ≤ σj/2dist(f̃n(y), f̃n(z)); ∀y, z ∈ Vn(x
′) and 1 ≤ j ≤ n,

where 0 < σ < 1, and

3 The size of hyperbolic balls for the points in last assertion is at least δ.

Definition 1.4.1. If µ ∈ Mexp(σ1/2, `, δ, θ, f) we say that µ is an expanding measure for

f with bounded parameters.

Remark 1.4.2. One can see that, by controlling the parameters of an expanding measure

as in Definition 1.4.1, we can prevent that perturbations of this measure lack expanding

behavior, that is, we have compactness on the set of measures with bounded parameters

(see Theorem C).

Remark 1.4.3. See that the definition of expanding measure with bounded parameters is

based on the geometric properties of hyperbolic times, and not in the analytical definition

of them.

Theorem A. Consider 0 < σn < 1 with σn Ð→ σ0, δ, θ > 0, ` ∈ N and a convergent sequence

fn Ð→ f0 in the C1 topology. For each n ≥ 1 consider µn ∈ Mexp(σ
1/2
n , `, δ, θ, fn). Then

there are a subsequence µnj and an expanding measure µ0 ∈ Mexp(σ
1/2
0 , `, δ, θ, f0) such that

µnj Ð→ µ0 in the weak−∗ topology.

Theorem B. Consider a convergent sequence fn Ð→ f0 in the C1 topology and a measure

µ0 ∈ Mexp(σ
1/2
0 , `, δ, θ, f0). Then for n ∈ N big enough there exists 0 < σn < 1 and µn ∈

Mexp(σ
1/2
n , `, δ, θ, fn) with σn Ð→ σ0 such that µn Ð→ µ0 in the weak−∗ topology.

The following result is a consequence of Theorem A.

Theorem C. Let g ∶ M Ð→ M be a non-flat map. Then the set of expanding measures

with bounded parameters Mexp(σ1/2, `, δ, θ, g) is compact in the weak−∗ topology.

Proof: It is enough to take the constant sequence of dynamics gn = g and apply Theorem

A.

◻

Denote M1
+(f) as the set of all ergodic f−invariant probabilities whose all Lya-

punov exponents are positive and X as the set of non-flat maps endowed with the C1

topology.

Definition 1.4.4. We say that M1
+(f) varies continuously in compact sets at f if it can

be written as a nested union of compact sets Mf,ı such that:
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1 Mf,1 ⊂Mf,2 ⊂ ⋯ ⊂Mf,ı ⊂ ⋯ and M1
+(f) = ⋃

ı≥1

Mf,ı,

2 For each ı ∈ N there is a family of compact sets parameterized by some neighborhood

of f V ⊂ X Γı ∶ V Ð→ K(M1(M)) which is continuous at f . For g ∈ V we denote

Γı(g) =Mg,ı.

Main Theorem. Consider a non-flat map f ∶ M Ð→ M with exceptional set C ⊂ M

which is constituted only by critical points or only by singular points. If M1
+(f) ≠ ∅ then

it varies continuously on compact sets at f .

See that the continuity in item 2 of Definition is not necessarily uniform on ı ∈ N.

Furthermore, its clear in the definition of continuous variation above that the setM1
+(f)

is σ−compact. It will be clear in the proof of Main Theorem how the setsMf,ı are chosen

(in fact, the choice has to do with a proper adjustment of the parameters for a measure

with bounded parameters and requirement that they form a nested collection of sets).

Theorems A and B both work in complementary directions. In Theorem A we

construct an expanding measure for f0 assuming that dynamics close to f0 have some

expanding measure. In Theorem B we construct an expanding measure for dynamics

close enough to f0 assuming that f0 already has an expanding measure. In addition, in

both Theorems the expanding measures for fn and f0 are close, as long as fn is close

enough to f0. These Theorems are useful to obtain the continuous variation of expanding

measures on compact sets, as we can see in Main Theorem. It is useful to see that the sets

of measures with bounded parameters in Theorems A and B are in fact sets of expanding

measures. Furthermore, by Theorem C we see that these sets are also compact sets.

1.5 Examples and applications

Before we proceed to the proof of the mains results, lets understand what happens

with the set of expanding measures in some simple examples.

For start, one can see that even for small perturbations the set of invariant mea-

sures for a dynamics can change drastically. Denote I = [0,1].

Example 1.5.1. Consider f as the identity map on the interval I (Figure 1.3) and g as

some close perturbation of f as in Figure 1.4. While f has an uncountable number of

invariant measures, g only has two invariant measures.

Theorem 0.0.4 allows us to conclude that for every uniformly expanding map

the set of expanding measures is a compact set and varies continuously with the map.

This result is valid even for uniformly hyperbolic maps. However, outside the uniformly

hyperbolic scenario this statement does not hold.
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Figure 1.3: Figure 1.4:

Example 1.5.2. Consider the complete tent map f ∶ I Ð→ I given by f(t) = 1 − 2∣t − 1/2∣

(see Figure 1.5). Then the set of invariant measures coincides with the set of invariant

expanding measures. In fact, the obstruction to expanding behavior in this map is associ-

ated to the pre-orbit of t0 = 1/2, denoted by O−
f (t0). But since t0 is not a fixed point for

f , any measure supported in a subset U ⊂ O−
f (t0) is not an invariant measure.

Then we conclude that the set of invariant expanding measures for f is a compact

set.

Figure 1.5:

Example 1.5.3. Let a > 0 be such that
a

4
< 1 and consider the map f ∶ I Ð→ I given by:

f(t) =

⎧⎪⎪
⎨
⎪⎪⎩

at3 + (2 − a)t2 + a
4 t if 0 ≤ t < 1/2

1 − 2∣t − 3/4∣ if 1/2 ≤ t ≤ 1
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(See Figure 1.6). We can see that the set of invariant expanding measures is compact

(it is the set of invariant measures for the portion associated to the tent map) but f is

not an uniformly expanding map, since we have a negative Lyapunov exponent at t = 0

(see Section 2.4). So, the compactness of the set of expanding maps is not a sufficient

condition for a map to be uniformly expanding.

Figure 1.6:

One can see that in the non-uniformly expanding context, it may happens that

the set of expanding measures is not compact. As we can identify by Theorem C, when we

control some parameters associated to the measures, namely, the rate of expansion, the

frequency of hyperbolic returns and the size of hyperbolic balls, then we obtain compact-

ness. We refer to this kind of object as an expanding measure with bounded parameters

(see formal definitions about this concept in Section 1.4). In the next example we explore

the case when we do not control the rate of expansion.

Example 1.5.4. Consider the map f ∶ I Ð→ I whose graph is given by Figure 1.7.

For instance, we can say that this graph is obtained from a rotation of the graph of

g(t) = t4 ⋅ sin
π

t
. See that, for each n ≥ 1, µn ∶= δ 1

2n
is an expanding measure. However,

µn Ð→ µ0 ∶= δ0, which is not an expanding measure for f . Then, even in lower dimension,

the set of expanding measures is not compact.

Although outside the uniformly hyperbolic context we cannot expect that the set

of expanding measures is compact (or even that it varies continuously), Main Theorem

tells us that for NUE maps this set is σ−compact and varies continuously on compact

sets. By Theorem C we see that, even though the set of all expanding measures is

not necessarily compact, when we control the parameters associated to the expanding

measure, namely, the rate of expansion, the first iterate when we observe expansion, the

frequency of hyperbolic returns and the size of hyperbolic balls, the set of measures with
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Figure 1.7:

bounded parameters will be compact. This is an important step in the construction of

the compact pieces in the decomposition required in Definition 1.4.

In [24], Pinheiro gives us examples of some classes of maps which exhibits plenty

of expanding measures. Between them we can cite:

Example 1.5.5. Let f ∶ I Ð→ I be given by

f(t) =

⎧⎪⎪
⎨
⎪⎪⎩

g(t), t < 1/2

1 − g(1 − t), t ≥ 1/2,

where g(t) = t+2t2. By using Theorem 5 of [24] we can conclude that f has an uncountable

number of ergodic invariant expanding measures.

Example 1.5.6. Let F ∶ I2 Ð→ I2 be given by

F (x, y) = (f(x), (1 + x)φ(y)),

where f is as in Example 1.5.5 and φ(y) = 1/2 − ∣y − 1/2∣ is the “tent” map of slope one.

Again, applying Theorem 5 of [24] we conclude that F has an uncountable number of

ergodic invariant expanding measures.

Example 1.5.7. An important class of non-uniformly expanding dynamical systems (with

critical sets) in dimension greater than one was introduced by Viana in [34]. This class

of maps can be described as follows: Consider a0 ∈ (1,2) such that the critical point x = 0

is pre-periodic for the quadratic map Q(x) = a0 − x2. Let S1 = R/Z and b ∶ S1 Ð→ R
be a Morse function, for instance, b(s) = 2πs. For fixed small α > 0, consider the map

F ∶ S1 ×RÐ→ S1 ×R defined as

F (s, x) = (g(s), q(s, x)),
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where g is the uniformly expanding map of the circle defined by g(s) = d ⋅ s(mod Z) for

some d ≥ 16 and q(s, x) = a(s) − x2 with a(s) = a0 + αb(s).

Its possible to perform an analogous construction in higher dimensions.

By applying Theorem 7 of [24] we can conclude that F admits an uncountable

collection of ergodic invariant measures with all Lyapunov exponents positive (see Section

1.1 for precise definitions).

In conclusion, we can apply our main results to these maps and obtain that every

small perturbation of them in the C1 topology gives rise to maps exhibiting expanding

measures and the set of expanding measures varies continuously in compact sets as in

Definition 1.4.



Chapter 2

Tools and strategies

In this Chapter we present some of the main tools and strategies used in the

proof of the main theorems. Some of the results in this section are largely known in the

literature but we include some proofs in here for completeness and to see how constants

depend on each other.

2.1 Markov maps and liftable measures

Consider a mensurable map F ∶ U Ð→ U defined in a Borel set U ⊂ M and a

countable collection P = {P1, P2, P3,⋯} of Borel subsets of U satisfying:

Definition 2.1.1. We say that P is a Markov partition and (F,P) is a full Markov map

if the following assumptions are satisfied:

• int(Pi) ∩ int(Pj) = ∅, if i ≠ j

• F ∣P is a homeomorphism and can be extended to a homeomorphism sending P onto

U,∀P ∈ P;

• lim
j
diam(Cj(x)) = 0, ∀x ∈ ∩j≥0F

−j(∪iPi), where Cj(x) = {y; P(F s(y)) = P(F s(x)) ∀0 ≤

s ≤ j} and P(x) denotes the element of P which contains x. We call Cj(x) as the

j−cylinder containing x in the Markov partition P.

Definition 2.1.2. Consider a function F ∶ U Ð→ U and a full Markov partition P with

respect to F . The pair (F,P) is called a full Markov map induced by f defined on U if

there exists a function R ∶ U Ð→ N = {0,1,2,3,⋯} (the inducing time) such that

• {R ≥ 1} = {x ∈ U ; R(x) ≥ 1} = ⋃P ∈P P ,

• R∣P is constant ∀P ∈ P,

23
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• F (x) = fR(x)(x) ∀x ∈ U .

We often say induced Markov map instead of full Markov map induced by f when

there is no chance of misunderstanding.

Definition 2.1.3. Given a full induced Markov map (F,P), an ergodic f -invariant prob-

ability µ is said to be liftable to F if there exists a finite F -invariant measure ν ≪ µ such

that

µ = ∑
P ∈P

R(P )−1

∑
j=0

f j∗(ν∣P ),

where R is the inducing time of F , ν∣P denotes the measure given by ν∣P (A) = ν(A ∩ P )

and f j∗ is the push-forward by f j (f j∗ν = ν ○ f−j).

Figure 2.1:

Definition 2.1.4. We say that an induced Markov map (F,P) defined on an open set

Y ⊂X is compatible with a measure µ if

1. µ(Y ) > 0;

2. µ is F -non-singular;

3. µ(⋃P ∈P P ) = µ(Y ) (in particular, µ(∂P ) = 0 ∀P ∈ P).

Definition 2.1.5. We say that an induced Markov map (F,P) defined on a set Y ⊂ X

has bounded distortion with respect to a measure µ (or, in a simplest way, has µ-bounded

distortion) if

• (F,P) is compatible with µ;

• µ has Jacobian with respect to F and
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• ∃K > 0 such that

∣log
JµF (x)

JµF (y)
∣ ≤K dist(F (x), F (y)),

for µ almost every point x, y ∈ P and for all P ∈ P

The problem of lift a measure was studied by several authors in the last years.

Among them, Aaronson gives in [1] a condition to lift a measure f -invariant to the level

of the induced Markov map (namely, bounded distortion for the measure), as we can see

in Theorem 2.1.7. In [24] Pinheiro removes the bounded distortion condition, replacing it

by a statistical condition (see Theorem 2.1.8). Also, we can project a given measure that

is invariant for the induced Markov map, as long as its return time is integrable, as we

can see in next Theorem.

Theorem 2.1.6 (Folklore 1). Let (F,P) be a full induced Markov map for f defined on

some Y ⊂M and let R be its inducing time. If ν is a finite F -invariant measure such that

∫ Rdν < ∞ then

η = ∑
P ∈P

R(P )−1

∑
j=0

f j∗(ν∣P )(=
+∞
∑
j=0

f j∗(ν∣{R>j}))

is a finite f -invariant measure.

Proof: We give here a sketch of the proof of this Theorem, which is based on Young

towers (see [36]).

Consider f ∶M Ð→M and a full Markov map (F,P) on ∆. Define the set

∆̂ ∶= {(z, n) ∈ ∆ × {0,1,2, . . .};n < R(z)},

and consider the following dynamics on ∆̂:

F(x, l) =
⎧⎪⎪
⎨
⎪⎪⎩

(x, l + 1) se l + 1 < R(x)

(fR(x)(x),0) se l + 1 = R(x)
(2.1)

See that ν̃ is F−invariant. Indeed, suppose that ν is a F -invariant measure and

consider the measure ν̃ defined on ∆̂ given by ν̃(A × {n}) ∶= ν(A), for all µ-mensurable

subset A ⊂ ∆0,i and 0 ≤ n < Ri. We may have two cases to consider:

• n > 0

In this case, we have F−1(A × {n}) = (A × {n − 1}) and hence ν̃(F−1(A × {n})) =

ν̃((A × {n − 1})) = µ(A) = µ̃(A × {n}).
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• n = 0

In this case:

ν̃(F−1(A × {n})) = ν̃(⋃
i∈N

(F −1(A) ∩ ∆0,i × {Ri})) = ∑
i∈N
ν̃(F −1(A) ∩ ∆0,i × {Ri}) =

∑
i∈N
ν(F −1(A) ∩∆0,i) = ν(F

−1(A)) = ν(A) = ν̃(A × {n})

We define the projection of the tower ∆̂ on M as the map π ∶ ∆̂Ð→M given by

π(x,n) = fn(x).

See that, defined that way, the projection π is continuous and satisfies:

f ○ π = π ○ F, (2.2)

To conclude the demonstration, it is enough to ensure the next steps:

• Clearly we have that π∗ν̃ is a f -invariant measure, because ν̃ is a F−invariant mea-

sure.

• ν̃(∆̂) = ∫ Rdν

Indeed, ν̃(∆̂) = ν̃(
∞
⋃
i=1

Ri−1

⋃
k=0

∆0,i × {k}) =
∞
∑
i=1

ν̃(
Ri−1

⋃
k=0

(∆0,i × {k})) =

∞
∑
i=1

Riν(∆0,i) =
∞
∑
i=1
∫

∆0,i

Rdν = ∫ Rdν

• It is easy to check that:

π∗ν̃ = ∑
i∈N

Ri−1

∑
k=0

fk∗ (ν∣∆0,i
)(= ∑

i∈N
fk∗ (ν∣{R>k})) . (2.3)

Defining η ∶= π∗ν̃ we conclude the proof.

◻
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Theorem 2.1.7 (Folklore 2). Let µ be a f -non-singular measure. If (F,P) is a full

induced Markov map for f with µ-bounded distortion then there exists an ergodic F -

invariant probability ν ≪ µ which density belongs to L∞(µ). Indeed, log dν
dµ ∈ L

∞(µ∣{ dν
dµ

>0}).

Furthermore, if the induction time R of F is integrable with respect to ν, then

η = ∑
P ∈P

R(P )−1

∑
j=0

f j∗(ν∣P ) is a finite f -invariant ergodic measure absolutely continuous w.r.t.

µ.

Proof: The second part of this Theorem is obtained directly from Theorem 2.1.6. See

Lemma 4.4.1 of [1] for a proof of the first part.

◻

Next Theorem, whose proof can be found in [24], ensures that we can lift a

measure as long as some statistical condition is satisfied (replacing the hypothesis of

bounded distortion as in Theorem 2.1.7).

Theorem 2.1.8. Let (F,P) be a full induced Markov map for f defined on an open set

B ⊂X. Let R be the inducing time of F and µ an ergodic f -invariant probability measure

such that µ({R = 0}) = 0 and O+
f (x) ∩ O

+
f (y) ≠ ∅ ⇒ O+

F (x) ∩ O
+
F (y) ≠ ∅ for µ-a.e.p.

x, y ∈ B. If there exists Θ > 0 such that

lim sup
n→∞

1

n
♯{0 ≤ j < n; f j(x) ∈ O+

F (x)} ≥ Θ (2.4)

for µ almost every x ∈ B, then there is a non trivial (/≡ 0), finite and F -invariant measure

ν such that ν(Y ) ≤ µ(Y ) for all Borel set Y ⊂ B and such that ∫ Rdν ≤ Θ−1.

The following definition is useful to obtain a set of points where in each neigh-

borhood the frequency of hyperbolic visits is positive for all fn.

Definition 2.1.9. Consider for each j ∈ N a set ∅ ≠ Aj ⊂ M . We define A ∶= lim
j∈N

Aj as

the limit set of the sequence Aj given by A ∶= {x ∈M, ∃xjk ∈ Ajk ∀k ∈ N such that xjk Ð→

x when k Ð→ +∞}.

See that, since M is compact, A ≠ ∅. We can say that A is the set of all

accumulation points for sequences where each term belongs to one set Aj.

2.2 Nested sets

In this section we will see the notion of nested sets, as well as their main properties.

Most of the material in this section is adapted from Sections 2 and 5 of [24]. We put it

here as a matter of completeness for this text and to understand the dependence of some

structures in the proof of the main theorems.
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Nested sets are a generalization to the multidimensional case of nice intervals,

introduced by Martens in [19]. Consider, for instance, a map f ∶ [0,1] ↺. A nice interval

is an open interval I such that the future orbit O+(∂I) of the boundary of I doesn’t

return to I, that is, O+(∂I) ∩ I = ∅. These intervals are easy to construct when we

consider interval maps. For example, two consecutive points of a periodic orbit define a

nice interval. The main property of a nice interval we are interested in is that there are no

linked pre-images of a nice interval, that is, if I1 and I2 are sent homeomorphically onte

an open nice interval by fn1 and fn2 respectively then I1 ∩ I2 = ∅, I1 ⊂ I2 or I2 ⊂ I1). As

we can see, nice intervals become particularly useful when dealing with partitions. The

same happens with nested sets, as we can see below.

Let f ∶M Ð→M be a map defined in a manifold M . A set P ⊂M is said to be

a regular pre-image of order n ∈ N of a set K ⊂M if fn sends P homeomorphically onto

K. Lets denote by ord(P ) the order of P (with respect to K).

In this section we fix a collection E0 of open connected subsets of M . For each

n ∈ N and V ∈ E0, consider a collection En(V ) of regular pre-images of K with order n.

Note that we are not considering that the collection En(V ) contains necessarily all regular

pre-images of V with order n. Define En = (En(V ))V ∈E0 .

Definition 2.2.1. We say that the sequence E = {En}n is a dynamically closed family of

regular pre-images if f `(E) ∈ En−` ∀E ∈ En e ∀0 ≤ ` ≤ n.

This condition ensures that if a regular pre-image of order n of V doesn’t belong

to En(V ) then the regular pre-images of V with order higher than n don’t belong to E(V )

too. See Figure 2.2.

Figure 2.2: Scheme showing the construction of a dinamically closed family of regular

pre-images. If we eliminate a set E1, we must eliminate all of its corresponding pre-images

in E2 and E3 as well.

Given Q ∈ En, we denote fn∣Q by fQ and denote by f−Q the E-inverse branch,

(fn∣Q)−1. Let E = (En)n be a dynamically closed family of regular pre-images. A set P is

called E−pre-image of a set W ⊂ X if there exists n ∈ N and Q ∈ En such that W ⊂ fn(Q)

and P = f−Q(W ), where W is the closure of W .
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Remark 2.2.2. See that if two distinct E−pre-images, X1 and X2, of a set X ⊂ X have

the same order then they cannot intersect.

Definition 2.2.3. We say that two open sets U1 and U2 are linked if U1/U2, U2/U1 and

U1 ∩U2 are not empty sets.

Note that two open connected sets, U1 and U2, are linked if, and only if, ∂U1∩U2

and U1 ∩ ∂U2 both are not empty sets.

Figure 2.3: Some situations where two open connected sets may or may not intersect.

Just in case (a) they are linked.

Definition 2.2.4. A set V is called E−nested if it is open and it is not linked with any

E−pre-image of itself.

The main property of a nested set is that any E−pre-images P1, P2 of this set are

not linked, as we can see in the next result.

Proposition 2.2.5. If V is a E−nested set and P1, P2 are E−pre-images of V , then the

following assertions hold:

1. P1 and P2 are not linked

2. If P1 ∩ P2 ≠ ∅ and P1 ≠ P2 then ord(P1) ≠ ord(P2);

3. If P1 ⫋ P2 with ord(P1) < ord(P2) then V is contained in a E−pre-image of itself

with order bigger than zero (that is, ford(P2)−ord(P1)(V ) ⊂ V ).

Proof: We show first that P1 and P2 are not linked sets. Let kj = ord(Pj), with

j ∈ {1,2}. We have two cases to consider. If k1 = k2, we have by Remark 2.2.2 that

P1 and P2 cannot intersect, so they are not linked. If k1 ≠ k2 (we may assume, for

example, that k1 < k2, the other case is analogous), suppose by contradiction that P1

and P2 are linked. Consider also pj ∈ Pj ∩ ∂P3−j and Qj ∈ Ekj such that Pj = f−Qj(V ).
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Since E is a dynamically closed family of pre-images of elements of E0, we have that

Q ∶= fk1(Q2) ∈ Ek2−k1 and that P ∶= fk1(P2) = f−Q(V ) is an E−pre-image of V . Besides,

by construction we have that fk1(P1) = V . Since fk1(p1) ∈ fk1(P1) ∩ ∂(fk1(P2)) = V ∩ ∂P

and fk1(p2) ∈ fk1(P2)∩∂(fk1(P1)) = P ∩∂V , it follows that P and V are linked sets, what

is impossible since V is a E−nested set. This proves (1).

Suppose that P1 ∩ P2 ≠ ∅ and P1 ≠ P2. By Remark 2.2.2 we have that P1 and P2

must have different orders, because they are E−pre-images of the same set. This concludes

(2).

To conclude (3), lets suppose that P1 ⫋ P2 and k1 < k2. Then V = fk1(P1) ⊂

fk1(P2), that is, V is contained in an E−pre-image of itself with order k2 − k1 > 0. Since

fk1(P2) is an E−pre-image of V , we conclude that fk2−k1(V ) ⊂ fk2(P2) = V .

◻

2.2.1 Construction of E−nested sets

We consider in this section an open connected subset A of M which is not con-

tained in any E−pre-image of itself with order bigger than zero. One can notice that

this assumption is suitable in the non-uniformly expanding context, since in this case we

expect to see pre-images with smaller size, in the sense of diameter.

A finite sequence K = (P0, P1,⋯, Pn) of E−pre-images of A is called chain of pre-

images of A beginning in A if

1. 0 < ord(P0) < ord(P1) < ⋯ < ord(Pn−1) < ord(Pn);

2. A and P0 are linked sets;

3. Pj−1 and Pj are linked sets, ∀1 ≤ j ≤ n;

Figure 2.4: A chain (P0, P1, P2, P3) of E−pre-images beginning in A.
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Definition 2.2.6. Denote chE(A) as the collection of all chains of E−pre-images of A

beginning in A. We denote by A∗ to the subset of A defined as

A∗ = A/ ⋃
(Pj)j∈chE(A)

⋃
j

Pj. (2.5)

Since A is open and connected, we easily obtain that if (P0, P1, . . . , Pn) ∈ chE(A),

then
n1

⋃
j=n0

Pj is an open connected set ∀0 ≤ n0 ≤ n1 ≤ n. Also, we can see that A∗ is open,

but not necessarily connected.

Remark 2.2.7. If we use two distinct dynamics for this construction, lets say f and g,

we will use the notation A∗,f and A∗,g to distinguish whether we are talking about chains

of pre-images by f or by g.

Figure 2.5: On the left we see a ball A (in gray) and the boundaries of the E−pre-images

of A in chE(A). On the right we depict A∗.

We proceed now with an abstract construction of a nested set. We can see in the

next result that A∗ (or at least one of its connected components) is in fact a nested set.

The proofs for next Proposition and its Corollary can be found in [24], Section 2.

Proposition 2.2.8. Consider A ⊂ M and suppose that A∗ ≠ ∅. If A′ is a connected

component of A∗ then A′ is an E−nested set.

The previous gives a way to construct nested sets, but this depends on A∗ be

non-empty. A way to ensure this condition is to show that all chains have small diameter

(we consider the diameter of a chain (Pj)j as the diameter of the set ⋃
j

Pj). This is shown

in next Corollary. Another way to ensure that A∗ ≠ ∅ is by assuming that the pre-images

of a set are separated enough, as we can see below in Lemma 2.2.13.

Corollary 2.2.9. Let 0 < ε < 1/2 and let A = Br(p) be a connected open ball with radius r

centered in p ∈M such that fn(A) /⊂ A, ∀n > 0. Suppose that every chain of E−pre-images

of A has diameter smaller than 2εr. Then A∗ contains the ball Br(1−2ε)(p). Moreover, the

connected component A′ of A∗ that contains p is an E−nested set containing Br(1−2ε)(p).
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2.2.2 Nested sets adapted to expanding structures

Here we present some concepts and results that allow us to bring together the

notion of dynamically closed family of pre-images, nested sets and hyperbolic times. This

should be useful to obtain Markov partitions in the non-uniformly expanding context and

other important results that will follow.

Let 0 < σ < 1 and δ > 0 and for f ∶ M Ð→ M let H be the set of all points in

M with positive frequency of (σ, δ)−hyperbolic times, that is, the set of points for which

(1.8) holds. For example, if there exists µ ∈ Mexp(f) then by Proposition 1.3.5 there exists

H ⊂M with µ(H) = 1 satisfying such a property. Denote by EH = (EH,n)n the collection of

all (σ, δ)−hyperbolic pre-balls, where EH,n = {Vn(x); x ∈Hn(σ, δ, f)} is the collection of all

(σ, δ)−hyperbolic pre-balls of order n. By using Lemma 1.3.3, its easy to verify that the

collection of all (σ, δ)−hyperbolic pre-balls is a dynamically closed family of pre-images

as in Definition 2.2.1.

Given x ∈M and 0 < r < δ, let (Br(x))∗ be the set defined by (2.5) associated to

EH. If x ∈ (Br(x))∗, it follows from Proposition 2.2.8 (by taking A = {Br(x)}) that the

connected component of (Br(x))∗ that contains x is an EH−nested set.

Definition 2.2.10. If x ∈ (Br(x))∗, we define the (σ, δ)−hyperbolic nested ball with

respect to f with radius r and center at x as the connected component of (Br(x))∗ which

contains x. We denote such a set as B∗
r (x). We may use the notation B∗,f

r (x), when it

is necessary to emphasize the dynamics used in the construction of the (σ, δ)−hyperbolic

nested ball.

Note that, since we have contraction in any hyperbolic time, Br(x) cannot be

contained in any hyperbolic pre-image of itself (with order bigger than zero), that is, one

cannot find a EH−pre-image P ∈M of Br(x) such that Br(x) ⊂ P (and hence diam(Br(x))

< diam(P )), otherwise we would obtain some E ∈ EH,n and a contractive behavior (for

the past) between E ⊃ P and fn(E) ⊃ Br(x). This would give us that diam(Br(x)) ≥

diam(P ), a contradiction. Hence the set A = {Br(x)} in Definition 2.2.10 above is indeed

an open set according the hypothesis of Section 2.2.1.

Remark 2.2.11. Note that, since two distinct EH−pre-images of a set with the same order

cannot intersect (see Remark 2.2.2), we obtain that the order of the elements of a chain

of pre-images beginning in Br(x) is strictly decreasing, that is, if (P0, P1,⋯, Pn) is a chain

of EH−pre-images of Br(x) then 0 < ord(P0) < ⋯ < ord(Pn).

Definition 2.2.12. We say that f is backward separated if for all x ∈M we have:

dist(x,
n

⋃
j=1

f−j(x)/{x}) > 0; ∀n ≥ 1. (2.6)
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As an example of the previous definition, we can give a map f with bounded

number of pre-images: (sup ♯{f−1(x); x ∈ M} < +∞). In fact, if there exists k ∈ N such

that (sup ♯{f−1(x); x ∈ M} < k, then (sup ♯{f−j(x); x ∈ M} < kj, ∀j ∈ N . Since the

pre-images in this case always constitute a finite set, for all j, it follows that 2.6 holds.

In particular, local diffeomorphisms are backward separated maps.

At section 2.2.1 we present an abstract construction of a nested set. To achieve

this, it is necessary that the setA∗ given by (2.5) must be nonempty. Next result provides a

condition for the existence of hyperbolic nested balls. This condition involves the previous

definition. The proof of this result can be found in [24], but we include it here for the

completeness of the text.

Lemma 2.2.13. If ∑
n≥1

σn/2 < 1/4 then for every 0 < r < δ/2 the hyperbolic nested ball B∗
r (x)

is well defined and also B∗
r (x) ⊃ Br/2(x). ∀x ∈M . Furthermore, if f is backward separated

then for each x ∈M there is 0 < r0 < δ/2 such that B∗
r (x) is well defined ∀0 < r ≤ r0 and,

given 0 < γ < 1, it is possible find 0 < rγ < r0 depending only on δ,α, x and γ such that

B∗
r (x) ⊃ Bγr(x); ∀ 0 < r ≤ rγ.

Figure 2.6: If Q is a EH pre-image of

Br(x) then Q ∩Br(x) = ∅.

Figure 2.7: Every chain of pre-images

in chEH(Br(x)) has diameter small

enough in such a way that ∅ ≠ Bγr(x) ⊂

B∗
r (x).

Proof:

If ∑
n≥1

σn/2 < 1/4 and 0 < r < δ/2, since the orders of the elements in a chain

beginning in A = {Br(x)}, are strictly decreasing (Remark 2.2.11), we have by item (2) of

1.3.2 that if K = (P0, P1,⋯, Pk) is a chain of EH−pre-images ofBr(x) with ord(Pj) = nj then

diam(K) =

j=k
∑
j=1

diam(Pj) ≤
j=k
∑
j=1

σnj/2diam(Br(x)) ≤ ∑
n≥1

σn/2diam(Br(x)) < diam(Br(x))/4 =

r/2. Thus, by using Corollary 2.2.9, we obtain that B∗
r (x) ⊃ Br/2(x).

Lets suppose that f is backward separated. Given 0 < γ < 1, since ∑
n≥1

σn/2 < +∞
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we may obtain n0 ∈ N such that ∑
n>n0

σn/2 ⋅ r < (1 − γ)r/2. Given x ∈M , let ε > 0 be such

that dist (x,⋃
n0
j=1 f

−j(x)/{x}) > ε, rγ =
1
3 min{ε, δ} and 0 < r ≤ rγ.

Notice that if j < n0 and Q is an EH−pre-image of Br(x) with order j then Br(x)∩

Q = ∅ ∀Q ∈ EZ,j. In fact, writing Q = f−V (Br(x)) = (f j ∣V )−1(Br(x)) for some V in EH,j we

have that Q ∩ (
n0

⋃
j=1

f−j(x)) = (f j ∣V )
−1(Br(x)) ∩ (

n0

⋃
j=1

f−j(x)) ⊃ (f j ∣V )
−1(x) ∩ (

n0

⋃
j=1

f−j(x)) ≠

∅. Since dist (x,⋃
n0
j=1 f

−j(x)/{x}) > ε and diam(Q) < 2r < 2ε/3 (last inequality is a

consequence of the hypothesis that Q is an EH−pre-image of Br(x) along with item (2)

of 1.3.2), we have that Br(x) ∩Q = ∅ (see Figure 2.2.2).

Then, every chain of EH−pre-images of Br(x) starts with a pre-image with order

bigger than n0. Let (P ) = (P0, P1,⋯, Pk) be a chain of EH−pre-images of Br(x) with

ord(Pj) = nj. Then, since diam(P ) = diam(
k

⋃
j=1

Pj) ≤
k

∑
j=1

diam (Pj) and, for each j ∈

{1,⋯, k}, we have diam(Pj) = sup
x,y∈Pj

dist(x, y) ≤ sup
x,y∈Pj

σnj/2⋅ dist(fnj(x), fnj(y)) = σnj/2 ⋅

supx,y∈Pj( dist(fnj(x), fnj(y))) = σnj/2⋅diam(Br(x)), we conclude that:

diam(P ) ≤
k

∑
j=1

σnj/2 ⋅ diam(Br(x)) ≤ ∑
n>n0

σn/2 ⋅ diam(Br(x))

< (1 − γ)
diam(Br(x))

2
= (1 − γ)r

and, since any chain intersects the boundary of Br(x), we can conclude that this chain

doesn’t intersect Bγr(x) (see Figure 2.2.2). Hence, (Br(x))∗ (and also B∗
r (x)) contains

Bγr(x).

◻

It is worth to notice that even if for a given f ∶M Ð→M with almost every point

having (σ, δ)− hyperbolic times but ∑
n≥1

σn/2 fails to be smaller than 1/4 we can still apply

Lemma 2.2.13 above replacing f by some iterate f `. If ` is big enough we can ensure that

the sum ∑
n≥1

σ`⋅n/2 is smaller than 1/4.

2.3 Full induced Markov map for an expanding map

Fix µ ∈ M1
exp(f) and consider h = (h(x))x∈M as the collection of hyperbolic images

of points in M . Its not hard to show that h is indeed an asymptotically invariant collection

and it has positive frequency (see Proposition 1.3.5). Consider a hyperbolic nested set

∆ ⊂ M . Given x ∈ ∆, let Ω(x) be the collection of hyperbolic pre-images V of ∆ such

that x ∈ V .

Definition 2.3.1. The inducing time on ∆ associated to the “first hyperbolic return to

∆” is the function R ∶ ∆Ð→ N given by



35

R(x) =

⎧⎪⎪
⎨
⎪⎪⎩

min{ord(V ); V ∈ Ω(x)} se Ω(x) ≠ ∅

0 se Ω(x) = ∅
. (2.7)

Definition 2.3.2. The induced map F on ∆ associated to the “first hyperbolic return to

∆” is the map F ∶ ∆Ð→∆ given by

F (x) = fR(x)(x), ∀x ∈ ∆. (2.8)

Since the collection of sets Ω(x) is totally ordered by inclusion, it follows that

there exists an unique I(x) ∈ Ω(x) such that ord(I(x)) = R(x), whenever Ω(x) ≠ ∅.

Definition 2.3.3. The Markov partition associated to the “first hyperbolic return to ∆”

is the collection P of open sets given by

P = {I(x); x ∈ ∆ e Ω(x) ≠ ∅}. (2.9)

With these definitions, Pinheiro ensures in [24] that it is possible to construct an

induced Markov map for f on an appropriate nested set ∆ ⊂M : We must to assume that

∆ intersects the hyperbolic attractor associated to µ (see ).

Proposition 2.3.4. Consider an open nested hyperbolic set ∆ ⊂M with diam(∆) < δ/2.

Suppose in addition that ∆∩A
f
hyp ≠ ∅, where Afhyp is a compact set such that ωf,h(x) = A

f
hyp

for µ−a.e.p. x ∈M . Then (F,P) given by 2.8 and 2.9 is a full induced Markov map defined

on ∆ with induced time R ∶ ∆Ð→ N given by 2.7 and F is compatible with µ.

Proof: See Corollary 6.6 and Lemma 6.7 of [24]

◻

The next result ensures that we can lift µ to the level of the induced Markov map

F given by 2.3.4.

Proposition 2.3.5. Consider µ ∈ Mexp(f), an open nested hyperbolic set ∆ ⊂ M with

diam(∆) < δ/2 and suppose that ∆ ∩ A
f
hyp,+ ≠ ∅, where Ahyp,+ is a compact set such

that ωf,h,+(x) = A
f
hyp,+ for µ−a.e.p. x ∈ M . Suppose in addition that (F,P) is the first

hyperbolic return to ∆ with induced time R ∶ ∆ Ð→ N (F = fR). Then, there exists ξ > 0

such that ϕ∆
f (x) ≥ ξ for µ−a.e.p. x ∈M .

Furthermore, there is a finite F -invariant measure ν ≪ µ (indeed, ν(Y ) ≤ µ(Y )

for all Borel subset Y ⊂ ∆) such that ∫ Rdν <
1
ξ < +∞ and

µ =
1

γ

+∞
∑
j=0

f j∗(ν∣{R>j}),

where γ =
+∞
∑
j=0

f j∗(ν∣{R>j})(M).
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Proof: We know that h = (h(x))x∈M is an asymptotically invariant collection. Then the

function ϕ∆
f (x) = lim sup

nÐ→+∞

1

n
♯ {1 ≤ j ≤ n; f j(x) ∈ h(x) ∩∆} is f -invariant. By ergodicity of

µ we conclude that there exists ξ > 0 such that ϕ∆
f (x) ≥ ξ for µ−a.e.p. x ∈ ∆.

By taking B = ∆, g = R, Gj =Hj(f) and using Lemma A.0.2 we obtain that

lim sup
nÐ→+∞

1

n
♯ {j ≥ 0;

j

∑
k=0

R ○ F k(x) ≤ n} ≥ ξ (2.10)

for µ−a.e.p. x ∈ ∆. Since

{j ≥ 0;
j

∑
k=0

R ○ F k(x) ≤ n} = {0 ≤ j < n; f j(x) ∈ O+
F (x)} ,

it follows from 2.10 and Theorem 2.1.8 that there exists a non-trivial F−invariant

measure such that ν(V ) ≤ µ(V ) for every Borel set V ⊂ ∆ (in particular, ν ≪ µ) with

∫ Rdν ≤
1
ξ < +∞.

Now, we use Theorem 2.1.6 to obtain a f−invariant finite measure η =
+∞
∑
j=0

f j∗(ν∣R>j)

which is absolutely continuous with respect to µ. By the fact that µ is ergodic, we then

obtain:

µ =
1

γ

+∞
∑
j=0

f j∗(ν∣{R>j}),

where γ =
+∞
∑
j=0

f j∗(ν∣{R>j})(M).

◻

Remark 2.3.6. We denote by µ(f, ν) as the measure
1

γ

+∞
∑
j=0

f j∗(ν∣{R>j}), γ =
+∞
∑
j=0

f j∗(ν∣{R>j})(M)

obtained from ν.

2.4 Lyapunov exponents

In Dynamical Systems, Lyapunov exponents are largely known in connection with

a theorem due to Oseledets (see [22]), which in broad terms say that, under an integrability

condition, the tangent space of almost every point splits into a flag in such a way that

the iterates of vectors have well-defined rates of exponential growth, in norm, restricted

to each subspace of the flag.

More formally, the Multiplicative Ergodic Theorem, due to Oseledets, says that if

µ is an ergodic measure such that log+ ∥Df(x)∥ is integrable then there exists numbers

λ̃1 > ⋯ > λ̃k
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such that for µ−almost every point x ∈M there is a flag

{0} = Ex
1 ⊂ Ex

2 ⊂ ⋯Ex
k(x) = TxM

which depends measurably on the point x and is invariant by Df , such that for i =

1,2,⋯, k(x) − 1,

lim
nÐ→+∞

1

n
log ∥Dfn(x)v∥ = λ̃i, for all v ∈ Ex

i+1/E
x
i .

It is easy to see that each λ̃i is an f−invariant function (λ̃i(x) = λ̃i(f(x))). In particular,

if µ is ergodic the functions λ̃i are constant almost everywhere. Let

λ1(x) ≤ λ2(x) ≤ ⋯ ≤ λd(x)

be the numbers λ̃j listed in a nondecreasing order and repeated with multiplicity dimEx
i+1

- dimEx
i . These numbers are called the Lyapunov exponents of f at x.

In other words, we can say that Lyapunov exponents measure the asymptotic be-

havior of tangent vectors under iteration. Positive exponents corresponding to exponential

growth and negative exponents corresponding to exponential decay of the norm. The uni-

formly hyperbolic case corresponds to nonzero Lyapunov exponents. The non-uniformly

expanding case corresponds to positive Lyapunov exponents.

Remark 2.4.1. It’s worth to say that in the one-dimensional case, be non-uniformly

expanding is equivalent to have a positive Lyapunov exponent, since:

lim sup
nÐ→+∞

1

n
log ∣(fn)′(x)∣ = lim sup

nÐ→+∞

1

n

n−1

∑
i=0

log ∣f ′(fn(x))∣.

In dimension greater than one condition 1.2 is not equivalent to say that f has dim(M)

positive Lyapunov exponents at x ∈M .

Let f ∶M Ð→M be a non-flat map and C ⊂M its critical/singular set.

Definition 2.4.2. Let µ be an f−invariant ergodic probability. We say that µ has all

of its Lyapunov exponents finite if lim sup
n∈N

1

n
log ∣∣(Dfn(x))−1∣∣−1 > −∞ for µ−almost every

x ∈M .

Remark 2.4.3. Suppose that there are ∆ ⊂ M , a µ−partition P of ∆, R ∶ ⋃
P ∈P

P Ð→ N

and an induced Markov map F = fR on ∆, as in Definitions 2.3.1, 2.9 and 2.8 (Note that

in this case we are considering f as a non-uniformly expanding map). Then, by using

item a) of 1.3.4 we obtain that F is a piecewise expanding map: There is 0 < κ < 1 such

that for x in the interior of the elements P ∈ P

∣∣Df(x)−1∣∣ < κ.

Additionally, we conclude that all Lyapunov exponents for F are positive on ∆.
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Lemma 2.4.4. If λ is a Lyapunov exponent of F , then λ/κ is a Lyapunov exponent of

f , where κ ∶= ∫
∆
Rdν.

Proof: Let n be a positive integer and for each x ∈ ∆ define Sn(x) ∶=
n−1

∑
i=0

R(F i(x)). By

using induction on n, the following equation is easily satisfied:

F n(x) = fSn(x)(x).

By construction, we know that Sn(x) = Sn(y) for almost every y near enough of

x. Thus we can take derivatives of the above equation and conclude that if v ∈ TxM then:

1

Sn(x)
log ∣∣DfSn(x)(x) ⋅ v∣∣ =

n

Sn(x)

1

n
log ∣∣DF n(x) ⋅ v∣∣.

Since ν is an ergodic measure, Birkhoff’s ergodic theorem allows us to conclude

that

lim
nÐ→+∞

Sn(x)

n
= ∫

∆
Rdν = κ

for µ almost every x ∈ ∆.

If λ is a Lyapunov exponent of f then

λ = lim
nÐ→+∞

1

n
log ∣∣DF n(x) ⋅ v∣∣.

Attending to the equations above, we conclude that

λ

κ
= lim
nÐ→+∞

n

Sn(x)

1

n
log ∣∣DF n(x) ⋅ v∣∣ = lim

nÐ→+∞
1

Sn(x)
log ∣∣DfSn(x)(x) ⋅ v∣∣

is a Lyapunov exponent of f (note that, since µ is ergodic, the above expression

holds for µ−almost every point x ∈M).

◻

The following Lemma can be useful to prove that an ergodic invariant measure

µ0 must be expanding.

Lemma 2.4.5. Let f ∶M Ð→M be a C1+α map. If µ is an f−invariant ergodic probabil-

ity with all of its Lyapunov exponents finite (i.e., lim sup 1
n log ∣∣(Dfn(x))−1∣∣−1 > −∞ for

µ−a.e.p. x ∈M) then µ satisfies the slow approximation condition, that is, for each ε > 0,

there is δ > 0 such that

lim sup
nÐ→+∞

n−1

∑
j=0

− log distδ(f
j(x),C) ≤ ε.,

for µ−a.e.p. x ∈M .
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Remark 2.4.6. The proof of Lemma 2.4.5 can be found in [24], Lemma 10.2. In this

case, Pinheiro uses the assumption that the exceptional set C for f is constituted just by

critical points (where the derivative fails to be invertible).

With Lemma 2.4.5 and by the fact that if x is not a critical point then

lim sup
n∈N

1

n

n−1

∑
i=0

log ∥Df(f i(x))−1∥−1 ≤ lim sup
n∈N

1

n
log ∣∣(Dfn(x))−1∣∣−1,

we easily conclude the following Remark.

Remark 2.4.7. Consider f ∶ M Ð→ M as a non-flat map. Then an ergodic invariant

probability µ is expanding for f if, and only if, 1.2 holds for µ−almost every point x ∈M .



Chapter 3

Technical stability conditions

We will start now some technical considerations. Consider a Riemannian compact

manifold M and a sequence of C1+α local diffeomorphisms fn ∶ M Ð→ M , n ≥ 0 with

fn Ð→ f0 in the C1 topology. Now, consider the following reasonable hypothesis (since

we are working in the context of hyperbolic times, these hypothesis make sense): There

exists a topological disk ∆ ⊂ M and for each n ≥ 0 there is an open set An such that

f−1
n ∶ ∆ Ð→ An is a homeomorphism (in fact, a diffeomorphism) that can be extended to

a homeomorphism (in fact, a diffeomorphism) from ∂∆∪∆ onto ∂An∪An. To be precise,

we should write (fn∣An)
−1 instead of f−1

n , but we will keep this last notation and warn the

reader when there is a chance of misunderstanding.

We want to show that An Ð→ A0 in the sense of Hausdorff distance:

Definition 3.0.1. For each n ≥ 0 consider a connected open set Vn ⊂M . We say that Vn

converges to V0 if ∀ε > 0, ∃n0 ∈ N such that n > n0 ⇒ ∂Vn ⊂ Vε(∂V0) = {x ∈M, d(x, ∂V0) <

ε} and ∂V0 ⊂ Vε(∂Vn). In this case we denote Vn Ð→ V0.

Remark 3.0.2. Before start next Lemma, we want to remark a matter of notation: If

fn Ð→ f0 in the C1 topology this is the same as d(fn, f0) Ð→ 0. In this case, d(⋅, ⋅)

denotes the distance associated to the C1 topology. But fn Ð→ f0 also implies that

sup{d(fn(x), f0(x)} Ð→ 0, where sup in this expression is taken on M . In this case,

d(⋅, ⋅) denotes the distance of points in M . We will denote both distances by d(⋅, ⋅) and

warn the reader if there is a chance of misunderstanding.

Lemma 3.0.3. Suppose that fn ∶ M Ð→ M , n ≥ 1, is a convergent sequence in the C1

topology, An is an open connected subset of M and, for a fixed open connected set ∆ ⊂M ,

the restriction f−1
n ∶ ∆Ð→ An is a diffeomorphism from the open set ∆ onto An (that can

be extended to ∂∆ ∪∆). Then there exists a connected open set A0 ⊂M such that

An Ð→ A0.

40
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If we denote f0 ∶= lim
nÐ→+∞

fn, then the restriction f0∣A0 ∶ A0 Ð→ ∆ is also a diffeo-

morphism from A0 onto ∆ (which can be extended to ∂A0 ∪A0).

Proof: Consider fi, for some i ∈ N fixed. Since f−1
i ∶ ∆ Ð→ Ai is a diffeomorphism, we

take some a ∈ Ai such that Dfi(a) is injective. Defining ci ∶= 2∣∣Dfi(a)−1∣∣−1 it is easily

seen that ∣∣Df(a) ⋅v∣∣ ≥ 2c ⋅ ∣∣v∣∣, ∀v ∈ TaM . It is a well known fact from Calculus that there

is δ > 0 such that:

d(fi(x), fi(y)) ≥ cid(x, y), ∀x, y ∈ Bδ(a).

It is possible to show that ci and δ may be taken uniformly for all a ∈ Ai (since we

are taking fi∣Ai as a diffeomorphism on it’s image ∆). Therefore, the previous equation

becomes:

d(fi(x), fi(y)) ≥ cid(x, y), ∀x, y ∈ Ai. (3.1)

Now, consider m,n ∈ N and x ∈ ∂∆ ∪∆. By triangle inequality we know that :

0 = d(x,x) = d(fm ○ f−1
m (x), fn ○ f−1

n (x))

≥ d(fm ○ f−1
m (x), fm ○ f−1

n (x)) − d(fm ○ f−1
n (x), fn ○ f−1

n (x))
By using the previous inequality and 3.1, we obtain:

d(fm, fn) ≥ d(fm ○ f−1
n (x), fn ○ f−1

n (x))

≥ d(fm ○ f−1
m (x), fm ○ f−1

n (x))

≥ cm,n d(f−1
m (x), f−1

n (x)),

where in the first inequality we used the fact that d(fm, fn) ≥ d(fm(w), fn(w)), ∀w ∈M ,

in the second we used the triangle inequality and in the third we used 3.1. So, we get:

d(f−1
n (x), f−1

m (x)) ≤
1

cn,m
⋅ d(fn, fm), (3.2)

for all x ∈ ∂∆ ∪∆.

Note that ∣∣fn∣∣ Ð→ ∣∣f0∣∣, since fn Ð→ f0 and ∣∣f0∣∣ ≠ 0, since f0 is local diffeomor-

phism. Then the constants cn,m are bounded away from zero and infinity, and so are
1

cn,m
.

In this way one can find K > 0 such that
1

cn,m
<K, ∀n,m ∈ N and last equation becomes:

d(f−1
n (x), f−1

m (x)) ≤K ⋅ d(fn, fm), (3.3)

for all x ∈ ∂∆ ∪∆.

Since fn Ð→ f0, we know that fn is a Cauchy sequence. By 3.3 we are able

to conclude that, for each x ∈ ∂∆ ∪ ∆, f−1
n (x) is a Cauchy sequence too. Hence, fixed

x ∈ ∂∆∪∆, the sequence f−1
n (x) is convergent and we can define a set A0 ⊂M such that:
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∂A0 ∶= {x0, ∃x ∈ ∂∆ with x0 = lim
nÐ→+∞

f−1
n (x)}. (3.4)

A0 ∶= {x0, ∃x ∈ ∆ with x0 = lim
nÐ→+∞

f−1
n (x)}. (3.5)

We can see evidently by 3.3 that if x0 = lim
nÐ→+∞

f−1
n (x) then x0 = f−1

0 (x). In this

way, 3.3 ensures that An Ð→ A0 in the sense of Definition 3.0.1: In fact, since fn Ð→ f0,

given ε > 0 there is n0 such that d(fn, f0) < ε/K if n ≥ n0. If we take z ∈ ∂An for a given

n ≥ n0 and x = fn(z) ∈ ∂∆, we obtain by 3.3 that d(f−1
n (x), f−1

0 (x)) = d(z, lim
nÐ→+∞

f−1
n (x)) <

ε, and hence, since lim
nÐ→+∞

f−1
n (x) ∈ ∂A0, we get d(z, ∂A0) < ε, that is, ∂An ⊂ Vε(∂A0). The

inclusion ∂A0 ⊂ Vε(∂An) is immediate.

◻

Lemma 3.0.3 can be generalized to the case where there exists ∆n for each n and

∂∆n Ð→ ∂∆0 with f−1
n ∶ ∆n Ð→ An being an inverse branch.

Lemma 3.0.4. Suppose that fn ∶ M Ð→ M , n ≥ 1 is a convergent sequence in the C1

topology and take sets An that are open connected subsets of M . Suppose in addition that

for each n ≥ 0 there is an open connected set ∆n ⊂M with ∆n Ð→ ∆0 and the restriction

f−1
n ∶ ∆n Ð→ An is a diffeomorphism from the open set ∆n onto An (that can be extended

to ∂∆n ∪∆n), for n ≥ 1. Then there exists a connected open set A0 ⊂M such that

An Ð→ A0.

If we denote f0 ∶= lim
nÐ→+∞

fn, then the restriction f0∣A0 ∶ A0 Ð→ ∆ is also a diffeo-

morphism from A0 onto ∆ (which can be extended to ∂A0 ∪A0).

Proof: In the first part of the proof we aim to prove a version of 3.3. In order to do that,

we will use some of the ideas present in last proof. For each n ≥ 0, consider cn given by

3.1. If we take m,n ∈ N, xm ∈ ∂∆m ∪∆m and xn ∈ ∂∆n ∪∆n, triangle inequality gives us

that:
d(xm, xn) = d(fm ○ f−1

m (xm), fn ○ f−1
n (xn))

≥ d(fm ○ f−1
m (xm), fm ○ f−1

n (xn)) − d(fm ○ f−1
n (xn), fn ○ f−1

n (xn))
An analogous procedure to the last proof allows us to find K > 0 such that

d(f−1
n (xn), f

−1
m (xm)) ≤K ⋅ (d(fn, fm) + d(xn, xm)), (3.6)

for all xm ∈ ∂∆m ∪∆m and xn ∈ ∂∆n ∪∆n.

Now consider x ∈ ∂∆0 ∪∆0. Since ∆n Ð→ ∆0, we can arrange that the sequence

xn may be taken in such a way that d(xn, x) Ð→ 0 when n Ð→ +∞. With this fact and

having in mind that fn is a Cauchy sequence, we obtain that f−1
n (xn) is also a Cauchy

sequence, and so there is x0 ∶= lim
nÐ→+∞

f−1
n (xn). So we can define
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∂A0 ∶= {x0, ∃xn ∈ ∂∆n, x ∈ ∂∆ with x0 = lim
nÐ→+∞

f−1
n (x), where x = lim

nÐ→+∞
xn}. (3.7)

A0 ∶= {x0, ∃xn ∈ ∆n, x ∈ ∆ with x0 = lim
nÐ→+∞

f−1
n (x), where x = lim

nÐ→+∞
xn}. (3.8)

An analogous procedure to last proof shows that the set A0 defined by 3.7 satisfy

the requirements in this Lemma and this concludes the proof.

◻

We should notice that Lemmas 3.0.3 and A.0.3 both deal with similar scenarios.

But one diference between them is that Lemma A.0.3 deals with continuity of inverse

branches, while Lemma 3.0.3 gives us a way to construct the domain of an inverse branch

as the limit of the domain of other inverse branches. This will be particularly useful when

we deal with the construction of a Markov partition by taking the limit of elements of

already known Markov partitions. In order to do that, we need to adapt these results to

deal with nested sets and hyperbolic times. So, we will use now Lemmas 3.0.3 and A.0.3

to deal with hyperbolic nested balls (see Definition 2.2.10).

Lemma 3.0.5. Consider r > 0, x ∈M and the set Br(x). If fn is a sequence of non-flat

maps converging to f0 in the C1 topology such that for each n ≥ 0 the (σ, δ)−hyperbolic

nested ball ∆n = (B∗,fn
r )(x) is well defined and non-empty, where 0 < r < δ/2 and 0 < σ < 1

are real numbers, then ∆n Ð→∆0.

Proof: We notice that δ is the same for all n. Thus, if (P 0
n , P

1
n ,⋯, P

k
n ) is a chain of

pre-images of Br(x) by fn we conclude by Proposition 1.3.2 that the diameter of this

chain is bounded as follows:

k

∑
j=0

diam P j
n ≤

k

∑
j=0

σord(P jn) ≤ ∑
j≥0

σj, ∀n ≥ 0.

We can conclude that given ε > 0 there is l ∈ N such that ∑
j≥l

diam P j
n < ε, for all

chain of pre-images (P 0
n , P

1
n ,⋯, P

k
n ) of Br(x) by fn, for every n ≥ 0.

Fix ε > 0 as above and consider x ∈ ∂∆0. Then there exists a chain (P 0
n , P

1
n ,⋯, P

k
n )

of pre-images of Br(x) by f0 and some 0 ≤ j ≤ k such that d(x, ∂P j
0 ) < ε/3. We have two

cases to consider, namely, j < l or j ≥ l. Suppose that j < l and set sj ∶= ord(P j
0 ). See

that P j
0 is mapped onto Br(x) diffeomorphically by f

sj
0 (f

−sj
0 (Br(x)) = P j

0 ). We have

by Lemma A.0.3 that every g ∶ M Ð→ M sufficiently close to f0 has an inverse branch

g−sj ∶ Br(x) Ð→ Pg, with Pg ⊂M , that is close to the inverse branch f
−sj
0 ∶ Br(x) Ð→ P j

0 of

f0 at Br(x). Then, since fn Ð→ f0, there is n1 ∈ N such that n ≥ n1 ⇒ ∃P j
n ⊂M such that

f−jn ∶ Br(x) Ð→ P j
n is an inverse branch with Vε(∂P

j
n) ⊂ ∂P

j
0 and Vε(∂P

j
0 ) ⊂ ∂P

j
n, and so

we have constructed a sequence of subsets P j
n ⊂M such that P j

n Ð→ P j
0 when n Ð→ +∞.
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Thus we can conclude that, since d(x, ∂P j
0 ) < ε/3, x ∈ Vε(∂P

j
n) for all n ≥ n1. Since P j

0

belongs to a chain of pre-images of Br(x) by f0 and P j
n Ð→ P j

0 , we obtain that there is

n2 ∈ N such that the set P j
n must belong to some chain of pre-images of Br(x) by fn, for

n ≥ n2. In fact, if j = 0 we know that P j
0 and Br(x) are linked sets. Since P j

n Ð→ P j
0 we

must have in addition that P j
n and Br(x) are linked sets for n large enough. If we have

that (P 0
n , P

1
n ,⋯, P

j−1
n ) is a chain of pre images of Br(x) by fn is already constructed, and

P j−1
0 and P j

0 are linked sets then in the same way as above we can construct sets P j
n such

that P j
n and P j−1

n are linked sets for n latge enough. Thus (P 0
n , P

1
n ,⋯, P

j
n) is also a chain

of pre images for n large enough. Taking n0 = max{n1, n2} we obtain that x ∈ Vε(∂∆n)

for n ≥ n0. If j > `, since ∑
j≥l

diam P j
0 < ε its easy to see that, by using the chain previously

constructed, x ∈ Vε(∂∆n) for n big enough.

◻

Lemma 3.0.6. Consider a sequence of open sets A0,A1,⋯,An,⋯ such that An Ð→ A0

when nÐ→ +∞ and a sequence of probability measures ν0, ν1,⋯, νn,⋯ with νn Ð→ ν0 when

n Ð→ +∞ in the weak−∗ topology and such that ν0(∂A0) = 0. If there is C > 0 such that

νn(An) ≤ C,∀n ≥ 1 then ν0(A0) ≤ C.

Proof: First we will show that ∣νn(An) − ν0(A0)∣ Ð→ 0 when n Ð→ +∞. Consider ε > 0.

Since ν0(A0) = 0, take a neighborhood V = Vγ(∂A0) of ∂A0 with γ > 0 small in such a way

that ν0(V ) < ε/6. Since νn Ð→ ν0, there is n1 ≥ 1 such that n > n1 ⇒ ∣νn(V )−ν0(V )∣ < ε/6

and ∣νn(A0) − ν0(A0)∣ < ε/3. Since An Ð→ A0, there is n2 ≥ 1 such that n > n2 ⇒ ∂An ⊂ V

and ∂A0 ⊂ Vγ(∂An). In particular, for n > n2 we have that both An/A0 and A0/An are

subsets of V . Then we can see that ∣νn(An)−νn(A0)∣ = ∣νn(An/A0)−νn(A0/An)∣ ≤ 2νn(V ).

We conclude that, taking n0 = max{n1, n2}, if n > n0 then:

∣νn(An) − ν0(A0)∣ = ∣νn(An) − νn(A0)∣ + ∣νn(A0) − ν0(A0)∣

≤ 2νn(V ) + ∣νn(A0) − ν0(A0)∣

≤ 2ν0(V ) + 2∣νn(V ) − ν0(V )∣ + ∣νn(A0) − ν0(A0)∣

< ε/3 + ε/3 + ε/3 = ε,

and so

∣νn(An) − ν0(A0)∣ Ð→ 0, when nÐ→ +∞. (3.9)

Since ∣ν0(A0)∣ ≤ ∣νn(An)∣+∣νn(An)−ν0(A0)∣ ≤ C+∣νn(An)−ν0(A0)∣ and the second

term in last sum converges to zero when nÐ→ +∞ we conclude that ν0(A0) ≤ C.

◻

It is clear that Lemma 3.0.6 remains true if we replace ≤ by ≥ in both inequalities

of its statement.
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Lemma 3.0.7. Now we consider fn Ð→ f0 and for each n ≥ 0 a set ∆n with ∂∆n Ð→ ∂∆0

and an induced Markov map Fn ∶ ∆n Ð→ ∆n with partition Pn of ∆n and return time

Rn ∶ ∆n Ð→ N. For each n ≥ 0 consider a Fn−invariant measure νn compatible with Fn

(see Definition 2.1.4) such that νn Ð→ ν0 in the weak−∗ topology.

Suppose in addition that there is a function ϕ ∶ NÐ→ R in such a way that

νn({Rn ≥ k}) ≤ ϕ(k), ∀n ∈ N.

Then

ν0({R0 ≥ k}) ≤ ϕ(k), ∀n ∈ N. (3.10)

Proof: Fix k ∈ N. Define An ∶= {Rn < k} for each n ∈ N and C ∶= 1−ϕ(k). By hypothesis

νn(An) ≥ C. So this result is a direct consequence of Lemma 3.0.6.

◻

Remark 3.0.8. If P is a Markov partition on ∆ ⊂M , R ∶ ∆ Ð→ N is an inducing time

function on ∆ (which is constant on each element P ∈ P) and ν is a probability on ∆,

then ∫ Rdν = ∑
j≥1

ν(R ≥ j). In fact:

∑
j≥1

ν(R ≥ j) = ν(R ≥ 1) + ν(R ≥ 2) + ν(R ≥ 3) +⋯ + ν(R ≥ j) +⋯

= ν(R = 1) + ν(R = 2) + ν(R = 3) +⋯ + ν(R = j) +⋯

+ν(R = 2) + ν(R = 3) +⋯ + ν(R = j) +⋯

+ν(R = 3) +⋯ + ν(R = j) +⋯

+⋯

= ∑j≥1 j ⋅ ν(R = j) = ∫ Rdν

Lemma 3.0.9. Let gn ∶ M Ð→ M be a sequence of dynamics that converges in the C1

topology to a map g0 ∶ M Ð→ M . Let νn be a sequence of invariant measures w.r.t.

gn ∶ M Ð→ M which converge to a measure ν0 in the weak-* topology. Then ν0 is an

invariant measure w.r.t. g0 ∶M Ð→M .

Proof: Let F denote the space of all continuous functions ϕ ∶ M Ð→ R endowed with

the sup norm ∣∣ ⋅ ∣∣0. We know that a given measure µ in M is invariant with respect

to some mensurable transformation f ∶ M Ð→ M if, and only if, ∫ ϕdµ = ∫ ϕ ○ gdµ,

∀ϕ ∈ F . Also, if we suppose that νn converges to ν0 in the weak-* topology, as in the

hypothesis, this must be equivalent to the sequence of real numbers ∣∫ ϕdνn − ∫ ϕdν0∣

converge to zero, for all ϕ ∈ F . Therefore, assuming that νn is gn-invariant for all n ∈ N
is equivalent to say that ∫ ϕdνn = ∫ ϕ ○ gndνn, ∀ϕ ∈ F , ∀n ∈ N, and if we show that

∫ ϕdν0 = ∫ ϕ ○ g0dν0, ∀ϕ ∈ F , we are done.
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Take ϕ ∈ F . See that

∣ϕ ○ gndνn − ∫ ϕ ○ g0dν0∣

≤ ∣∫ ϕ ○ gndνn − ∫ ϕ ○ g0dνn∣ + ∣∫ ϕ ○ g0dνn − ∫ ϕ ○ g0dν0∣

≤ ∣∣ϕ∣∣0 ⋅ ∣∣gn − g0∣∣0 + ∣∫ ϕ ○ g0dνn − ∫ ϕ ○ g0dν0∣ ,
and the last term converges to zero, since gn converges to g0 and νn converges to ν0. This

concludes the proof.

◻

Remark 3.0.10. Consider fn Ð→ f0 a convergent sequence of dynamics in the C1−topology

and suppose that for all n ≥ 1 there is an open disk ∆n ⊂M and an induced Markov map

Fn ∶ ∆n Ð→∆n as in Definition 2.8. By Lemmas 3.0.5 and 3.0.4 there exists ∆0 ⊂M where

we can define a map F0 ∶ ∆0 Ð→ ∆0 in the following way: Consider, for each k > 0 and

n > 0 the set Akn ∈ Pn such that Rn(Akn) = k. We can apply Lemma 3.0.3 to each connected

component of Akn and thus obtain a set Ak0 ⊂ ∆0 with Akn Ð→ Ak0. Defining P0 ∶= ⋃
k>0

Ak0

and R0 ∶ ∆0 Ð→ N as R0(Ak0) = k and R0 (∆0/ ⋃
k>0

Ak0) = 0 we can set F ∶ ∆0 Ð→ ∆0 as

F0(x) = fR0(x)(x). Its clear that with the current notation, Akn = {Rn = k}, for all n, k ∈ N.

In next Lemma we assume the context of Remark 3.0.10.

Lemma 3.0.11. Consider, for each n ≥ 0, a sequence of probability measures νn on

∆n ⊂M such that νn Ð→ ν0 in the weak−∗ topology. Suppose that there is C > 0 such that

∫ Rndνn ≤ C for all n ≥ 1, where Rn is the return time map associated to Fn defined on

∆n, as in Remark 3.0.10. Then

∫ R0dν0 ≤ C.

Proof: Denote an,k ∶= νn({Rn = k}) and bn,k ∶= νn({Rn ≥ k}). By Remark 3.0.8 we know

that, for each n ≥ 0,

∫ Rndνn = ∑
k≥1

k ⋅ an,k = ∑
k≥1

bn,k.

Since each νn is a probability measure on ∆n, we have that for each n:

∑
k≥1

an,k = 1. (3.11)

We know by 3.9 that for each k ≥ 1

an,k Ð→ a0,k, when nÐ→ +∞. (3.12)

In order to show that ∑
k≥1

b0,k ≤ C, we proceed with the following inductive con-

struction: Fix k and consider εk > 0 (Note that εk may be taken arbitrarily. However in
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what follows we will consider a suitable choice for εk to be established later). By 3.12 we

know that
k

∑
s=1

an,s is a convergent sequence. Then, consider nk0 ∈ N such that

m,n ≥ nk0 ⇒ ∣
k

∑
s=1

as,n −
k

∑
s=1

as,m∣ < εk.

Set 0 < γk < 1 such that
k

∑
s=1

as,nk0 = 1 − γk (see 3.11). Therefore we have that

k

∑
s=1

an,s ∈ (1 − γk − εk,1 − γk + εk)∀n ≥ n
k
0, that is,

+∞
∑
s=k+1

an,s ∈ (γk − εk, γk + εk),∀n ≥ n
k
0. (3.13)

By definition of bn,k, we may write previous statement as:

bn,k ∈ (γk − εk, γk + εk),∀n ≥ n
k
0. (3.14)

Setting ϕ(k) ∶= γk + εk we may apply Lemma 3.0.7 and obtain that

b0,k < γk + εk.

To conclude this proof we just need to ensure that ∑
k≥1

b0,k ≤ C. In fact, it’s not

difficult to see that by construction we have that ∑
k≥1

γk ≤ C. If we choose εk as the general

term of a convergent series (for instance, εk =
1
k2 ) then we obtain that

∑
k≥1

b0,k ≤ ∑
k≥1

γk + εk ≤ C +∑
k≥1

εk < +∞. (3.15)

Since the choice of εk is arbitrary, we may take ∑k≥1 εk as small as we want and

so 3.15 gives us that ∑k≥1 b0,k ≤ C.

◻

Lemma 3.0.12. Consider fn Ð→ f0 as a convergent sequence of dynamics in the C1−topology.

Suppose that for all n ≥ 1 there is an open disk ∆n ⊂ M , 0 < σ < 1, δ > 0 and an

induced Markov map Fn ∶ ∆n Ð→ ∆n as in Definition 2.3.2 with (σ, δ)−hyperbolic re-

turn time Rn ∶ ∆n Ð→ N as in Definition 2.3.1. Suppose that there is ∆0 ⊂ M such that

∆0 = lim
nÐ→+∞

∆n and set F0 ∶ ∆0 Ð→∆0 as in Remark 3.0.10. Then {j ∈ N; f j0(x) ∈ O
+
F0

(x)}

is a subset of natural numbers that satisfy the geometric properties of hyperbolic times

given by Proposition 1.3.2.

Proof: Let F0 ∶ ∆0 Ð→ ∆0 be given by Lemma 3.0.4. We will utilize the notation of

Remark 3.0.10. For each n ≥ 1 and Fn ∶ ∆n Ð→ ∆n, there is a partition Pn build up with

sets Akn such that all points y, z ∈ Akn satisfy

d(fk−jn (y), fk−jn (z)) ≤ σj/2d(fkn(y), f
k
n(z)); ∀1 ≤ j < k, (3.16)
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as we can see by Proposition 1.3.2.

Now, consider y, z in a connected component of Ak0. Since f0 is continuous in

a compact set, given ε > 0 there exists γ > 0 such that ∀x,w ∈ M, d(x,w) < γ ⇒

d(f0(x), f0(w)) < ε/8. We may take γ small enough in such a way that d(f j0(x), f
j
0(w)) <

ε/8, ∀0 ≤ j ≤ k. By Lemma 3.0.4 Akn Ð→ Ak0. Then there is n0 ∈ N such that if n > n0 there

are yn, zn belonging to a connected component of Akn with d(yn, y) < γ and d(zn, z) < γ.

By triangular inequality follows that

d(fk−j0 (y), fk−j0 (z)) ≤ d(fk−j0 (y), fk−j0 (yn)) + d(f
k−j
0 (yn), f

k−j
n (yn)) +

d(fk−jn (yn), f
k−j
n (zn)) + d(f

k−j
n (zn), f

k−j
0 (zn)) + d(f

k−j
0 (zn), f

k−j
0 (z)).

By construction, we have that d(fk−j0 (y), fk−j0 (yn)) and d(fk−j0 (zn), f
k−j
0 (z)) are

both smaller than ε/8. Since fn Ð→ f0 in the C1−topology, there is n1 ∈ N such that

n > n1 ⇒ d(fn, f0) < ε/8. Then, for n > n1 we have that d(fk−j0 (yn), f
k−j
n (yn)) and

d(fk−jn (zn), f
k−j
0 (zn)) are both smaller than ε/8. 3.16 yields that d(fk−jn (yn), f

k−j
n (zn)) <

σj/2d(fkn(yn), f
k
n(zn)). We conclude that d(fk−j0 (y), fk−j0 (z)) < ε/2+σj/2d(fkn(yn), f

k
n(zn)).

But again:

d(fkn(yn), f
k
n(zn)) ≤ d(fkn(yn), f

k
0 (yn)) + d(f

k
0 (yn), f

k
0 (y)) +

d(fk0 (y), f
k
0 (z)) + d(f

k
0 (z), f

k
0 (zn)) + d(f

k
0 (zn), f

k
n(zn)).

With a similar argument we obtain that d(fkn(yn), f
k
n(zn)) < ε/2+d(f

k
0 (y), f

k
0 (z)),

and so:

d(fk−j0 (y), fk−j0 (z)) < ε/2 + ε/(2σ) + σj/2d(fk0 (y), f
k
0 (z)).

With this we obtain that all points y, z in a connected component of Akn satisfy

d(fk−j0 (y), fk−j0 (z)) ≤ σj/2d(fk0 (y), f
k
0 (z)); ∀1 ≤ j < k. (3.17)

This ends the proof.

◻

We know by Proposition 1.3.5 that if f ∶M Ð→M is a non-uniformly expanding

map (with respect to a given probability µ) then almost every point x has infinitely many

hyperbolic times. In the next Lemma we will pursue the converse of this fact. We obtain

a sufficient condition for f being non-uniformly expanding. As we shall see later, this

condition is connected with the integrability of return times.
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Lemma 3.0.13. Let (F0,P0) be an induced full Markov map for f0 defined on an open

set ∆0 ⊂ M , R0 be the induced time of F0 and µ0 be an ergodic f0−invariant probability

such that µ({R0 = 0}) = 0. If there is an F0−invariant finite measure ν0 ≪ µ0 and θ > 0

such that 0 < ∫ R0dν0 <
1

θ
< +∞ then, for µ0 almost every x ∈ ∆0, lim sup

nÐ→+∞

1

n
♯{0 ≤ j <

n; f j0(x) ∈ O
+
F0

(x)} > θ > 0.

Proof: Since

♯{j ≥ 0;
j

∑
k=0

R0 ○ F
k
0 (x) < n} = ♯{0 ≤ j < n; f j0(x) ∈ O

+
F0

(x)} (3.18)

and

♯{j ≥ 0;
j

∑
k=0

R0 ○ F
k
0 (x) < n} = sup{j ≥ 0;

j

∑
k=0

R0 ○ F
k
0 (x) < n}, (3.19)

if we show that lim sup
nÐ→+∞

1

n
sup{j ≥ 0;

j

∑
k=0

R0 ○ F
k
0 (x) < n} > 0 then we are done. Denote

vn(x) ∶= sup{j ≥ 0;
j

∑
k=0

R0 ○ F
k
0 (x) < n}. We know that ν0 is ergodic, since µ0 is ergodic.

Then, by Birkhoff’s theorem we have that

0 < lim
kÐ→+∞

1

k

k−1

∑
s=0

R0 ○ F
s
0 (x) = ∫ R0dν0 <

1

θ
< +∞

for ν0−almost every point x ∈ ∆0. In particular, 0 < lim sup
nÐ→+∞

1

vn(x) + 2

vn(x)+1

∑
s=0

R0 ○ F
s
0 (x) =

∫ R0dν0 < +∞. By construction, we have that

1

vn(x) + 2

vn(x)+1

∑
s=0

R0 ○ F
s
0 (x) ≥

n

vn(x) + 2
=

n

vn(x)
⋅
vn(x)

vn(x) + 2
,

what gives us that lim sup
nÐ→+∞

n

vn(x)
≤ lim sup

nÐ→+∞

1

vn(x) + 2

vn(x)+1

∑
s=0

R0 ○ F
s
0 (x) < +∞ and hence

lim sup
nÐ→+∞

vn(x)

n
≥

1

∫ R0dν0

> θ > 0.

◻

The following Lemma is a straightforward fact, which we will present without

proof.

Lemma 3.0.14. Suppose that fn Ð→ f0 in the C1 topology and that, for each n ≥ 0,

µn(fn, νn) is the measure obtained from νn and fn as in Remark 2.3.6. If νn Ð→ ν0 in the

weak−∗ topology, then µn(fn, νn) Ð→ µ0(f0, ν0) in the weak−∗ topology.
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Remark 3.0.15. The strategy to prove Theorem A is go back to the approach of induced

maps and lift each µn to an absolutely continuous measure νn which is invariant with

respect to an induced map Fn associated to fn in a suitable set ∆n, (which need not to

be the same for all n ≥ 0). It’s not hard to prove that since fn Ð→ f0, there is partition

P0 of ∆0 which is the limit of the partitions Pn (the meaning of this last assertion will

be properly defined in the sequel) and a map F0 also defined in ∆ such that Fn Ð→ F0.

Formal statements will appear latter. With Lemma 3.0.9, we can obtain a F0−invariant

measure ν0 which is the limit of νn in the topology weak-*. In this scenario we take into

account the property of positive frequency of hyperbolic times to obtain some bounds to the

measure of the tail of return times, both for νn and ν0. This will ensure the integrability

of the return time function R0 with respect to ν0. Now, if we take µ0 as the normalization

of the projection of ν0, we obtain by Lemmas 2.4.4, 2.4.5 and 3.0.13 that µ0 must be an

expanding measure for f0, that is, µ0 ∈ M
1
exp(f0).



Chapter 4

Proof of Theorems A and B

4.1 Proof of Theorem A

In the next theorem we utilize some results of Chapter 3 to obtain a model result

which we believe that can be used in many other situations besides the present context.

Essentially it says that if we have suitable Markov partitions for a sequence of dynamics

fn and fn Ð→ f0 in the C1−topology, then one can construct a suitable Markov partition

for f0.

Before we enounce the result, we will make clear the meaning of suitable Markov

partition we quote before. We know by Proposition 2.3.5 that if µ is an expanding

measure for f and ∆ ⊂M is an open hyperbolic nested set small enough that intersects

the statistical hyperbolic attractor Afhyp,+ (see Remark 1.3.15) then one can construct a

Markov partition in ∆ and Markov map F ∶ ∆Ð→∆ which is based on hyperbolic returns

R(x) of x to ∆. Even more, there exists an F−invariant measure ν ≪ µ with respect to

which the return time R is integrable. The value of this integral is related to the frequency

θf > 0 of hyperbolic returns. In the opposite direction, if we begin with the hypothesis

that we already built an induced Markov map F on some set ∆ ⊂ M and the inducing

time is in fact the hyperbolic return time to ∆, which is integrable with respect to some

F−invariant measure ν, then we will observe positive frequency of hyperbolic times for

almost every point in M from the point of view of the projection µ of ν. This projection

will be, in fact, an expanding measure (see Theorem 2.1.6 and Lemma 3.0.13).

As we can see, the integrability of the return time plays a key role in the process

of obtain an expanding measure. So, what we mean with the term “suitable Markov map”

quoted before is a Markov map for which there exists an invariant measure and the return

time is integrable with respect to this measure. In the next result we show that if there

are suitable Markov maps for each fn then there exists also a suitable Markov map for f0.

Theorem 4.1.1. Suppose that for each n ≥ 1 there exists an induced Markov map Fn ∶
51
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∆n Ð→ ∆n defined in some topological disk ∆n with return time Rn ∶ ∆n Ð→ R and a

Markov partition Pn = (P k
n )k∈N on ∆n. Suppose in addition that there is a Fn−invariant

measure νn. If there is a set ∆0 such that ∆n Ð→ ∆0, there are sets P k
0 ⊂ ∆0, k ∈ N, such

that for each k we have P k
n Ð→ P k

0 and there exists C > 0 such that

∫ Rndνn ≤ C, ∀n ≥ 1,

then P0 ∶= (P k
0 )k∈N is a Markov partition on ∆0, there is an induced Markov map F0 ∶

∆0 Ð→ ∆0 with inducing time R0 ∶ ∆0 Ð→ N given by R0(P k
0 ) = k and there exists a

measure ν0 on ∆0 such that ∫ R0dν0 ≤ C.

Proof: We will see that P0 ∶= (P k
0 )k∈N is in fact a Markov partition on ∆0 and that

(F0,P0) is a Markov map induced by f0 with return time R0.

By construction, the elements of P0 are open sets. See that if k1 ≠ k2 then

Ak10 ∩ Ak20 = ∅. In fact, if by contradiction we suppose that some connected component

Ãki0 of Aki0 , for i = 1, 2 is such that Ãk10 ∩ Ãk20 ≠ ∅ it means that for all ε > 0 we have

∂Ãk10 ⊂ Vε(Ã
k2
0 ) or ∂Ãk20 ⊂ Vε(Ã

k1
0 ). By construction, there is a sequence of sets Ãkin ∈ Pn

such that Ãkin Ð→ Ãki0 when n Ð→ +∞. With this and using that Ãk10 ∩ Ãk20 ≠ ∅, we can

easily conclude that given ε > 0 we have ∂Ãk1n ⊂ Vε(Ã
k2
n ) and ∂Ãk2n ⊂ Vε(Ã

k1
n ) for n big

enough, and hence Ãk1n ∩Ã
k2
n ≠ ∅ for n big enough, what is an absurd since Pn is a partition

of ∆n ∀n ≥ 1. Then we know that P0 satisfies the first condition in Definition 2.1.1.

By construction we know that given P ∈ P0 then F0(P ) = ∆0 and also P is sent

diffeomorphically onto ∆0 by F0 (and F0∣P can be extended to a diffeomorphism between

P and ∆0), that is, P0 satisfies second and third conditions of a full Markov partition. It

is easy to see that if x ∈ ∆0 and C0
j (x) denotes the j−cylinder containing x with respect

to P0, then lim
j

diam(C0
j (x)) = 0. In fact, given x ∈ ∩n≥0F

−n(∪P ∈P0), set Pj = P0(F j(x)).

As diam(P0,n(x)) = diam((F0∣P1)
−1 ○(F0∣P2)

−1 ○⋯○(F0∣Pn)
−1(∆0)). Then we can conclude

that P0 is in fact a full Markov partition of ∆0 with respect to F0 and that (F0,P0) is a

full induced Markov map defined on ∆0.

Define a function R0 ∶ ∆0 Ð→ N by setting R0(x) = k, if x ∈ Ak0 and R0(x) = 0

otherwise. Also, define a map F0 ∶ ∆0 Ð→∆0 by F0(x) = f
R0(x)
0 (x).

Since for all n the measures νn satisfy ∫ Rndνn ≤ C, by utilizing 3.0.11 we can

ensure that:

0 < ∫ R0dν0 ≤ C.

◻

See that in Theorem 4.1.1 we require that all the integrals are uniformly bounded

by the same constant C > 0. It is not clear yet if this condition can be weakened to, for

instance, ∫ Rndνn < Cn, with Cn > 0 or any other weaker form.
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Remark 4.1.2. We will prove Theorem A in the case where the contraction rate σ is

the same for every dynamics. However it is not difficult to see that the Theorem remains

valid when we consider each fn with a contraction rate σn with σn Ð→ σ0. In fact, Lemma

3.0.12 remains valid if each Rn is a (σn, δ)−hyperbolic return with σn Ð→ σ0.

Proof of Theorem A: Consider a sequence fn of non-flat maps converging to f0 in the

C1 topology and suppose that there is µn ∈ Mexp(σ1/2, `, δ, θ, fn) for n ≥ 1 where λ, δ, θ > 0

and ` ∈ N are fixed. We may consider without loss of generality ` = 1, the other cases

are treated analogously. Proposition 1.3.13 gives us, for each n ≥ 1, the existence of a

statistical ergodic attractor Anhyp,+ such that ωfn,h,+(x) = A
n
hyp,+ for µn−a.e.p. x ∈M (see

Remark 1.3.15).

Consider A0
hyp,+ = lim

nÐ→+∞
Anhyp,+ as the limit set given by Definition 2.1.9 and

take x ∈ A0
hyp,+. We know by construction that if V ∋ x is a neighborhood of x then

V ∩ Anhyp,+ ≠ ∅ for infinitely many n ∈ N. Restricting ourselves to a subsequence if

necessary we may assume that V ∩Anhyp,+ ≠ ∅ for all n.

Fix n ≥ 1 and consider the hyperbolic nested set ∆n ∶= B
∗,fn
r (x) associated to fn

as given by Definition 2.2.10. By Proposition 2.2.13 we may take ∆n as some hyperbolic

nested ball B∗
r (x) such that diam(∆n) < δ/2.

Taking V = ∆n we know that ∆n ∩ A
n
hyp,+ ≠ ∅. Then Proposition 2.3.4 gives

us that there exists a full induced Markov map (Fn,Pn) on ∆n, where Pn is a Markov

partition on ∆n with induced time Rn ∶ ∆n Ð→ N. Fn, Rn and Pn are given, respectively

by 2.8, 2.3.1 and 2.9.

Also, since ∆n∩A
n
hyp,+ ≠ ∅, Proposition 2.3.5 gives us the existence of a Fn−invariant

measure νn ≪ µn compatible with Fn and ξn > 0 such that ϕ∆n,fn
h (x) ≥ ξn for µn−a.e.p.

x ∈M (where ϕ∆n,fn
h (x) denotes the frequency of hyperbolic returns to ∆n, see 1.14) and

also

∫ Rndνn <
1

ξn
, (4.1)

for all n ≥ 1. Hence, by Theorem 2.1.7 we get

µn =
1

γn

+∞
∑
j=0

(fn)
j
∗(νn∣{Rn>j}),

where γn =
+∞
∑
j=0

(fn)
j
∗(νn∣{Rn>j})(M).

We know that Pn is a Markov partition of ∆n which is composed by a family of

sets Akn, k ≥ 1, where Akn is a union of connected open sets (the elements of the partition

Pn with induced time k) which are mapped diffeomorphically onto ∆n by Fn (see that,

restricted to these sets, Fn = fkn). Take an open connected component of Akn, which we

will denote by Ãkn.
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Until now we have maintained n fixed. By varying n we may consider the sets ∆n

as defined above and also define the set ∆0 ∶= B
∗,f0
r (x). By Lemma 3.0.5 we know that

∆n Ð→ ∆0. Applying Lemma 3.0.4 to Ãkn and ∆n we obtain that, since Fn = fkn Ð→ fk0

(restricted to Ãkn), there exists an open connected set Ãk0 ⊂ ∆0 such that the restriction

fk0 ∣Ãk0
∶ Ãk0 Ð→ ∆0 is a diffeomorphism. We denote by Ak0 to the union of all connected

open sets Ãk0 obtained by this construction applied to all connected components of Akn

and we define P0 ∶= ⋃
k≥1

Ak0.

Take a finite cover B = {B1,B2,⋯,BN} of M with balls with radius r > 0 such

that 2r < δ/2. By hypothesis, θfn ≥ θ for all n ≥ 1. So, for each n ≥ 1 there is a ball

Bj ∈ B such that the frequency of hyperbolic returns to Bj satisfies ϕ
Bj ,fn
h ≥ θ (otherwise,

if ϕ
Bj ,fn
h < θ for every Bj ∈ B, we would have, by definition, that θf < θ, contradicting our

hypothesis). Passing to a subsequence, if necessary, we may assume that Bj is the same

for all n ≥ 1. It is a straightforward fact that this set satisfies:

Bj ∩A
0
hyp,+ ≠ ∅.

Let Bj = Br(x), for some x ∈M . Thus, there is no harm in assume that the sets

∆n can be taken as ∆n = B∗
r′(x), with 0 < 2r < 2r′ < δ/2. We have just assured that we

can take Bj = Br(x) ⊂ ∆n = B
∗,fn
r′ (x), with diam(∆n) < δ/2.

Since Bj ⊂ ∆n and ϕ
Bj ,fn
h (y) ≥ θ, for µn−almost every point y ∈ Bj, we have a

fortiori that ϕ∆n,fn
h (y) ≥ θ, for µn−almost every point y ∈ ∆n. Therefore, 4.1 may be

rewritten as:

∫ Rndνn <
1

θ
, (4.2)

Since for all n the measures νn satisfy 4.2, setting C ∶=
1

θ
and utilizing Theorem

4.1.1 we can ensure that P0 = (Ak0)k∈N is a Markov partition on ∆0 and there is an induced

Markov map F0 ∶ ∆0 Ð→∆0 for f0 with inducing time R0. Furthermore:

0 < ∫ R0dν0 ≤
1

θ
.

We have just concluded that R0 is integrable with respect to ν0. Then, by using

Theorem 2.1.6 we obtain an ergodic measure µ0 on M such that ν0 ≪ µ0. By Lemma

3.0.14 we obtain that in fact, passing to a subsequence if necessary, µn Ð→ µ0 when

n Ð→ +∞. Lemma 3.0.9 gives us a measure that µ0 which is in fact an f0−invariant

measure.

Claim. 4.1.3. µ0 is an expanding measure for f0.
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Proof: By construction, there is a region ∆ ⊂ M such that for µ−almost every point

x ∈ ∆ belongs to a hyperbolic pre-ball where the geometric properties of hyperbolic times

(items 1. and 2. of Proposition 1.3.2) holds in a contraction rate given by σ1/2. Since

µ−almost every point x ∈ ∆ satisfies the geometric properties of hyperbolic times, item b)

of Remark 1.3.4 gives us that ∣∣DF (x)−1∣∣ > σ−1/2 for ν−almost every point x ∈ ∆. So F

has all of its Lyapunov exponents bounded by c ∶= − logσ1/2 > 0. Setting κ ∶= ∫ Rdν < +∞,

we can use Lemma 2.4.4 to conclude that f has all of its Lyapunov exponents bounded

by c. By Theorem 5.2.1 we conclude that there exists λ > 0 and ` ∈ N such that µ is a

(λ, `)−expanding measure for f .

◻

In this way, we have just shown that ∆0 is a region satisfying ϕ∆0

f0,hyp
≥ θ µ0−almost

every point (and so, θf0 ≥ θ). Also, by Lemma 3.0.12 we conclude that µ0−almost every

point x ∈ ∆0 admits a pre-ball that expands with respect to f in a rate controlled by σ1/2

and the size of hyperbolic balls is δ, which can be extended to µ0−almost every point of

M by ergodicity of µ0, that is, µ0 ∈ Mexp(σ
1/2, `, θ, δ, f0), as we wanted.

◻

Remark 4.1.4. We can see that te geometric expanding behavior is obtained in Theorem

A via continuity arguments. If we want to go further and recover NUE behavior (as in the

analytical definition) for a measure that has bounded parameters we need to assume that

the exceptional set C of the dynamics involved is constituted only by critical points (where

the derivative fails to be invertible) or only by singular points. This restriction is necessary

because to recover slow recurrence to the exceptional set (in the proof of Theorem 5.2.1),

Oliveira uses Lemma 2.4.5 (see Remark 2.4.6).

4.2 Proof of Theorem B

The objective of this section is to prove the following result.

Theorem 4.2.1. Given ε > 0, f ∶M Ð→M and a measure µ ∈ Mexp(σ1/2, `, δ, θ, f), ∃γ > 0

and σ′1/2 > 0 with ∣σ′−σ∣ < ε such that if d(f, g) < γ then there exists ν ∈ Mexp(σ′1/2, `, δ, θ, g)

with d∗(µ, ν) < ε.

Theorem B is a direct consequence of Theorem 4.2.1.

Lemma 4.2.2. Let x ∈ M and consider ω ∶= δx as the Dirac measure supported on x.

Then, given ε > 0, ∃ζ > 0 such that y ∈M, d(x, y) < ζ ⇒ d∗(ω, ν) < ε/3, where ν ∶= δy.

Proof: In fact, given ε > 0, consider i0 > 0 such that
+∞
∑
i=i0

1

2i
< ε/12 (because

+∞
∑
i=1

1

2i
is a

convergent series) and ζ > 0 suitable to the uniform continuity of each ϕi, i ∈ {1,⋯, i0}.

Precisely, ζ > 0 is such that
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∀x1, x2 ∈M, d(x1, x2) < ζ ⇒ ∣ϕi(x1) − ϕi(x2)∣ < ε/ (6 ⋅
i0−1

∑
k=1

1

2k
) ,∀i ∈ {1,⋯, i0 − 1}, (4.3)

which is possible since we have a finite number of ϕ′is and each ϕi is uniformly continuous

on the compact M).

Thus, if y ∈M is such that d(x, y) < ζ and ν = δy, we have that

d∗(ω, ν) =
+∞
∑
i=1

1

2i
∣∫
M
ϕidω − ∫

M
ϕidν∣

=
+∞
∑
i=1

1

2i
∣ϕi(x) − ϕi(y)∣

=
i0−1

∑
i=1

1

2i
∣ϕi(x) − ϕi(y)∣ +

+∞
∑
i=i0

1

2i
∣ϕi(x) − ϕi(y)∣

< ε/6 + 2 ⋅
+∞
∑
i=i0

1

2i
< ε/6 + 2 ⋅ ε/12 = ε/3.

In the last inequalities we used the fact that ∣ϕi(x1) − ϕi(x2)∣ < 2, ∀x1, x2 ∈

M, ∀i ∈ N, because the functions ϕi are taken in the unit ball B1.

◻

Lemma 4.2.2 above can be generalized in such a way that one can obtain the

following:

Remark 4.2.3. For each ε > 0 and n ∈ N there is ζ > 0 such that d(y, x) < ζ then

d∗ (
1

n

n−1

∑
j=0

f j∗ω,
1

n

n−1

∑
j=0

f j∗ν) < ε/3.

To do this it is enough to require that ζ satisfies 4.3 and the points y are in a

ζ−neigborhood of x in such a way that d(f j(x), f j(y)) < ζ, ∀j ∈ {0,⋯, n− 1} (that is, y is

a ζ−shadow for x until the nth−iterate). In this way we have:

d∗ (
1

n

n−1

∑
j=0

f j∗ω,
1

n

n−1

∑
j=0

f j∗ν)

= ∑
i∈N

1

2i
∣∫ ϕid(

1

n

n−1

∑
j=0

f j∗ω) − ∫ ϕid(
1

n

n−1

∑
j=0

f j∗ν)∣

≤ ∑
i∈N

1

2i
1

n

n−1

∑
j=0

∣∫ ϕi ○ f
jdω − ∫ ϕi ○ f

jdν∣

= ∑
i∈N

1

2i
1

n

n−1

∑
j=0

∣ϕi ○ f
j(x) − ϕi ○ f

j(y)∣

=
i0−1

∑
i=1

1

2i
1

n

n−1

∑
j=0

∣ϕi ○ f
j(x) − ϕi ○ f

j(y)∣ +
+∞
∑
i=i0

1

2i
1

n

n−1

∑
j=0

∣ϕi ○ f
j(x) − ϕi ○ f

j(y)∣

< ε/4 + 2 ⋅
+∞
∑
i=i0

1

2i
< ε/6 + 2 ⋅ ε/12 = ε/3.
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Remark 4.2.4. Consider δ > 0, 0 < σ < 1 and suppose that p is a periodic point of period

n such that n is also a (σ, δ)−hyperbolic time for p. By definition of hyperbolic time (see

Definition 1.3.1), we have that
n−1

∏
j=0

∣∣(Df ○ f j(x))−1∣∣ ≤ σn what, by Chain Rule, gives that

∣∣Dfn(p)−1∣∣ ≤ σn < 1, that is, p is a periodic repeller of f (see item a) of Remark 1.3.4.

The orbit of periodic repellers is a particular example of uniformly hyperbolic

sets.

We know that hyperbolic fixed points have the following property:

Fact 4.2.5. Let f ∈ Diff r(M) and p be a hyperbolic fixed point of f . Then, there are

neighborhoods N of f in Diff r(M) and U of p in M , and a continuous map ρ ∶ N Ð→ U

which associates to each g ∈ N the only fixed point of g in U , and that fixed point is

hyperbolic.

We may now prove Theorem 4.2.1. The strategy to prove this theorem is to use

hyperbolic continuation (Fact 4.2.5) in order to obtain an invariant probability measure

for every dynamic g close enough to f and then ensure that the measure obtained is

indeed an expanding measure for g.

Proof of Theorem 4.2.1: Consider µ ∈ Mexp(σ1/2, `, δ, θ, f0) and a typical point x of

µ, that is, a point such that
1

n

n−1

∑
j=0

δfj(x) Ð→ µ in the weak−∗ topology when nÐ→∞. By

simplicity we consider ` = 1. The case where ` > 1 is treated analogously.

Let ε > 0 and consider n0 ∈ N such that

d∗ (νx, µ) < ε/3, (4.4)

where νx ∶=
1

n0

n0−1

∑
j=0

δfj(x).

Consider ∆ ⊂ M with diam(∆) < δ/2 and suppose that ∆ ∩ Ahyp,+ ≠ ∅, where

Ahyp,+ is a compact set such that ωf,+,h(x) = Ahyp,+ for µ−a.e.p. x ∈M . Let F ∶ ∆ Ð→ ∆

be a map with return time R ∶ ∆ Ð→ N, as in Definitions 2.3.2 and 2.3.1 (we know

by Proposition 2.3.4 that F is indeed a full induced Markov map with respect to f).

Without loss of generality, we can take x ∈ ∆. For example, if ∑
n≤1

σn/2 <
1

4
or if f is

backward separated we can take ∆ as some hyperbolic nested ball B∗
r (y), with 0 < r < δ/4

and x ∈ B∗
r (y), given by Lemma 2.2.13.

Let P be an element of the Markov partition P in ∆ with R(P ) = k ∈ N. We know

that P is mapped (with expanding behavior) onto ∆ by F , that is, ∣∣DF (x)−1∣∣ < σk < 1

for x ∈ ∆ (see item a) of Remark 1.3.4). Thus (F ∣P )
−1 ∶ ∆ Ð→ P is a contraction map

and so F admits a fixed point in P . Since P has countable many elements, we may write

P = {P1, P2,⋯, Pk,⋯}. We can associate to a given point y ∈ ∆ it’s itinerary in the elements
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of the partition P by defining ij(y) ∶= k se f j(y) ∈ Pk. Define the cylinder C(j0, j1, ⋯ jn)

associated to the map F as the set of points y ∈ ∆ such that F s(y) ∈ Pjs , ∀s ∈ {0,⋯, n}. It

is not difficult to see that the inverse of F restricted to this cylinder is also a contraction

map. So each cylinder C(j0, j1, ⋯ jn) contains a periodic point of F with period n + 1.

Consider a cylinder C(j0, j1, ⋯ jm0−1) containing x. Since P is a Markov parti-

tion, we have that diam(C(j0, j1, ⋯ jm0−1)) Ð→ 0 when m0 Ð→ +∞. Then given ζ > 0 we

may take m0 large enough such that diam(C(j0, j1, ⋯ jm0−1)) < ζ, where ζ is as obtained

on Remark 4.2.3 (it’s clear that we may always take m0 ≥ n0). In this way, we ensure that

d(f j(x), f j(xf)) < ζ, ∀j ∈ {0,1,⋯,m0} and also that

d∗ (
1

m0

m0−1

∑
j=0

δfj(x), νxf) < ε/3, (4.5)

where νxf ∶=
1

m0

m0−1

∑
j=0

δfj(xf ).

By Fact 4.2.5 we conclude that there is γ1 > 0 such that if d1(g, f) < γ1 then

g admits a hyperbolic periodic repeller xg close enough to xf : since the map ρ above

is continuous we conclude that xg may be taken in such a way that d(f j(xg), f j(xf)) <

ζ, ∀0 ≤ j ≤m0, where ζ is taken as in 4.3. Thus we can ensure by Remark 4.2.3 that

d∗(νxf , νxg) < ε/3, (4.6)

where νxg ∶=
1

m0

m0−1

∑
j=0

δgj(xg).

By construction, m0 ≥ n0 yields that d∗ (
1

m0

m0−1

∑
j=0

δfj(x), µ) ≤ d∗(νx, µ). So 4.4, 4.5

and 4.6 yields that d∗(νg, µ) ≤ d∗(νxg , νxf ) + d∗(νxf , νx) + d∗(νx, µ) < ε.

Define ν ∶= νxg , which is an ergodic invariant measure, since it is supported in

a periodic orbit. For the same reason, we can see that, if g is taken sufficiently close to

f , points in the orbit of xg that are close to the respective points in the orbit of xf will

have the same hyperbolic times (although the contraction rate for points in the orbit of

xg may be different, lets say, bounded by some 0 < σ′ < 1, which may be taken such that

∣σ − σ′∣ < ε since xg is obtained via hyperbolic continuation). So, a fortiori we have that

the frequency of hyperbolic times for points in the orbit of xf and xg will be the same.

Also the radius of hyperbolic balls will be bounded the same constant δ > 0. We conclude

that ν ∈ Mexp(σ′1/2, `, δ, θ, g).

◻



Chapter 5

Proof of Main Theorem

5.1 Integrability of the first hyperbolic time map

In this section we relate the integrability of the first hyperbolic time map with

the frequency that hyperbolic times appear for the majority of points, and hence, with the

existence of expanding measures related to sequences of dynamics. This kind of situation

was studied by Alves, Araújo in [5] in the case of one fixed dynamic, where they showed

that integrability of the first hyperbolic time map is sufficient condition for the existence of

positive frequency of hyperbolic times for points in a set of full measure. The idea behind

their proofs is to ensure that integrability of the first hyperbolic time map implies that

the system is non-uniformly expanding and so (by using Proposition 1.3.5, for instance)

obtain that almost every point has positive frequency of hyperbolic times. Since we are

dealing with invariant reference measures, our approach is different from theirs.

Consider a non-flat map f and suppose that there exists (σ, δ)−hyperbolic times

for almost every point with respect to a given f−invariant ergodic reference measure

µ. As we saw in Section 1.3, this allows us to introduce a map h ∶ M Ð→ Z+ defined

µ−almost every where which assigns to x ∈ M its first (σ, δ)−hyperbolic time (in other

words, h(x) ∶= min{n ∈ N; x ∈ Hn(σ, δ, f)}). Observe that by definition of hyperbolic

time, if n is a σ−hyperbolic time for x ∈M and ` is a σ−hyperbolic time for fn(x) then

n+ ` is a σ−hyperbolic time for x. Moreover, since h is well defined µ−almost everywhere

and we are working with f− non-singular measures (f preserves sets of measure µ zero),

then µ−almost every points must have infinitely many hyperbolic times.

The case we are mainly interested is a sequence of dynamics fn converging to

f0 where for each n ∈ N there is an fn−invariant ergodic measure µn and the first

(σ, δ)−hyperbolic time map for fn, which we denote by hn, is µn−integrable (note that σ

and δ are fixed).

Theorem 5.1.1. Let fn ∶ M Ð→ M be a sequence of non-flat maps which converge in
59
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the C1−topology to a non-flat map f0. Fix 0 < σ < 1 and δ > 0 and suppose that the

first (σ, δ)−hyperbolic time map hn, associated with fn, is integrable with respect to an

fn−invariant ergodic probability µn with the same bound K > 0 for all n ≥ 1 (i.e., there is

K > 0 such that ∫ hndµn <K, ∀n ≥ 1). Then there is θ > 0 such that for all accumulation

point µ0 of µn the frequency of (σ, δ)−hyperbolic times with respect to f0 is bounded from

below by θ for µ0−almost every point x ∈M .

Proof: Fix s ≥ 1. We will show that µs−almost every point onM has infinite (σ, δ)−hyperbolic

times and then ensure that these hyperbolic times occur with frequency higher than

θ′ ∶=
1

K
. Since s is taken arbitrarily, by applying previous results we conclude that every

accumulation point of the sequence µn must belong to Mexp(σ1/2, `, δ, θ, f0).

Let Ys ⊂M be the set of points where hs is defined. By construction, µs(Ys) = 1.

Since µs is fs−invariant, µs (⋂
i≥0

(f−1
s )i(Ys)) = 1 and so we conclude that µs−almost every

point is such that hs is defined in the entire orbit of this point by fs. We know that if

n is a σ−hyperbolic time for x ∈ M and ` is a σ−hyperbolic time for fn(x) then n + `

is a σ−hyperbolic time for x. Thus, if we take x ∈ M such that hs is defined in every

point of Ofs(x), we easily conclude that x has infinitely many hyperbolic times, and hence

µs−almost every point x in M has infinitely many hyperbolic times.

To conclude the second part, we use Lemma A.0.5 applied to fs, Fs and hs and

obtain that in fact there are λ, θ′ and ` which do not depend on s such that µs is a

(λ, `)−expanding measure with frequency of hyperbolic times higher than θ′. In particular,

by using Lemma 1.3.16 and equation 1.15, we can find θ > 0 such that the µs−frequency

of hyperbolic returns satisfies θfs ≥ θ. It is clear that if we take some open region ∆s

intersecting the statistical hyperbolic attractor Afsh,+ then µs−almost every point in this

region is contained in hyperbolic pre-balls where the contraction rate is given by σ1/2,

where σ = e−λ/4. We conclude that µs ∈ Mexp(σ1/2, `, δ, θ, fs). Since s was taken arbitrarily,

we are allowed to use Theorem A to conclude that every accumulation point µ0 of the

sequence µs belongs to Mexp(σ1/2, `, δ, θ, f0). In particular, it satisfies: µ0−almost every

point has µ0−frequency of hyperbolic returns θf0 higher than θ. By Claim 4.1.3 we know

that µ0 is in fact an expanding measure for f0. By Proposition 1.3.5 we conclude that

there is θ̃ > 0 which is a lower bound for the frequency of hyperbolic times of µ0−almost

every point x ∈M . Since the frequency of hyperbolic times is higher than or equal to the

frequency of hyperbolic returns, the proof is complete.

◻
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5.2 Proof of the Main Theorem

In this section we prove our main result and we take into account the influence

of Lyapunov exponents on the dynamic (see Definition 1.1.3).

We saw previously by Lemma 1.3.5 that if µ is a (λ, `)−expanding probability for a

non-flat map f ∶M Ð→M with non flat critical/singular set C then there exists σ, δ, θ′ > 0

such that µ−almost every point x ∈M has (σ, δ)−hyperbolic times with frequency greater

than θ′. In [21] Oliveira shows that if a measure has all of its Lyapunov exponents positive,

this is a sufficient condition for the existence of hyperbolic times with positive frequency,

as we can see in the following result.

Theorem 5.2.1. Suppose that f ∶M Ð→M is a C1+α map with non-degenerated critical

set C which preserves an ergodic invariant probability measure µ. Suppose in addition that

log+ ∣∣Df ∣∣ is µ−integrable and that µ has all its Lyapunov exponents positive. Then there

exists ` ∈ N and a real number λ > 0 such that µ is a (λ, `)−expanding measure for f .

In particular, by Proposition 1.3.5 we conclude that µ−almost every point admits

positive frequency of hyperbolic times.

Remark 5.2.2. Theorem 5.2.1 is a restatement of Lemma 3.5 of [21]. Its worth to note

that in this Lemma Oliveira uses the hypothesis of strong transitivity on the dynamics.

However, this hypothesis is utilized to prove the existence of periodic points in dynamic

balls, and not to estimate the frequency of hyperbolic times.

By chain rule we may easily conclude that

lim sup
nÐ→∞

1

n
log ∥Dfn(x)−1∥−1 ≥ lim sup

nÐ→∞

1

n

n−1

∑
i=0

log ∥Df(f i(x))−1∥−1.

Then we see that expanding measures have all Lyapunov exponents positive. Conversely,

Theorem 5.2.1 shows us that positiveness of Lyapunov exponents implies NUE behavior

(also see Claim 4.1.3). So

M1
exp(f) =M

1
+(f).

In this way, we can prove our Main Theorem in the context of expanding mea-

sures, and the same conclusions will hold when we assume positiveness of all Lyapunov

exponents. We will use Theorems A and B in the proof of the Main Theorem. Most of

the work is already done, we only need to consider some adjustments in order to obtain

a suitable decomposition as in item 1 of Definition 1.4

Lemmas 5.2.3 and 5.2.4 below provide another point of view for Theorems A and

B, respectively: the statement of those theorems implies the statement of these lemmas
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(actually, they are equivalent). We stress that the distance d(f, g) is considered associated

to the C1−topology.

Lemma 5.2.3. Given ε > 0 and a non-flat map f ∶ M Ð→ M there exists γ > 0

such that if d(f, g) < γ then for all ν ∈ Mexp(σ′1/2, `, δ, θ, g) there exists a measure µ ∈

Mexp(σ1/2, `, δ, θ, f), with ∣σ′ − σ∣ < ε such that d∗(µ, ν) < ε.

Proof: We argue by contradiction. Suppose that there exists ε > 0 and a non-flat map

f ∶ M Ð→ M such that for each γ > 0 there exists a non-flat map g ∶ M Ð→ M with

d(f, g) < γ satisfying: Every ν ∈ Mexp(σ1/2, `, δ, θ, g) is such that d∗(µ, ν) ≥ ε, for every

µ ∈ Mexp(σ1/2, `, δ, θ, f). Setting γn = 1
n , we obtain, for each n ≥ 1 a dynamics gn and a

measure νn ∈ Mexp(σ1/2, `, δ, θ, gn) such that gn converges to f and d∗(µ, νn) ≥ ε, for every

µ ∈ Mexp(σ1/2, `, δ, θ, f) (we can ensure that νn exists by using Theorem B). But this is a

contradiction to Theorem A.

◻

Lemma 5.2.4. Given ε > 0, a non-flat map f ∶M Ð→M and a measure µ ∈ Mexp(σ1/2, `, δ, θ, f)

, ∃γ > 0 and σ′1/2 > 0 such that if d(f, g) < γ then there exists ν ∈ Mexp(σ′1/2, `, δ, θ, g) with

d∗(µ, ν) < ε.

This Lemma has the same statement as Theorem 4.2.1. We have rewrote it here

again for the fluency of the text to the reader. Before we prove our main result, we ensure

that in fact measures with bounded parameters are in fact expanding measures.

Now we prove our main result.

Proof of Main Theorem: Fix σ, `, δ, θ > 0 and consider σ′, δ′, θ′ > 0 such that σ′ ≥ σ, δ′ ≥

δ and θ′ ≥ θ. It is a straightforward fact that Mexp(σ′1/2, `, δ, θ, f) ⊃ Mexp(σ1/2, `, δ, θ, f),

Mexp(σ1/2, `, δ, θ, f) ⊃Mexp(σ1/2, `, δ′, θ, f) and Mexp(σ1/2, `, δ, θ, f) ⊃Mexp(σ1/2, `, δ, θ′, f).

Consider the family of sets given by Mf,ı ∶=
ı

⋃
s=1

Mexp(ı/(ı + 1), s,1/ı,1/ı, f), ı ≥ 1.

By the inclusions in last paragraph, we have that Mf,1 ⊂ Mf,2 ⊂ ⋯ ⊂ Mf,ı ⊂ ⋯. By

construction we know that each element of Mf,ı is in fact an expanding measure. Also,

its clear that each element of M1
+(f) belongs to Mf,ı, for some ı ∈ N. Then we can write

M1
+(f) = ⋃

ı≥1

Mf,ı.

Also, for each g in a neighborhood small enough of f , define

Mg,ı ∶=
ı

⋃
s=1

Mexp(ı/(ı + 1), s,1/ı,1/ı, g)⋃
ı

⋃
s=1

Mexp((ı + 1)/(ı + 2), s,1/ı,1/ı, g), ı ≥ 1.

We know by Theorem C that Mexp(1/ı, s,1/ı,1/ı, f) is a compact set, ∀ı, s ∈ N.

So, each set Mf,ı is in fact a compact set, since it is a finite union of compact set.
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Therefore, M1
+(f) is σ−compact in the weak−∗ topology. Analogously we obtain that

M1
+(g) is σ−compact in the weak−∗ topology.

In order to conclude that for each ı ≥ 1 the function g ↦ Mg,ı is continuous

at f it is enough to see that given ε > 0, there is γ > 0 such that if d(g, f) < γ then

d(Mf,ı,Mg,ı) < ε (in the Hausdorff topology), that is:

1 For each µ ∈ Mf,ı there exists ν ∈ Mg,ı with d∗(µ, ν) < ε and

2 For each ν ∈ Mg,ı there exists ν ∈ Mf,ı with d∗(µ, ν) < ε.

But items 1 and 2 above are achieved by applying Lemmas 5.2.3 and 5.2.4 to µ

and ν, respectively, and we are done.

◻



Chapter 6

Future perspectives

6.1 Partially hyperbolic diffeomorphisms

In [30] K. Rocha extends the construction of induced Markov maps (built in

hyperbolic times) proposed by Pinheiro to partially hyperbolic diffeomorphisms whose

central-stable direction is uniformly contractive and central-unstable direction is non-

uniformly expanding and also obtained a lifted measures for hyperbolic measures asso-

ciated to the partially hyperbolic diffeomorphism (see Theorems A and B of [30]). So a

natural question is:

Question 6.1.1. Can we extend our notion of continuous variation for partially hyper-

bolic diffeomorphisms whose central-stable direction is uniformly contractive and central-

unstable direction is non-uniformly expanding?

6.2 Non-hyperbolic flows

Question 6.2.1. Is it possible to obtain results about continuous variation of expanding

measures for semi-flows in the non-uniformly expanding context?

6.3 Iterated Functions System (IFS)

We consider an Iterated Function System, or IFS, as a finite collection G =

(g0,⋯, g`−1) of diffeomorphisms of a compact connected manifold M . Consider now the

semigroup generated by these transformations. An IFS can be embedded in a single dy-

namical system, the 1−step skew-product ϕG ∶ `Z ×M Ð→ `Z ×M over the full shift σ on

`Z = {0,⋯, ` − 1}Z, which is defined by ϕG(ω,x) = (σ(ω), gω0(x)).

In this scenario, for any ergodic ϕG−invariant measure µ, Oseledets theorem

associates its fibered Lyapunov exponents, which are the values that can occur as limits
64
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lim
nÐ→+∞

1

n
log ∥D(gωn−1 ○ ⋯ ○ gω0)(x) ⋅ v∥, (where v ∈ TxM/{0}

for a positive measure subset of points ((ωn), x) ∈ `Z ×M .

In [12] Bochi et al. obtained robustness for IFS exhibiting vanishing Lyapunov

exponents. In an opposite direction, we would like to understand:

Question 6.3.1. Under what conditions there is some kind of continuous variation for

invariant probability measures of an IFS with non-zero Lyapunov exponents?

6.4 Stability of equilibrium states for partially hy-

perbolic skew-products

This application refers to the theory of equilibrium states. In the classical setting,

given a continuous map f ∶ M Ð→ M on a compact metric space M and a continuous

potential φ ∶M Ð→ R we say that µφ is an equilibrium state associated to (f, φ) if µφ is

an f−invariant probability measure characterized by the following variational principle:

Pf(φ) = hµφ(f) + ∫ φdµφ = sup
µ∈Mf (M)

{hµ(f) + ∫ φdµ} ,

where Pf(φ) denotes the topological pressure, hµ(f) denotes the metric entropy and the

supremum is taken over all f−invariant probability measures.

In the uniformly hyperbolic context, which includes uniformly expanding maps,

it is well known that equilibrium states always exist and are unique if the potential φ

is Hölder continuous and the dynamics f is transitive. However the scenario beyond

the uniformly hyperbolic context is pretty much incomplete, despite several advances

obtained by several authors. In particular, we can cite work of Ramos, Viana [26] and

Ramos, Siqueira [27]. Under some constraints on the potential and the dynamics, they

obtained both existence and uniqueness of equilibrium states and also some statistical

properties for those measures.

Theorem A and B of [26] state that for a hyperbolic Hölder continuous poten-

tial φ, there exists a conformal measure ν which happens to be an expanding measure.

Also, requiring that the dynamics is transitive, there exists an unique f−invariant ergodic

equilibrium state µφ which is absolutely continuous with respect to ν.

In a work in progress by Alves, Ramos, Siqueira, they study statistical stability

of equilibrium states in the context of Theorems A and B of [10]. That is, they want to

obtain statistical stability for the absolutely continuous measure. The following question

takes place:
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Question 6.4.1. Is that possible to obtain some kind of continuous variation for the set

of conformal measures ν?

6.5 Metric entropy

In [8] Alves, Oliveira and Tahzibi prove that the metric entropy varies continu-

ously when one considers sequences of invariant measures which are absolutely continuous

with respect to Lebesgue. Also, in [14], Carvalho and Varandas deal with an analogous

problem for diffeomorphisms but using different techniques. We know by Main Theorem

that the set of expanding measures varies continuously in compact pieces. One can ask

about the continuity of the entropy on the set of expanding measures, at least when we

restrict ourselves to measures with bounded parameters.

Question 6.5.1. In statements of Theorems A and B, can we obtain measures µn Ð→ µ0

such that hµn Ð→ hµ0?



Appendix A

Auxiliary results

We state here the so called Pliss Lemma, which is strongly used to ensure the

abundance of hyperbolic times in an expanding set.

Lemma A.0.1. Given 0 < c1 < c2 < A let θ = (c2 − c1)/(A − c1). Given real numbers

a1,⋯, aN satisfying aj ≤ A for every 1 ≤ j ≤ N and

N

∑
j=1

aj ≥ c2N,

then there are l > θN and l numbers 1 < n1 < ⋯ < nl ≤ N so that

ni

∑
j=n+1

aj ≥ c1(ni − n)

for every 0 ≤ n < ni and i = 1,⋯, l.

Proof: See [25].

◻

The proof of the last Lemma can be found in [25].

Lemma A.0.2. Let {Gj}j∈N be a collection of ensembles of M such that f j(x) ∈ Gn−j ∀0 ≤

j < n ∀x ∈ Gn. Seja B ⊂ X and let x ∈ B be such that ♯{j ≥ 0; x ∈ Gj e f j(x) ∈ B} = ∞.

Let T ∶ O+
f (x)∩B Ð→ O

+
f (x)∩B be a map given by T (y) = f g(y)(y), where g ∶ ⋃

j

Gj Ð→ N

is a function with 1 ≤ g(y) ≤ min{j ∈ N; y ∈ Gj e f j(y) ∈ B}. Then

♯{1 ≤ j ≤ n; x ∈ Gj e f j(x) ∈ B} ≤ ♯{j ≥ 0;
j

∑
k=0

g(T k(x)) ≤ n}.

Furthermore, if lim sup
n→∞

1

n
♯{1 ≤ j ≤ n; x ∈ Gj e f j(x) ∈ B} > Θ > 0, then

lim inf
n→∞

1

n

n−1

∑
j=0

g ○ T j(x) ≤ Θ−1.

67
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The next result, whose proof can be found in Lemma 2.5 of [20], states that

inverse branches vary continuously with the associated map. In fact, even differentiability

can be obtained by this method.

Lemma A.0.3. Let f ∶ M Ð→ M be a local homeomorphism, where M is a compact,

connected Riemannian manifold. Let B = Bδ(x) ⊂ M be a ball such that the inverse

branches f1,⋯, fs ∶ B Ð→ M are well defined as homeomorphisms onto their images.

Then the map that assigns to each local homeomorphism f its inverse branches (f1,⋯, fn)

is continuous.

By definition, a periodic point p with period n is a repeller if, and only if, Dfn(p)

is well defined and the absolute value of any eigenvalue of Dfn(p) is bigger than 1. We

know that

lim
n→∞

∣∣((Dfn(p))−1)n0 ∣∣
1
n0 = min{λ−1;λ é um autovalor de Dfn(p)}, (A.1)

and so, the periodic point p is a repeller if, and only if, there exists n0 ≥ 1 such

that p is a periodic point for f̃ ∶= fn0 with period n and such that log ∣∣(Df̃n(x))−1∣∣−1 >

0; ∀x ∈ O+
f (p) (The “only if” part is immediate. In order to conclude the “if” part, it is

enough to take any prime number n0 ∈ N big enough).

One can show that the orbit of a periodic repeller point is an example of an

expanding set, as we can see in next result.

Lemma A.0.4. If p is a periodic repeller point with period n ≥ 1 and O−
f (p) ∩ C = ∅ then

given any λ0 > 0, there exists ` ≥ 1 such that p is a periodic point with period n with respect

to f̃ ∶= f l and O−
f (p) is a λ0-expanding set for f̃ .

Proof: Proof can be found in [24] Lemma 9.2.

◻

In Theorem 2.1.6 we relate a condition involving integrability of return times to

the existence of invariant measures. In the next result we utilize a condition involving

integrability of the first hyperbolic time (which could be replaced by a hyperbolic re-

turn time with some easy adaptations on the proof) to ensure that a measure is in fact

λ−expanding, for some λ > 0.

Lemma A.0.5. Consider a probability ergodic measure µ invariant with respect to f ∶

M Ð→ M and suppose that the first (σ, δ)−hyperbolic time function h is integrable with

respect to µ: ∃K > 0 such that ∫ hdµ < K. Then there are λ > 0 and 0 < θ < 1 which

depend only on σ, δ and K such that µ is a λ−expanding measure for f for which almost

every point has frequency of hyperbolic times higher than θ.
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Proof: Assuming that ∫ hdµ < K we obtain by Theorem 1.1 of [37] that there exists a

measure ν ≪ µ that is an ergodic invariant probability with respect to the induced map

F ∶ Y Ð→ Y given by F (x) ∶= fh(x)(x).

Since µ is an invariant ergodic probability, we have, by Birkhoff’s Theorem that

lim
nÐ→+∞

1

n

n−1

∑
j=0

h ○ F j(x) = ∫ hdµ,

for µ−almost every point x ∈M .

Fix x ∈M as a typical point for µ.

Claim. A.0.6.

♯ {0 < ` ≤
n−1

∑
j=0

hs ○ F
j
s (x); x ∈H`(σ, δ, f)} = n.

Proof: We argue by induction on n. In fact, for n = 1, we have that
n−1

∑
j=0

h ○F j(x) = h(x).

So, ♯ {` ≤
n−1

∑
j=0

h ○ F j(x); x ∈Hj(σ, δ, f)} = 1, since h(x) is the first hyperbolic time of x.

Suppose that the result is valid for n ∈ N. For n + 1 we have that

♯ {0 < ` ≤
n

∑
j=0

h ○ F j(x); x ∈H`(σ, δ, f)} =

♯{0 < ` ≤
n−1

∑
j=0

hs ○ F
j(x); x ∈H`(σ, δ, f)} +

♯ {∑
n−1
j=0 hs ○ F

j(x) < ` ≤ h ○ F n(x); x ∈H`(σ, δ, f)} =

n + ♯{
n−1

∑
j=0

h ○ F j(x) < ` ≤ h ○ F n(x); x ∈H`(σ, δ, f)} = n + 1,

where in the second equality we used the induction hypothesis and in the third equality

we used that ♯ {
n−1

∑
j=0

h ○ F j(x) < ` ≤ h ○ F n(x); x ∈H`(σ, δ, f)} = 1, because if it is higher

than 1, we would have that there is a hyperbolic time for x between
n−1

∑
j=0

h ○ F j(x) and

h○F n(x), and so, the first hyperbolic of F n−1(x) would be smaller than h(F n−1(x)), what

is an absurd. ◻

Since ♯ {0 < ` ≤
n−1

∑
j=0

h ○ F j(x); x ∈H`(σ, δ, f)} = n, we know that

♯ {0 < ` ≤ ∑
n−1
j=0 h ○ F

j(x); x ∈H`(σ, δ, f)}

∑
n−1
j=0 hs ○ F

j(x)
=

n

∑
n−1
j=0 h ○ F

j(x)
,

and by Birkhoff’s theorem this last term converges to
1

∫ hdν
≥

1

∫ hdµ
>

1

K
for µ−almost

every point x ∈M (because ν ≪ µ). But the expression

lim
nÐ→+∞

♯ {0 < ` ≤ ∑
n−1
j=0 h ○ F

j(x); x ∈H`(σ, δ, f)}

∑
n−1
j=0 h ○ F

j(x)
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indicates precisely the frequency of hyperbolic times of x. We conclude that µ−almost

every point has frequency of (σ, δ)−hyperbolic times higher than θ ∶= 1/K.

Setting λ ∶= − logσ, we easily conclude that lim sup
nÐ→+∞

1

n

n−1

∑
j=0

log ∣∣Df(f j(x))−1∣∣−1 ≥

logσ−1 = λ > 0. By Lemma 2.4.5, this condition implies that in fact µ is a λ−expanding

measure for f .

◻



Appendix B

Continuous variation of the first

hyperbolic time map

Denote hσ,δ,f(x) as the first (σ, δ)−hyperbolic time for x with respect to f . In

this section we present auxiliary results that allow us to deal with the frequency of hy-

perbolic times in terms of the integral of the first hyperbolic time map. We will see that

integrability can be extended to dynamics close enough maybe if we have less contraction

in hyperbolic times.

Lemma B.0.1. Consider x ∈M such that hσ,δ,f(x) = n ∈ N. There exists ε0 > 0 such that

for every ε > 0, ε ≤ ε0, there is a neighborhood V ∋ x such that y ∈ V ⇒ hσ+ε,δ,f(y) = n.

Proof: Consider ε > 0. By the continuity of Df we have that the functions ξk ∶=
n−1

∏
j=n−k

∣∣(Df ○f j)−1∣∣, 0 ≤ k < n are continuous on x. Since ξk(x) ≤ σk there is a neighborhood

V ∋ x such that ξk(y) ≤ (σ + ε)k, ∀1 ≤ k < n. So n is a (σ + ε, δ)−hyperbolic time for every

y ∈ V (with respect to f). In addition, see that we can take V and ε small enough in such

a way that n is the first (σ + ε, δ)−hyperbolic time for every y ∈ V (with respect to f). In

fact, if we assume by contradiction that x is accumulated by a sequence of points y with

hyperbolic time smaller than n (we can assume, passing to a subsequence if necessary,

that x is accumulated by a sequence of points with (σ + ε, δ)−hyperbolic time equal to s,

for some 1 ≤ s < n) then by continuity of Df we have that ξk(y) ≤ (σ + ε)k, ∀1 ≤ k < s

and so s is a hyperbolic time for x as well. Since ε > 0 was taken arbitrarily, making

εÐ→ 0 we conclude that s is also a (σ, δ)−hyperbolic time for x, what is a contradiction,

since hσ,δ,f(x) = n. Then, there must exists ε0 > 0 such that ε ≤ ε0 implies hσ+ε,δ,f(x) = n

and hence, hσ+ε,δ,f(y) = n for every y ∈ V . If C ≠ ∅ we also consider the functions

ξ̃k ∶= dδ(fn−k,C), which are obviously continuous on x ∉ C. By utilizing an argument

analogous to the one above, the result follows.

◻
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Denote H∗
n(σ, δ, f) = {x ∈ M, hσ,δ,f(x) = n} as the set of points whose first

(σ, δ)−hyperbolic time with respect to f is n. Since hσ,δ,f is integrable with respect to µ,

hσ+ε,δ,f is also integrable with respect to µ (because hσ+ε,δ,f(x) ≤ hσ,δ,f(x) for µ−almost

every x ∈M). Since the image of h is a subset of the natural numbers, we can write

∫ hσ+ε,δ,fdµ = ∑
k≥1

k ⋅ µ(H∗
k (σ + ε, δ, f)).

Now consider µ,x, xf , xg and m0 as in the proof of Theorem 4.2.1. We will see

that (if m0 is large enough) then νxf is close enough to µ in such a way that we can

ensure that ∫ hσ+ε,δ,fdνxf < K (remember that, by hypothesis, ∫ hσ,δ,fdµ < K and hence

∫ hσ+ε,δ,fdµ <K).

We know, by Lemma B.0.1 that for each j ∈ N, H∗
j (σ + ε, δ, f) is an open set.

By simplicity we will denote here this set by H∗
j . Also, since µ is a probability measure,

∑
j≥1

µ(H∗
j ) = 1. Consider τ > 0 and j0 ∈ N big enough such that ∑

j≥j0
j ⋅µ(H∗

j ) < τ/2 (which is

possible since hσ+ε,δ,f is integrable with respect to µ). Thus, by taking m0 large enough,

we can ensure that µ and νxf are close enough in the weak∗−topology in such a way that

one has

∣µ(H∗
j ) − νxf (H

∗
j )∣ <

γ

2 ⋅ ∑
j0−1
i=1 i

; ∀1 ≤ j < j0.

In this way we have that

∣∫ hσ+ε,δ,fdµ − ∫ hσ+ε,δ,fdνxf ∣

= ∣∫
⋃j0−1i=1 H∗

i

hσ+ε,δ,fdµ − ∫ hσ+ε,δ,fdνxf + ∫
⋃i≥j0 H

∗

i

hσ+ε,δ,fdµ∣

≤ τ/2 + τ/2 = τ.

Taking τ =K − ∫ hσ+ε,δ,fdµ, we have that ∫ hσ+ε,δ,fdνxf <K.

Fix x ∈M and define ξk,x(f) ∶=
n−1

∏
j=n−k

∣∣(Df ○ f j)−1(x)∣∣, 0 ≤ k < n. Consider ε̃ > 0.

If we allow f to vary in the C1−topology we obtain that there exists γ2 > 0 such that

if d(g, f) ≤ γ2 then ξk,x(f) ≤ (σ + ε)k ⇒ ξk,x(g) ≤ (σ + ε̃)k for each 0 ≤ k < n. Applying

this to x = xf and since we already know by Lemma B.0.1 that if ζ > 0 is small enough

then d(xf , xg) ≤ ζ ⇒ ξk,xg(g) ≤ (σ + ˜̃ε). We conclude that there exists ε′ > 0 such that

hg,σ+ε′,δ(xg) = hf,σ+ε′,δ(xf). Then ∫ hg,σ+ε′,δ(xg)dν <K.

Remark B.0.2. Let f ∶M Ð→M be a non-flat map and µ ∈ Mexp(σ1/2, `, θ, δ, f). If there

exists 0 < λ < 1 and C > 0 such that for each, n ≥ 1, µ(Γn) ≤ Cλn then µ({h ≥ n}) ≤ Cλn,

where h is the first (σ, δ)−hyperbolic time map.

In fact, Remark 1.3.7 gives us that if we choose, for example, σ = eλ/4 then

♯{1 ≤ j ≤ n; x ∈Hj(σ, δ, f)} ≥ θ
′n
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whenever
1

n

n−1

∑
j=0

log ∣∣Df(f j(x)∣∣−1 ≥ λ and
1

n

n−1

∑
j=0

− log distδ(f
j(x),C) ≤

λ

16β
. By definition,

if x ∈ (Γn)c then the expansion time function and the recurrence time function on x are

smaller than n. It means that for some n0 < n one has

1

n

n0−1

∑
j=0

log ∣∣Df(f j(x)∣∣−1 ≥ λ

and
1

n

n0−1

∑
j=0

− log distδ(f
j(x), ) ≤

λ

β

and so there exists at least one (σ, δ)−hyperbolic time for x smaller than n0 < n. This fact

implies that h(x) < n.

We have just concluded that (Γn)c ⊂ {h < n}. So {h ≥ n} ⊂ Γn and from this we

obtain that the estimates made on the tail Γn will be the same for {h ≥ n}:

µ(Γn) ≤ Cσ
n⇒ µ({h ≥ n}) ≤ Cσn.

We can see that working with dynamics whose the first hyperbolic time map is integrable

isn’t a strong restriction, since every expanding measure with exponential decay of the

measure of the tail Γn satisfies this hypothesis (in fact, we can see that even if µ(Γn) has

polynomial decay, with order at least 2, then the first hyperbolic time will be integrable

with respect to µ).
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