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Resumo

E possivel mostrar que o conjunto das medidas expansoras para transformacoes
uniformemente expansoras é compacto e varia continuamente com a dinamica. No pre-
sente trabalho consideramos familias de transformacoes em variedades Riemannianas mul-
tidimensionais com comportamento nao-uniformemente expansor. Mostramos que o con-
junto de medidas expansoras para essas aplicagoes é o—compacto e varia continuamente
em partes compactas. Em particular concluimos que o conjunto de medidas expansoras
com “parametros limitados” para uma dinamica fixada é compacto. Adotamos a topologia

fraca—* no espaco das medidas de probabilidade.

Palavras-chave: Medidas expansoras; Conjunto o—compacto; Variacao continua; Particoes

de Markov; Torre de Young, Expoentes de Lyapunov.



Abstract

One can show that the set of expanding measures for uniformly expanding maps
is a compact set and varies continuously with the map. In this work we consider families of
transformations in multidimensional Riemannian manifolds with non-uniformly expand-
ing behavior. We show that the set of expanding measures for these transformations
is o—compact and it varies continuously on compact pieces. In particular we conclude
that the set of expanding measures with “bounded parameters” for a fixed dynamics is

compact. We endow the space of probability measures with the weak—x topology.

Keywords: Expanding measures; o—compact set; Continuous variation; Markov parti-

tions; Young Tower; Lyapunov exponents.
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Introduction

One can say that the main goals of Dynamics can be narrowed down into two
parts: To describe for the majority of orbits the behavior as time goes to infinity and to
understand whether this limit behavior is stable under small changes in the evolution law
of the system. In this work we mainly are concerned to the second part.

We study in a broader way the stability (or continuation) for certain classes of
chaotic systems, namely, systems which exhibit non-uniformly expanding (NUE) behavior
on the growth of the derivative for most of its orbits. We study under what conditions one
can observe the continuity of the set of expanding measures with respect to the dynamics.
The context of expanding measures presents a more general setting than the context
involving only Lebesgue measure. Roughly speaking, a probability measure is called
expanding if it gives full weight to the set of points displaying non-uniform expanding
behavior (see Definition for more details). Examples 9.6 and 9.7 of [24] shows us
that even in lower dimensions the context of expanding measures is much richer than the
context involving Lebesgue measures: There are systems which do not admit invariant
measures that are absolutely continuous with respect to the Lebesgue measure and, even
more, these systems present zero Lyapunov exponent for Lebesgue almost every point, but
they possesses an uncountable number of ergodic invariant probabilities whose supports
are the whole manifold and whose Lyapunov exponents are positive (see Remark
and Theorem . Roughly speaking, our results ensure that considering a NUE system
then NUE behavior holds for every dynamic close enough (this is one direction) and we
also consider the opposite direction: if a dynamic is accumulated by NUE dynamics, this
limit dynamic also presents NUE behavior.

We remark that, although some similarities in a few statements, our approach
can not be regarded as statistical stability, where one attempts to express stability in
terms of persistence of statistical properties of the system. Roughly speaking, in this
case we can compare the average along the orbit with the average of the system in the
ambient space. But one distinctive feature in the statistical stability case is that one
can follows the continuation of a measure with an specific property (for instance, the

absolutely continuous invariant measure with respect to Lebesgue, see [13], B1] for the
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uniformly hyperbolic case, [9, 2, 4] for the non-uniformly expanding case and [15] 33] for
the partially hyperbolic case). On the other hand, in our approach we do not follow the
continuation of measures only with some reference property. One can expect that when
we perturb the dynamics we obtain for each dynamic close infinitely many expanding
measures close to the original expanding measure.

We need some preliminary definitions.

Definition 0.0.1. Let Y be a metric space and let K(Y') be the collection of compact
subsets of Y. We define the Hausdorff distance on K(Y') by:

dg(A,B):=inf{e >20; Ac B.and Bc A.}, (1)

where A. = | J{y €Y; d(a,y) <&} is the e—neighborhood of the compact subset AcY.
acA

Definition 0.0.2. Let X andY be metric spaces. We say that a mapT': X — K(Y) is a
family of compact sets parameterized by X. IfT' is continuous at some x € X, we say that
it is a family of compact sets parameterized by X continuous at x. If T' e CO(X, K(Y"))

it 1s said to be a continuous family of compact sets parameterized by X.

In this case we endow K (Y') with the topology given by the Hausdorff distance.
IfT': X — K(Y) is a continuous family of compact sets parameterized by X
then, for z;,xs € X close enough, the compact sets ['(x1) and I'(xy) will be close with
respect to the Hausdorff distance. It means that for each point of I'(z1) there is a point

of T'(x2) close enough and vice versa.

Definition 0.0.3. We say that a metric space’Y is o—compact if Y = | Y} can be written
jeN

as the countable union of infinitely many compact sets Y; c Y.

We denote by d, the distance in the space M!(K) of probability measures on a
compact metric space K, which is defined in the following way:

Since K is a compact metric space, there is a countable subset (¢;);ey of CO(K)
which is dense in the unit ball B! := {¢ € C°(K);||¢llo < 1}. Given u,v e MI(K), we
define:

too |
d*(/J”V) = Z E
i=1

f%d/i—f%d’/
K K

The uniformly expanding case

Lets analyze first what happens in the uniformly expanding/hyperbolic case and

then we will try to understand what happens beyond the uniformly hyperbolic scenario at



least for some class of transformations. Consider a uniformly hyperbolic diffeomorphism
f+ M — M defined on a compact Riemannian d-dimensional manifold. Denote the
set of all invariant hyperbolic probability measures for f by M}ﬁyp, that is, the set of
probabilities which gives full weight to the hyperbolic set of f (which will be assumed to
be all the manifold M). Since every point belongs to the hyperbolic set, it is clear that
M},hyp coincides with M} (the set of every invariant probability measures for f). We
conclude that /\/l}ﬁyp is a compact set of M!(M), the set of every borelian probability
measures on M endowed with the weak—x topology. In an analogous way, if we admit that
f is an uniformly expanding endomorphism, we can define the set of expanding invariant
probabilities for f as the set of probabilities that gives full weight to the expanding set of

f (which is, again, all the manifold M).

Theorem 0.0.4. Denote by X the set of C? uniformly hyperbolic diffeomorphisms g :
M—M,Y, =M, —andY := M*(M). Then the map

g,hyp

[:X — K(Y),T(g) =Y,
is a continuous family of compact sets parameterized by X .

Before we prove Theorem [0.0.4] it is worth to say some words about structural
stability. The notion of structural stability, was proposed by Andronov and Pontryagin,
[T1], back in the thirties, and since then much effort has been made to characterize systems

with such property.

Definition 0.0.5. We say that a diffeomorphism f : M — M s structurally stable
if there is a neighborhood V' of f such that for each g € V' there is a homeomorphism
h:M — M such that

hof=goh.

In the 60’s Palis and Smale conjectured in [23] that: a diffeomorphism (or flow)
is structurally stable if, and only if, it is Axiom A and satisfies the strong transversality
condition. The conjecture proved to be true by the work of authors such as J. Robbin, J.
C. Robinson and R. Mane (see [28] 29 [18]). This result can be improved: one can show
that the conjugation can be required to depend nicely on the perturbation (see [16]): The
neighborhood V' 3 f can be taken in such a way that for each g € V, the conjugation h = h,
and there is K > 0 (uniform on V') such that

supd(hy (), x) < Ksupd(g(z), f (x)). (2)

Also, M. Shub studied structural stability for uniformly expanding endomor-

phisms (see [32]): He extended the results on structural stability above for uniformly ex-
panding endomorphism of a compact manifold. In this way, we may enounce the following

result, witch is a version of Theorem for uniformly expanding endomorphisms.



Theorem 0.0.6. Denote by X the set of C? uniformly expanding endomorphisms g :
M— M,Y, =M} . andY = MY(M). Then the map

g7e‘z‘p

I''X — K(Y),I'(g) =Y,
is a continuous family of compact sets parameterized by X .

Proof of Theorem Since f is uniformly expanding, we conclude by the Corollary
of Theorem « of [32] that there is a neighborhood V' 5 f such that for each g € V' there
is a homeomorphism h, satisfying hyo f = go hy and |2, Consider p € Yy = /\/l}hyp. It is
a straightforward fact that the probability measure v defined as v := p o h™! belongs to
Y, = M;yhyp. Consider ¢ > 0. We will show that there is § > 0 such that dy(g, f) < J =

d.(p,v) <e.

+00 +00

Consider ig > 0 such that ) 5i < e/4 (because ). i is a convergent series) and
i=io i=1
d > 0 suitable to the uniform continuity of each ¢;, i € {1,---,ig}. Precisely, 6 > 0 is such

that

i0—1 1

Vay,xe € M, d(x1,22) <0 = |pi(x1) — pi(x2)| <€/ (2- 1;1 ?) NVie{l,ig—1},  (3)

which is possible since we have a finite number of ¢!s and each ¢; is uniformly continuous
on the compact M).
Thus, if # € M is such that d(hy(z),r) <d and v = po h;', we have that

»[%d#—f pidv

M M

~/90idﬂ—f pidpo hy'
M M

~[90idﬂ_f soiohgdu‘
M M

/%—%Ohgdﬂ‘

M

/ i — Pi Ohgdﬂ
M

+(>01
< 5/2+2~Z§<5/2+2-5/4:5.

=10

+
8

di(p,v) =

~.
I
—_

+
8

P
8 ~

]

<
Il
—_

I
b2l 8] 82 0]

Il
N agh

i

o
|

+00 1
+ — i — ©; h,d
Zzz‘sto i o hydp

i=10

11
=2

In the last inequality we used the fact that |¢;(x) — @; 0 hy(x)| <2, Vo e M, Vie
N, because the functions ¢; are taken in the unit ball B!,
So, in view of it is enough to take g € V satisfying supd(g(z), f(z)) < /K and
xeM

we are done.



In an analogous way we prove that given a measure v € Y, the measure p:=voh,
belongs to Y7 and given € > 0 there is § > 0 such that sup,,,; d(g(x), f(x)) < = d.(p,v) <
€.

With this we conclude that, denoting by d also the distance in the space X,
d(g, f) <0 =dy(Y,,Ys) <e (where, in this case, d denotes the distance in X associated
to the C? topology) and the proof is complete.

a

Remark 0.0.7. The proof of Theorem[0.0.4] is analogous to the proof of Theorem [0.0.6,

since it is based on the notion of structural stability.

Now that we understand that the set of expanding measures is a compact set that
varies continuously with the dynamics, when we restrict ourselves to uniformly expanding
diffeomorphisms, we will study this phenomenon in another context: Non-uniformly ex-

panding maps (NUE maps). We will conclude in [Main Theorem| (see Chapter [1)) that in

fact the set of expanding measures for a NUE map may not be compact, in general, but
it is o—compact. Furthermore, this set varies continuously in compact sets, in the sense
of Definition [0.0.2] We will identify some parameters that allows us to control the contin-
uous variation of the set of expanding measures and obtain classes of compact sets inside
it. By fixing the parameters, we will conclude that although the whole set of expanding
measures may not vary continuously, the set of measures with “bounded parameters”
vary continuously (see Theorems [A| and [B| and Definition . Theorems [A| and [B| both
work in complementary directions. This is connected to the nature of Hausdorff distance:
in order to check if two compact sets are close, we need to compare distance between
points in these sets in both directions (see Equation . Theorems [A| and (B are the core

results in this work and they are used to prove our [Main Theorem| where we state that

one can observe the continuation of some subsets of the set of expanding measures (or,

equivalently, of the set of measures with positive Lyapunov exponents). These subsets

are described in Definition [1.4] and in a more detailed way in the proof of [Main Theorem|

The text is organized as follows. In Chapter [1| we present preliminary definitions
and results and explain formally the statement of the main results in this work. In Chapter
we point out some of the main tools utilized in the proofs of the main theorems. We
analyze specially the relation of Markov maps with NUE maps and expanding measures.
In Chapter |3 we prove some results involving the stability for return maps. This is the core
of the technical results present in this work, where we understand how the perturbation of
a dynamics affects the associated induced Markov maps and their properties. We dedicate
Chapters [4] and [5] to the proof of the main theorems. Finally, in Chapter [6] we point out

future perspectives for this work.



Chapter 1

Preliminaries and statement of main

results

1.1 Preliminaries

Let M be a compact Riemannian manifold of dimension d >1 and f: M — M
a map defined on M.

The map f is called non-flat if it is a local C'** diffeomorphism (i.e., C'** with
a > 0) in the whole manifold except in a non-degenerated critical/singular set C c M, that
is, a subset for which there is § > 0 such that f behaves like a polynomial of degree

close to it.

Definition 1.1.1. We say that C ¢ M is a non-degenerated critical/singular set if 33, B >
0 such that the following conditions hold:

1

%dist(x,C)ﬁ < W < Bdist(x,C)"
v

for allveT,M.
For every x,y € M\C with dist(x,y) < dist(x,C)/2 we have:

log [ Df ()~ || - log [ Df ()~ < ﬁdi%(%y)

Definition 1.1.2. A map f: M — M s called non-flat if it is a C** local diffeomor-

phism except in a non-degenerate critical/singular set C ¢ M.

A measure p is called f-non-singular if fou < p, where fou = po f~! is the
push-forward of pu by f. Consider a non-flat map f with critical/singular set C ¢ M. A

finite measure i is called f-non-flatif it is f-non-singular, (C) = 0, the Jacobian J, f(x)
6



is well defined and positive for u—almost every x € M, and for p-almost every x,y € M\
with dist(z,y) < dist(z,C)/2 we have

o J.f(z) < B
gJuf(y) ~ dist(x,C)"’

Unless otherwise stated, we deal in this work with non-flat dynamics and non-

singular measures.

Definition 1.1.3. We say that a point x € M has all Lyapunov exponents positive if

1
limsup — log ||(Df™(z))7|™ > 0. (1.1)
neN T

Additionally, we say that p has all of its Lyapunov exponents positive if[1.1] holds

for u—almost every point x € M.

1.2 Non-uniformly expanding (NUE) maps

Definition 1.2.1. A positively invariant set H ¢ M (i.e., f(H) c H) is called (A, ¢)—-expanding,
A 20, if there exists £ € N with

limsup%rglog ||Df(j7’(x))_1\|_1 >\, (1.2)

for every x € H (where fv: 1t), and H satisfies the slow approzimation condition, i.e., for
each € >0 there is 6 >0 such that
1 n-1 )
limsup — > -logdists(f/(z),C) <e (1.3)
for every x € H, where dists(x,y) denotes the d—truncated distance from x to C, defined

as

dists(z,C) = dist(x,C), if dist(x,C) <6
dists(x,C) = 1, if dist(x,C) > ¢

When C = @, H is (), {)—expanding if [1.2] holds for every z € H.

Definition 1.2.2. A probability measure p is called (A, ¢)—expanding measure (with re-
spect to f) if p is f-non singular (f.pu << p) and there exists a (A, {)—expanding set H
such that W(M\H) = 0. In this case we also say that f is (non-uniformly) expanding.

We may drop the indexes writing that p is a A—expanding measure (or even an
expanding measure) and H is a A—expanding set (or even an expanding set), when there

is no chance of misunderstanding.



We denote the set of all ergodic invariant expanding probability measures for f

by Mel;rp(f)
If jt € Mp(f), then by the expansion time function

1 n—-1 )
Ex(z) = min{N >1; = > log||[Df(f (@) 2 A, Vn> N} (1.4)
n o
is defined and finite for y—almost every point x € M. Also, the recurrence time function
1 n—-1 )
R.s(z) = min{N >1; = > —logdists(f'(z),C) <&, ¥n> N} (1.5)
n o

is defined and finite for u—almost every point x € M. We define the tail set
(N e, 0)={z; E(x) >nor R.s5(x) >n}. (1.6)

This is the set of points which at time n have not yet achieved either the uniform
exponential growth of derivative or the uniform slow recurrence. If C = &, we ignore the
recurrence time function in the definition of the tail set. We may drop the indexes and

write I',, instead of I',,(\, &,d) when there is no chance of misunderstanding.

1.3 Hyperbolic times

Definition 1.3.1. Let us fix 0 < b= s min{1,1/8}. Given 0<o <1 ande >0, we say that
n is a (o,e)-hyperbolic time for a point x € M (with respect to the non-flat map f with a

B-non-degenerated critical/singular set C) if for all 1 <k <n we have
n—-1
[T I(Df o fi(z))™] < o* and dist.(f**(x),C) > o™ (1.7)
j=n-k

We denote the set of points of M such that n € N is a (o,)-hyperbolic time by H,(o,¢, f)
or, shortly, by H,(f).

We point out that in the case C = @ the definition of (o,d)-hyperbolic time

reduces to the first condition in and we simply call it a o—hyperbolic time.
The following results (Propositions and , whose proofs can be found

in [3] and [6], give the main properties of hyperbolic times that we shall utilize.

Proposition 1.3.2 (Geometric properties of hyperbolic times). Given o € (0,1) and
e > 0, there exists § > 0, which depends only on o, and on the map f, such that if

x e H,(o,e, f) then there is a neighborhood V,,(x) of x satisfying:
1. fm maps V,(x) diffeomorphically onto the ball Bs(f™(x));

2. dist(fri(y), fr9(2)) <ol dist(f*(y), [*(2)); Vy,z € Vo (x) and 1 < j <,



The sets V,(x) are called hyperbolic pre-balls and their images, f*(V,(x)) =
Bs(f™(z)), hyperbolic balls. See Figure [1.1l We may refer to items 1) and 2) of
Proposition [1.3.2] as geometric version of hyperbolic times. Since we are dealing with
(A, £)—expanding measures, sometimes one can consider a geometric version of hyperbolic
times not just for f but also for f:= f¢, i.e., for every y, z in the hyperbolic pre-ball V(x)

of x one has:

dist(f" 7 (y), [ (2)) < oPdist (] (y), ["(2)); Yy, z € Vo) and 1< j <,

=

g*— Contraction @®— Contraction a2 — Contraction g — Contraction //
$—o s — Loy - Pl
F(x)
‘74(X) ,/

Bs(f'(x))

Figure 1.1: Example where n =4 is a hyperbolic time for x.

The following Lemma is a straightforward consequence of the definition of hyper-

bolic times.

Lemma 1.3.3. Hyperbolic times satisfy the following property:
Ifpe Hi(0,0, f) and fi(p) € H(o,0, f) then pe Hj (0,0, f).

Remark 1.3.4. a) If n is a hyperbolic time for x € M, chain rule and Proposition
immediately give us that ||(Df(x))7Y| < o™.

b) If g: M — M s differentiable at a point p € M then

1 2 i i 29(2),9()
I(Dg(p)) I = liminf == 7= 3=

In fact, if we see in local coordinates then g is differentiable at p if, and only if,

[z —pl| (9(x) - g(p) - Dg(p) - (x —p)) — 0 when x —> p. But since

[Dg(p)-(z=p)[ _ llg(z)=g(P)||
llz=pll lle—pll =

v

i lg(z) = 9(p) = Dg(p) - (z - p)|
|z~ pl|

||Dg(p)_1||_1 i ”‘T _p” _ ||g(I) — g(p)” _ ”Dg(p)_l”_l _ d(g(x),g(p)%
[z = pll |z = pll @)
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dg(x),9(p))
d(z,p)
In particular, we obtain that if there are f : M — M, xe M,0<0o<1 andn >0 is

such that items (1) and (2) of Proposition holds, then

we get that ||[Dg(p)~!||™* - — 0 when x — p, and we are done.

(D (@) > 20t

As we will see in the proof of Claim this gives us some sort of an equiva-
lence between the analytical definition of hyperbolic times in and the geometric
property they have as described in Proposition[1.3.4. We use the term “some sort
of equivalence” in last sentence because we may recover the analytical feature of

hyperbolic times from the geometrical not for f but for some iterate f¢ of it.

¢) By using Birkhoff’s Theorem, we get that if pu is an ergodic f—invariant probability
and there is X\ > 0 with [log(J[(Df)~Y["')du > X then there exists H c M with
pu(H) >0 such that holds for pu—almost every point x € M.

d) As a consequence of the definition of non-degenerated critical set, we obtain that if
log dist(x,C) is u—integrable then log(||[(Df)=t|™) is also u—integrable. In fact, by
condition (1) of Definition we can obtain that there exists p > B such that

[log [[(Df) =[] < pllog dist(z,C)|

for all x in a small open neighborhood V of C. To obtain this it is enough to
take some p greater than B (remember that condition (1) of Definition yields
Ldist(z,C)? < |Df(x)~!| < Bdist(z,C) 7). Since log||(Df)||"! is bounded on the
compact set M\V', this function must be integrable with respect to p on M as long
as log dist(z,C) is p—integrable.
Let
Perp+ () 1= lirgeiup% H{l<j<n;zeHi(f)} (1.8)

denote the frequency of hyperbolic times for x € M.

1.3.1 Frequency of hyperbolic returns

It is well known that if H is an expanding set for a map f: M — M then every
point x of H has infinitely many hyperbolic times. Indeed, they have uniformly bounded

positive frequency of hyperbolic times, as we state in the following result.

Proposition 1.3.5. Given A > 0,0 €N and a (), {)-expanding measure for f there exists
0'>0, 0 >0 and g9 > 0 such that for p—a.e.p. x € M and ¢ € (0,e¢]

1
limsup — {1 <j<n; ze H;(o,e f)} >0
neN n
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We remark that in this case we can take o = e=»4. The proof of this Proposition
can be found in Alves [3] and Alves, Bonatti, Viana [6]. However we will include this
proof here to emphasize the dependence of the frequency 6’ on f and A. This result is an
application of a Lemma due to Pliss (see .

Proof: Lets suppose that holds for some x € M. Then, for N € N large enough we
have that

N-1
2) log [[Df(f7(z))"||"! > AN.
£

If we take > 0 given by Definition and fix any p > 8, we get by condition 1 of the
same Definition that
log 1D ()| € pflog dist (. C)| (19)
for every x in a neighborhood V' of C.
Fix g1 > 0 so that pe; < A\/2. By (hypothesis of slow recurrence to the critical
set) we can take r; > 0 such that

N-1

> logdist,, (f/(z),C) > - N. (1.10)
j=0

Fix any K; > p|logr;| large enough so that log||Df(y)™||™* < K3, Yy € M\V.
Then let J be the subset of times 1 < j < N such that log||Df(f/~*(x))!||"' > K; and

define:
. { log [ DF(F @) it jgJ
o ) it jelJ
By construction, a; < K; for 1 < j < N. Note that if j € J then fi~1(z) e V.

Moreover, for each j € J we have:
pllogri| < Ky <log||Df(f'~()) 7| < pllog dist(f'~(2),C)|,
which shows that dist(f/~'(x),C) < r; for every j € J. In particular we have:
dist,, (f7~1(x),C) = dist(f7(x),C) <ry,Vje J.
Therefore, by [I.9) and [1.10]

> log [DF(f77H (@)™ < p ), Nogdist(f7~(2),C)| < per N.

jeJ jeJ

See that £, was chosen in such a way that the last term is smaller than AN/2.

As a consequence we have that

N N
Z;aj = Z;logIIDf(fj‘l(ﬂé‘))‘l||‘1 = 2 ogIDF(f7 (@) 2 gN-
J= J=

jeJ
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Now, set ¢; = A\/4, co = A\/2 and A = K;. Applying Lemma to the numbers ay, -+, ay,
we obtain 6; >0 and /3 > 61N times 1 < p; < po--- < p;, < N such that

3 logl DI @) 2 Y a2 ) (111)

for every 0 <n <p; and 1 <i <.
Now, fix €5 > 0 small enough so that g5 < ;bA/4, where b is as in the definition of

hyperbolic times, and let 75 > 0 be such that

N-1
> logdist,, (f/(z),C) > —eN. (1.12)
7=0
] A- C1 A )

Consider the numbers a; = logdist,, (f/~1(z),C), with 1 < j < N. Applying again
Lemma we conclude that there are Iy > §o N times 1 < ¢q; < --- < q;, < N such that

Let ¢; = =bA/4, ¢ = =9, A=0 and 0y = =1-

qi: log dist,., (f/(x),C) > —%(Qi -n) (1.13)

for every 0 <nm < q; and 1 <7< Us.
We can easily see that our condition on €5 means that 61+60, > 1. Let 6/ = 0;+6,—1.
Then there exists [ = (I1 + 1y — N) > 6'N times 1 < ny <---<n; < N at which and

occur simultaneously:
n;—1 ) )\
> Togl|DF (/)| 2 G (e n)
j=n

and
bA

'I’Li—l
Z log dist,., (f/(x),C) > —Z(nZ -n),
j=n

for every 0 <n <mn; and 1 <i<[. Letting o = e~** we easily obtain from the inequalities
above that

nﬁ IDf(f7(2))7]| < o* and dist,, (f"*(2),C) > o™

Jj=n;-k
for every 1 <i <l and 1<k <n;. In other words, all those n; are (o, d)-hyperbolic times
for x, with 6 = ry.

a

Remark 1.3.6. From the proof of Proposition |1.5.5 on easily sees that condition m
the definition of non-uniformly expanding map is not needed in all its strength for the
proof work. Actually, the only places where we have used[1.3 are[1.19 and [1.10. Hence,
it is enough that[1.3 holds for e = min{ey,e5} and § = max{ry,r2}.
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Remark 1.3.7. Note that the proof of Proposition gives more precisely that if for
some x € M and N € N one has

N-1 N-1

> log||Df(f7(x))7M|™' > AN and ) logdists(f?(z),C) > —eN

j=0 Jj=0
(where € and § are chosen according to Remark , then there exist integers 0 < ny <
e <my <N, 0">0 and 6 >0 such that 1 >0'N and x € H,,(0,9, ) for each 1 <i<I.

Now, following [24], consider x € M and a subset U(x) c O*(x) of the positive

orbit of zx.

Definition 1.3.8. The collection U = (U(x))zenr 15 called asymptotically invariant if for

every x € M,
1 4{jeN; fi(z)elU(x)} = o0, and
2 U(x) nOf(f(x)) =U(f(x)) nO;(f(x)) for every bigneN.

Define wy(x) as usual (the set of accumulation points of Of(z)) and wry(z) as

the set of accumulation points of U(x)

Remark 1.3.9. We can conclude by using Lemma that the collection of hyperbolic
iterates in the orbit of each x € H, i.e., the collection h = (h(x))zen of sets h(x) =

{fr(z); n>1, x e Hy(0,9, f)}, is an example of asymptotically invariant collection.

Definition 1.3.10. The collectionU has positive frequency if limsup = {1 < j <n; fi(z) €
U(x)} >0 for every x e H.

In this case we define the set of U-frequently visited points of the orbit O*(z) as
1 )
the set of points p € M such that limsup — f{1 < j < n; f/(z) e U(x) nV} > 0 for every
n

n—>--+oo

neighborhood V' of p. This set is denoted by w; .

Notation 1.3.11. In the sequel we denote

oy () = limsupl H{l<j<n fi(z) eU(z)nV}>0 (1.14)

n—s+4o0o T

The function ¢},(z) denotes the frequency of visits of the orbit of x to the set V,
but not considering every iterates, only those who belong to the collection U (we refer to
this by using the term U-visits of x to the set V). In an analogous way, if x €V, @} (x)
denotes the frequency of U—returns of the orbit of x to the set V. If necessary, we use the

notation <p57 s to emphasize the dynamics used in the required context.
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E SRR T

'U(r) c Of(z)

| wy(z) = {pontos de acumulacio de U(z)} I
p € wyylr)

,,

U(x) NV tem frequéncia positiva em C’)}'[r)

1imsup% jfHlgj<n: Fz)el(z)nV}>0

Proposition 1.3.12. Assume that (f, ) is ergodic. There is a compact set Ac M such
that we(z) = A for p—a.e.p. xe M.

Proposition 1.3.13. Let U = (U(z))zenmr be an asymptotically invariant collection and
let A be the attractor associated to M (as in Proposition . There exists a compact
Ay © M such that wry(x) = Ay for p—a.e.p. of M. Furthermore, if U has positive
frequency then there is also a compact set Ay . ¢ M such that wyy () = Ay + for p—a.e.p.
of M.

A proof for the last two results can be found in Section 3 of [24]. The set A is
called an ergodic attractor whereas the sets Ay and Ay . are called U—ergodic attractor
and statistical U/—ergodic attractor, respectively. In our context one cannot expect that
both Ay and Ay . have positive measure, but one always have (A) > 0 (see Proposition
3.12 of [24]).

Figure 1.2: U is an ergodic component with attractor A and wy-limit set Ay.

Remark 1.3.14. It is worth to note that Propositions|1.5.14 and|1.5.15 are valid even if

i 18 an ergodic measure not necessarily invariant. When we consider the case where p is

an ergodic invariant measure, one can show that the ergodic attractor coincides with the

support suppp of .
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Remark 1.3.15. Consider a non-flat expanding map f: M — M and j1 € Mg, (f). For
each © € M consider the collection of hyperbolic images of x, h = (h(x))zenr, defined as
h(z) = {f"(z),x € H,(0,e, f)} (see Definition[1.3.1). It is easy to see (by using Lemma
that in fact the collection h is an asymptotically invariant collection. Thus by
Proposition we obtain an h—ergodic attractor, that we call a hyperbolic ergodic
attractor and denote by Aiyp, such that wyp(x) = Aﬁyp for p—a.e.p. x € M. Furthermore

there is an h—statistical ergodic attractor, that we call a statistical hyperbolic ergodic

attractor and denote by A{Lypw such that w4 () = Aiwﬂ for p—a.e.p. xe M.

Lemma 1.3.16. Consider j1 € M, (f) and suppose that the frequency of hyperbolic times
of x is bounded from below by 0’ >0 for u—a.e. point x € M. Then, there exists N >1 and
a set B c M with @ﬁf(x) >0+ for p—a.e.p. xeM.

Proof: Consider a finite cover of M by open balls By, Bs,--By. Let Ajf. py, be the
statistical attractor for f on M given by Proposition We can see by definition
of Ay pyp that if B; 0 As, pyp = @ then goﬁ”hyp(x) =0 for u— a.e.p. x € M. In this way,
we can assume with no loss of generality that B; n A, pyp # @ V1 <4 < N (we are not
counting the sets B; such that B;n Ay . ,, = @). Since the collection h = (h(x))zen of the
hyperbolic iterates in the orbit of each x € M is asymptotically invariant (see Definition
1.3.8 and Remark [1.3.9)), we obtain that @ﬁ%yp is f-invariant V1 <4 < N. Then, from the

ergodicity of 1 we know that for each j there is k; > 0 such that wfityp = k;( mod p).
Now, consider a point z € M typical for p. Since the proportion of hyperbolic

iterates in OF(x) is higher than ¢" we have

Biu-—UB
fj;;pu N(x)>0"

Take B € {By,-, By} with

B _ B;
P nyp(T) = {Q]@g{wﬁzw(x)}-

Then: N
B
0" < o PN (@) < 3 P hyp (@) SN -9, (2),
j=1

1

.o B

that is, ¢}, (7) > 0" N
O

We stress that by Lemma|l.3.16{we conclude that for the set B obtained, not only

the frequency of hyperbolic visits but the frequency of hyperbolic returns is bounded b
!

e Now fix 0 < r < §, where ¢ is the radius of hyperbolic balls given by Proposition |1.3.2

If we take a finite cover of M with balls of radius r one can see, arguing by induction

on the dimension of the manifold, that the cardinality of this cover can be taken as
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(diamM +1
2\/87’

we may assume that N in Lemma [1.3.16| satisfies

d
) , where d is the dimension of the compact Riemannian manifold M. Then

(1.15)

(diamM +1 )d
2\/31“

Consider an ergodic invariant expanding probability u e M, (f).

Definition 1.3.17. Denote B := {B,.(p),p € M, B,(p)n A{Lyp7+ # @} as the collection of
every balls with radius r that intersects the statistical attractor Aiy]“ giwen by Remark
1.3.15. We define the u—frequency of hyperbolic returns as

f;:= sup chT(p) .

! B (p)eB { fhyp }

See that we only need to consider balls that intersect the statistical attractor
because the frequency of hyperbolic visits to open sets that do not intersect this attractor
is always zero. Also, since the set B obtained by Lemma [1.3.16| satisfies goﬁ hyp(x) >
(diam]\/[

2/dr

-d
) -0 for p—almost every x € B, we conclude that

. —d
0; > (Cha;n—fg”) N (1.16)
T

As we will see later, the frequency of hyperbolic returns 6 plays a key role in our

constructions, since it is related to the integrability of return time functions with respect
to suitable measures. For further details, see Chapters [3] and

1.3.2 First hyperbolic time

Consider a non-flat map f and suppose that there exists (o, d)-hyperbolic times
for almost every point with respect to a given f-invariant ergodic reference measure pu.
This allows us to introduce a map h : M — Z* defined p—almost everywhere which
assigns to z € M its first (o,0)—hyperbolic time (in other words, h(z) := min{n e N; z €
Ho(0,6,1))).

1.4 Main Results

Denote by My, (0172, 0,6, 0, f) the set of all ergodic invariant expanding measures

associated to a map f for which the following requests are satisfied:

1 The frequency of hyperbolic returns 0, is bounded from below by 6 > 0,
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2 Almost every point x € M belongs to some pre-ball V,,(z’) that expands with respect

to f:= f¢ in a rate controlled by o/2, i.e.:
dist(f™7(y), 77 (2)) < o/Pdist ([ (y), [*(2)); Vy,z €V, (2') and 1 < j < n,
where 0 < o0 <1, and
3 The size of hyperbolic balls for the points in last assertion is at least 9.

Definition 1.4.1. If p € My, (0'/2,¢,6,0, f) we say that p is an expanding measure for

f with bounded parameters.

Remark 1.4.2. One can see that, by controlling the parameters of an expanding measure
as in Definition |1.4.1, we can prevent that perturbations of this measure lack expanding
behavior, that is, we have compactness on the set of measures with bounded parameters
(see Theorem[(]).

Remark 1.4.3. See that the definition of expanding measure with bounded parameters is
based on the geometric properties of hyperbolic times, and not in the analytical definition

of them.

Theorem A. Consider 0 < o, <1 with o, — ¢, 0,0 >0, £ € N and a convergent sequence
fa —> fo in the C* topology. For each n > 1 consider ji, € /\/le;p(arl/Q,E, 0,0, fn). Then
there are a subsequence pi,; and an expanding measure pg € Me;p(a(l)/Q,E, 0,0, fo) such that

n; — o in the weak—* topology.

Theorem B. Consider a convergent sequence f, —> fo in the C'* topology and a measure
Lo € Me;p(aé/z,ﬁ, 0,0, fo). Then for n € N big enough there exists 0 < 0, < 1 and pu, €
MQIP(GTI/Q,@, 0,0, fn) with o, — oq¢ such that w, — po in the weak—* topology.

The following result is a consequence of Theorem [A]

Theorem C. Let g: M — M be a non-flat map. Then the set of expanding measures
with bounded parameters My, (0'/2,0,6,0,g) is compact in the weak—* topology.

Proof: It is enough to take the constant sequence of dynamics g,, = g and apply Theorem
[Al

i

Denote ML(f) as the set of all ergodic f-invariant probabilities whose all Lya-

punov exponents are positive and X as the set of non-flat maps endowed with the C!

topology.

Definition 1.4.4. We say that ML(f) varies continuously in compact sets at f if it can

be written as a nested union of compact sets My, such that:
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I MpicMpgcc My, coand ML(f) =UMy.,

1>1
2 For each 1 € N there is a family of compact sets parameterized by some neighborhood
of fVcXT,:V— KM M)) which is continuous at f. For g eV we denote
[:(g) = My,

Main Theorem. Consider a non-flat map f : M — M with exceptional set C ¢ M
which is constituted only by critical points or only by singular points. If ML(f) + @ then

it varies continuously on compact sets at f.

See that the continuity in item 2 of Definition is not necessarily uniform on 2 € N.

Furthermore, its clear in the definition of continuous variation above that the set ML(f)

is o—compact. It will be clear in the proof of [Main Theorem|how the sets M, are chosen

(in fact, the choice has to do with a proper adjustment of the parameters for a measure
with bounded parameters and requirement that they form a nested collection of sets).
Theorems [A] and [B] both work in complementary directions. In Theorem [A] we
construct an expanding measure for f; assuming that dynamics close to fy have some
expanding measure. In Theorem [B] we construct an expanding measure for dynamics
close enough to fy assuming that f, already has an expanding measure. In addition, in
both Theorems the expanding measures for f, and fy are close, as long as f, is close

enough to fy. These Theorems are useful to obtain the continuous variation of expanding

measures on compact sets, as we can see in|Main Theorem| It is useful to see that the sets

of measures with bounded parameters in Theorems [A] and [B] are in fact sets of expanding

measures. Furthermore, by Theorem [C| we see that these sets are also compact sets.

1.5 Examples and applications

Before we proceed to the proof of the mains results, lets understand what happens
with the set of expanding measures in some simple examples.
For start, one can see that even for small perturbations the set of invariant mea-

sures for a dynamics can change drastically. Denote I = [0, 1].

Example 1.5.1. Consider f as the identity map on the interval 1 (Figure and g as
some close perturbation of f as in Figure [I.4. While f has an uncountable number of

mwvariant measures, g only has two tnvariant measures.

Theorem allows us to conclude that for every uniformly expanding map
the set of expanding measures is a compact set and varies continuously with the map.
This result is valid even for uniformly hyperbolic maps. However, outside the uniformly

hyperbolic scenario this statement does not hold.
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Figure 1.3: Figure 1.4:

Example 1.5.2. Consider the complete tent map f:1 —> I given by f(t)=1-2|t-1/2|
(see Figure . Then the set of invariant measures coincides with the set of invariant
expanding measures. In fact, the obstruction to expanding behavior in this map is associ-
ated to the pre-orbit of to = 1/2, denoted by O (ty). But since to is not a fived point for
f, any measure supported in a subset U c (’)J‘c(to) 18 not an invariant measure.

Then we conclude that the set of invariant expanding measures for f is a compact
set.

o

Figure 1.5:

Example 1.5.3. Let a >0 be such that % <1 and consider the map f: 1 — I given by:

(1) = at3+(2-a)t?+ 4t if 0<t<1/2
1-2Jt - 3/4] if 1/2<t<1
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(See Figure @) We can see that the set of invariant expanding measures is compact
(it is the set of invariant measures for the portion associated to the tent map) but f is
not an uniformly expanding map, since we have a negative Lyapunov exponent at t =0
(see Section . So, the compactness of the set of expanding maps is not a sufficient

condition for a map to be uniformly expanding.

Figure 1.6:

One can see that in the non-uniformly expanding context, it may happens that
the set of expanding measures is not compact. As we can identify by Theorem [C| when we
control some parameters associated to the measures, namely, the rate of expansion, the
frequency of hyperbolic returns and the size of hyperbolic balls, then we obtain compact-
ness. We refer to this kind of object as an expanding measure with bounded parameters
(see formal definitions about this concept in Section . In the next example we explore

the case when we do not control the rate of expansion.

Example 1.5.4. Consider the map f : I — I whose graph is given by Figure [1.7.
For instance, we can say that this graph is obtained from a rotation of the graph of
g(t) =t*- sin; See that, for each n > 1, p, := 5% is an expanding measure. However,
[y, —> o = 0g, which is not an expanding measure for f. Then, even in lower dimension,

the set of expanding measures is not compact.

Although outside the uniformly hyperbolic context we cannot expect that the set

of expanding measures is compact (or even that it varies continuously), [Main Theorem|

tells us that for NUE maps this set is o—compact and varies continuously on compact
sets. By Theorem [C] we see that, even though the set of all expanding measures is
not necessarily compact, when we control the parameters associated to the expanding
measure, namely, the rate of expansion, the first iterate when we observe expansion, the

frequency of hyperbolic returns and the size of hyperbolic balls, the set of measures with
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Figure 1.7:

bounded parameters will be compact. This is an important step in the construction of
the compact pieces in the decomposition required in Definition |1.4]
In [24], Pinheiro gives us examples of some classes of maps which exhibits plenty

of expanding measures. Between them we can cite:

Example 1.5.5. Let f: 1 — I be given by

~ g(t), t<1/2
1) _{ 1-g(1-t), t>1/2,

where g(t) = t+2t2. By using Theorem 5 of [24)] we can conclude that f has an uncountable

number of ergodic invariant expanding measures.

Example 1.5.6. Let F': I? — I? be given by

Fz,y) = (f(z),(1+2)o(y)),

where [ is as in Example and ¢(y) =1/2 = |y — 1/2| is the “tent” map of slope one.
Again, applying Theorem 5 of [2]|] we conclude that F' has an uncountable number of

ergodic invariant expanding measures.

Example 1.5.7. An important class of non-uniformly expanding dynamical systems (with
critical sets) in dimension greater than one was introduced by Viana in [3])]. This class
of maps can be described as follows: Consider ag € (1,2) such that the critical point x =0
is pre-periodic for the quadratic map Q(z) = ag — x%. Let S' = R/Z and b : S' — R
be a Morse function, for instance, b(s) = 2ws. For fized small « > 0, consider the map
F:S'xR— S'xR defined as

F(s,z) = (9(s),q(s,2)),
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where g is the uniformly expanding map of the circle defined by g(s) = d-s(mod Z) for
some d > 16 and q(s,x) = a(s) — x? with a(s) = ag + ab(s).

Its possible to perform an analogous construction in higher dimensions.

By applying Theorem 7 of [24] we can conclude that F admits an uncountable

collection of ergodic invariant measures with all Lyapunov exponents positive (see Section

for precise definitions).

In conclusion, we can apply our main results to these maps and obtain that every
small perturbation of them in the C' topology gives rise to maps exhibiting expanding
measures and the set of expanding measures varies continuously in compact sets as in

Definition [T.4].



Chapter 2
Tools and strategies

In this Chapter we present some of the main tools and strategies used in the
proof of the main theorems. Some of the results in this section are largely known in the
literature but we include some proofs in here for completeness and to see how constants

depend on each other.

2.1 Markov maps and liftable measures

Consider a mensurable map F': U — U defined in a Borel set U ¢ M and a

countable collection P = { Py, P, Ps,---} of Borel subsets of U satisfying:

Definition 2.1.1. We say that P is a Markov partition and (F,P) is a full Markov map

if the following assumptions are satisfied:
o int(P) nint(P;) =2, ifi+j

e F|p is a homeomorphism and can be extended to a homeomorphism sending P onto
U,VPeP;

o limdiam(C;(x)) = 0, ¥ € s F 3 (P, where Ci(x) = {y; P(F*(y)) = P(F*(x)) Y0 <
j
s <j} and P(z) denotes the element of P which contains x. We call C;(x) as the

j—cylinder containing x wn the Markov partition P.

Definition 2.1.2. Consider a function F : U — U and a full Markov partition P with
respect to F'. The pair (F,P) is called a full Markov map induced by f defined on U if
there exists a function R:U — N={0,1,2,3,---} (the inducing time) such that

o {R21}={zeU; R(z) 21} =Upep P,

e R|p is constant VP € P,
23
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o F(x)=fE@(z)Vael.

We often say induced Markov map instead of full Markov map induced by f when

there is no chance of misunderstanding.

Definition 2.1.3. Given a full induced Markov map (F,P), an ergodic f-invariant prob-
ability p is said to be liftable to F if there exists a finite F-invariant measure v << i such
that

R(P)-1
= Z Z fﬁ(V|P)>
PeP 3=0

where R is the inducing time of F, v|p denotes the measure given by v|p(A) =v(An P)
and f1 is the push-forward by fi (flv=vo f7).

© (U, F, v)

Figure 2.1:

Definition 2.1.4. We say that an induced Markov map (F,P) defined on an open set

Y c X s compatible with a measure p if
1. (YY) >0;
2. w18 F-non-singular;
3. p(Upep P) = u(Y) (in particular, p(0P)=0YPeP).

Definition 2.1.5. We say that an induced Markov map (F,P) defined on a set’Y ¢ X
has bounded distortion with respect to a measure u (or, in a simplest way, has p-bounded
distortion) if

e (F,P) is compatible with ji;

e 1 has Jacobian with respect to F' and
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e 1K >0 such that

JMF(iU)
JuF(y)
for w almost every point x,y € P and for all P € P

< K dist(F(x), F(y)),

‘log

The problem of lift a measure was studied by several authors in the last years.
Among them, Aaronson gives in [I] a condition to lift a measure f-invariant to the level
of the induced Markov map (namely, bounded distortion for the measure), as we can see
in Theorem [2.1.7] In [24] Pinheiro removes the bounded distortion condition, replacing it
by a statistical condition (see Theorem . Also, we can project a given measure that
is invariant for the induced Markov map, as long as its return time is integrable, as we

can see in next Theorem.

Theorem 2.1.6 (Folklore 1). Let (F,P) be a full induced Markov map for f defined on
some Y c M and let R be its inducing time. If v is a finite F'-invariant measure such that

f Rdyv < oo then

R(P)-1 ) +oo
-3y fz<u|p>(=zfz(u|{R>j}))
PP j=0 =0

1s a finite f-invariant measure.

Proof: We give here a sketch of the proof of this Theorem, which is based on Young
towers (see [30]).

Consider f: M — M and a full Markov map (F,P) on A. Define the set
A={(z,n) e Ax{0,1,2,.. }:n< R(2)},
and consider the following dynamics on A:

]F(x,l)={ ( (z,1+1)  sel+1<R(x) 21)

fE@)(2),0) sel+1=R(x)

See that 7 is F—invariant. Indeed, suppose that v is a F-invariant measure and
consider the measure ¥ defined on A given by (A x {n}) := v(A), for all y-mensurable

subset A c Ay; and 0 <n < R;. We may have two cases to consider:

e n>0

In this case, we have F-1(A x {n}) = (A x {n-1}) and hence Z(F-1(A x {n})) =
7((Ax{n-1})) = p(A) = [i(A x {n}).
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e n=0

In this case:

T(F(Ax{n})) = ’V“(L%(F’l(A) N Ao, x {Ri})) = ZI;]’VV(F’I(A) N Ao, x {Ri}) =
ZI\:IV(F_l(A) NnAg;) =v(FH(A)) =v(A) =7(Ax{n})
We define the projection of the tower A on M as the map 7 : A —> M given by
w(z,n) = f"(x).

See that, defined that way, the projection 7 is continuous and satisfies:

fom=moF, (2.2)
To conclude the demonstration, it is enough to ensure the next steps:

Clearly we have that 7,7 is a f-invariant measure, because 7 is a F—invariant mea-

sure.

7(R) = / Rdv

Tndeed, 7(R) = ’ﬁ(@1 iuol Ao, x {k}) = zﬁ(igl(Ao’i < (k})) =

iRiu(AO,i):if Ry = [ v
i=1 i=1 J Boi

e [t is easy to check that:

EDID)
ieN

R;-1
k=0

FE(la) ( 5 ff<u|{R>k}>) . (23)

ieN

Defining 7 := 7,7 we conclude the proof.
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Theorem 2.1.7 (Folklore 2). Let u be a f-non-singular measure. If (F,P) is a full
induced Markov map for f with u-bounded distortion then there exists an ergodic F'-
invariant probability v < p which density belongs to L* (). Indeed, log Z—: € L“(u|{%>o}).

Furthermore, if the induction time R of F' is integrable with respect to v, then

R(P)-1

N = Z Z f1(v|p) is a finite f-invariant ergodic measure absolutely continuous w.r.t.
PeP  j=0

L.

Proof: The second part of this Theorem is obtained directly from Theorem [2.1.6] See
Lemma 4.4.1 of [I] for a proof of the first part.

O

Next Theorem, whose proof can be found in [24], ensures that we can lift a

measure as long as some statistical condition is satisfied (replacing the hypothesis of
bounded distortion as in Theorem [2.1.7]).

Theorem 2.1.8. Let (F,P) be a full induced Markov map for f defined on an open set
B c X. Let R be the inducing time of F' and p an ergodic f-invariant probability measure
such that p({R = 0}) = 0 and O7(z) n O (y) # @ = Op(x) n Of(y) # @ for p-a.e.p.
x,y € B. If there exists © >0 such that
1 :
limsup—f{0<j<n; f/(z) e Op(z)} >0 (2.4)
n

n—oo

for u almost every x € B, then there is a non trivial (# 0), finite and F-invariant measure
v such that v(Y) < u(Y') for all Borel setY c B and such that [ Rdv <O~

The following definition is useful to obtain a set of points where in each neigh-

borhood the frequency of hyperbolic visits is positive for all f,.

Definition 2.1.9. Consider for each j € N a set @+ Aj c M. We define A := ljrgAj as
je
the limit set of the sequence A; given by A:={x € M, Jz;, € A;, Yk € N such that z;, —

x when k — +o0}.

See that, since M is compact, A # @. We can say that A is the set of all

accumulation points for sequences where each term belongs to one set A;.

2.2 Nested sets

In this section we will see the notion of nested sets, as well as their main properties.
Most of the material in this section is adapted from Sections 2 and 5 of [24]. We put it
here as a matter of completeness for this text and to understand the dependence of some

structures in the proof of the main theorems.
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Nested sets are a generalization to the multidimensional case of nice intervals,
introduced by Martens in [19]. Consider, for instance, a map f:[0,1] J. A nice interval
is an open interval I such that the future orbit O*(9I) of the boundary of I doesn’t
return to I, that is, O*(0I) n I = @. These intervals are easy to construct when we
consider interval maps. For example, two consecutive points of a periodic orbit define a
nice interval. The main property of a nice interval we are interested in is that there are no
linked pre-images of a nice interval, that is, if Iy and I are sent homeomorphically onte
an open nice interval by f™ and fm2 respectively then Iy n Iy =@, Iy c I or Iy c ;). As
we can see, nice intervals become particularly useful when dealing with partitions. The
same happens with nested sets, as we can see below.

Let f: M — M be a map defined in a manifold M. A set P c M is said to be
a reqular pre-image of order n € N of a set K ¢ M if f* sends P homeomorphically onto
K. Lets denote by ord(P) the order of P (with respect to K).

In this section we fix a collection & of open connected subsets of M. For each
n e N and V € &, consider a collection &,(V') of regular pre-images of K with order n.
Note that we are not considering that the collection &, (V') contains necessarily all regular

pre-images of V' with order n. Define &, = (£,(V))ves,-

Definition 2.2.1. We say that the sequence £ = {€,},, is a dynamically closed family of
regular pre-images if fY(E) €&, VE €&, eV0</l<n.

This condition ensures that if a regular pre-image of order n of V' doesn’t belong

to £,(V) then the regular pre-images of V' with order higher than n don’t belong to £(V")

too. See Figure 2.2
©. Q. 0,
f2

/N :

v O O }3{(5\@ <‘>
/ LAY Y
é /O\Ojom&?o [ O\

Figure 2.2: Scheme showing the construction of a dinamically closed family of regular
pre-images. If we eliminate a set £;, we must eliminate all of its corresponding pre-images

in & and &3 as well.

Given @ € &,, we denote f"|g by f@ and denote by f~@ the E-inverse branch,
(f"lo)™!. Let € =(&,)n be a dynamically closed family of regular pre-images. A set P is
called E-pre-image of a set W c X if there exists n e N and Q € £, such that W c f7(Q)
and P = f~@(W), where W is the closure of W.
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Remark 2.2.2. See that if two distinct E—pre-images, Xy and X, of a set X ¢ X have

the same order then they cannot intersect.

Definition 2.2.3. We say that two open sets Uy and Us are linked if Uy\Us, Us\Uy and

Uy nU;y are not empty sets.

Note that two open connected sets, U; and Us, are linked if, and only if, 0U; n U,
and U; n 0U; both are not empty sets.

Ui U2 U: Us
(2) (b)
Uz

Figure 2.3: Some situations where two open connected sets may or may not intersect.

Just in case (a) they are linked.

Definition 2.2.4. A set V' is called E-nested if it is open and it is not linked with any
E-pre-image of itself.

The main property of a nested set is that any £-pre-images Py, P of this set are

not linked, as we can see in the next result.

Proposition 2.2.5. If V is a E-nested set and Py, P, are E-pre-images of V', then the

following assertions hold:

1. P, and P, are not linked
2. If PPN Py + @ and Py # Py then ord(Py) + ord(Ps);

3. If Py & Py with ord(Py) < ord(P,) then V is contained in a E-pre-image of itself
with order bigger than zero (that is, fordP2)-erdP)(V)c V).

Proof: =~ We show first that P and P, are not linked sets. Let k; = ord(F;), with
j € {1,2}. We have two cases to consider. If k; = ko, we have by Remark that
P, and P, cannot intersect, so they are not linked. If k; # ko (we may assume, for

example, that k; < ko, the other case is analogous), suppose by contradiction that Py
and P are linked. Consider also p; € P;ndPs_; and Q; € &, such that P; = f~@i(V).
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Since £ is a dynamically closed family of pre-images of elements of &, we have that
Q = fF(Q2) € Ek,—1, and that P := fF1(Py) = f~Q(V) is an E-pre-image of V. Besides,
by construction we have that f¥1(P;) = V. Since f*(py) € for(P)nd(f*(P)) =V noP
and ¥ (py) € fFr(Py)nd(fF(Py)) = PndV, it follows that P and V are linked sets, what
is impossible since V' is a £-nested set. This proves (1).

Suppose that P, n P, + @ and P, #+ P,. By Remark we have that P; and P,
must have different orders, because they are £—pre-images of the same set. This concludes

To conclude (3), lets suppose that Py ¢ P, and ky < ko. Then V = fF(P;) c
fF1(P,), that is, V is contained in an £—pre-image of itself with order ky — k; > 0. Since
fF(P,) is an E-pre-image of V', we conclude that fr2=k1 (V) c fk2(Py) =V

2.2.1 Construction of £-nested sets

We consider in this section an open connected subset A of M which is not con-
tained in any £-pre-image of itself with order bigger than zero. One can notice that
this assumption is suitable in the non-uniformly expanding context, since in this case we
expect to see pre-images with smaller size, in the sense of diameter.

A finite sequence K = (P, P1,---, B,) of E-pre-images of A is called chain of pre-
images of A beginning in A if

1. 0<ord(Fy) <ord(Py) < -+ <ord(P,-1) <ord(FP,);
2. A and P, are linked sets;

3. P;_; and P; are linked sets, V1< j <n;

(7 N

N AP > \
= ‘&l\(" \2 P x"ll

\\x- /

- A

Figure 2.4: A chain (P, P;, P», P3) of E-pre-images beginning in A.
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Definition 2.2.6. Denote chg(A) as the collection of all chains of E-pre-images of A
beginning in A. We denote by A* to the subset of A defined as

a=a" U UP (2.5)

(Pj)jechg(A) J

Since A is open and connected, we easily obtain that if (P, Py, ..., P,) € chg(A),

]
then  J P; is an open connected set V0 < ng < ny < n. Also, we can see that A* is open,
Jj=no
but not necessarily connected.
Remark 2.2.7. If we use two distinct dynamics for this construction, lets say f and g,
we will use the notation A*f and A*9 to distinguish whether we are talking about chains

of pre-images by f or by g.

Figure 2.5: On the left we see a ball A (in gray) and the boundaries of the £E-pre-images
of Ain chg(A). On the right we depict A*.

We proceed now with an abstract construction of a nested set. We can see in the
next result that A* (or at least one of its connected components) is in fact a nested set.

The proofs for next Proposition and its Corollary can be found in [24], Section 2.

Proposition 2.2.8. Consider A ¢ M and suppose that A* + @. If A’ is a connected

component of A* then A’ is an E—nested set.

The previous gives a way to construct nested sets, but this depends on A* be
non-empty. A way to ensure this condition is to show that all chains have small diameter

(we consider the diameter of a chain (P;); as the diameter of the set | J P;). This is shown

j
in next Corollary. Another way to ensure that A* # @ is by assuming that the pre-images

of a set are separated enough, as we can see below in Lemma [2.2.13

Corollary 2.2.9. Let 0 <e < 1/2 and let A = B,(p) be a connected open ball with radius r
centered in p € M such that fr(A) ¢ A, Vn>0. Suppose that every chain of €-pre-images
of A has diameter smaller than 2er. Then A* contains the ball B, (1-2:)(p). Moreover, the

connected component A" of A* that contains p is an E-nested set containing B,(1-a:) (p).
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2.2.2 Nested sets adapted to expanding structures

Here we present some concepts and results that allow us to bring together the
notion of dynamically closed family of pre-images, nested sets and hyperbolic times. This
should be useful to obtain Markov partitions in the non-uniformly expanding context and
other important results that will follow.

Let 0 <o <1and d >0 and for f: M — M let ‘H be the set of all points in
M with positive frequency of (o,d)-hyperbolic times, that is, the set of points for which
holds. For example, if there exists 1 € M, (f) then by Proposition there exists
H c M with p(H) = 1 satisfying such a property. Denote by &y = (E.n)n the collection of
all (¢,9)-hyperbolic pre-balls, where &, = {V,,(z); x € H,(0,0, f)} is the collection of all
(0,9)-hyperbolic pre-balls of order n. By using Lemma m, its easy to verify that the
collection of all (o,d)-hyperbolic pre-balls is a dynamically closed family of pre-images
as in Definition 2.2.1]

Given x € M and 0 <r <4, let (B,(z))* be the set defined by associated to
Ex. If € (B.(x))*, it follows from Proposition 2.2.8 (by taking A = {B,(z)}) that the

connected component of (B,.(x))* that contains z is an &y —nested set.

Definition 2.2.10. If z € (B.(x))*, we define the (o,0)-hyperbolic nested ball with
respect to f with radius r and center at x as the connected component of (B,(x))* which
contains x. We denote such a set as B (x). We may use the notation B;’f(x), when it
is necessary to emphasize the dynamics used in the construction of the (o,9)—hyperbolic

nested ball.

Note that, since we have contraction in any hyperbolic time, B,(z) cannot be
contained in any hyperbolic pre-image of itself (with order bigger than zero), that is, one
cannot find a Ey—pre-image P € M of B,(z) such that B,(z) c P (and hence diam(B,(x))
< diam(P)), otherwise we would obtain some E € &, and a contractive behavior (for
the past) between E > P and f(E) o B,(x). This would give us that diam(B,(z)) >
diam(P), a contradiction. Hence the set A = {B,.(x)} in Definition above is indeed
an open set according the hypothesis of Section [2.2.1}

Remark 2.2.11. Note that, since two distinct Ey—pre-images of a set with the same order
cannot intersect (see Remark , we obtain that the order of the elements of a chain
of pre-images beginning in B,.(x) is strictly decreasing, that is, if (Py, Py,--, Py) is a chain
of Ey—pre-images of B,(x) then 0 <ord(Fp) < -+ <ord(FP,).

Definition 2.2.12. We say that f is backward separated if for all x € M we have:

dist (x, CJ fj(x)\{x}) >0; Vn > 1. (2.6)
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As an example of the previous definition, we can give a map f with bounded
number of pre-images: (sup §{f *(z); z € M} < +o0). In fact, if there exists k € N such
that (sup§{f'(x); = € M} < k, then (supy{f~7(z); x € M} < k?, Vj € N. Since the
pre-images in this case always constitute a finite set, for all j, it follows that holds.
In particular, local diffeomorphisms are backward separated maps.

At section [2.2.1| we present an abstract construction of a nested set. To achieve
this, it is necessary that the set A* given by must be nonempty. Next result provides a
condition for the existence of hyperbolic nested balls. This condition involves the previous
definition. The proof of this result can be found in [24], but we include it here for the

completeness of the text.

Lemma 2.2.13. If )" 0"/? < 1/4 then for every 0 < r < §/2 the hyperbolic nested ball B; (x)
n>1

is well defined and also By (x) > Byjo(x). Yo € M. Furthermore, if f is backward separated
then for each x € M there is 0 < 1o < 0/2 such that B} (x) is well defined Y0 < r < rq and,
given 0 <y < 1, it is possible find 0 < ry < 1o depending only on d,c,x and ~y such that
Bi(x) 2 By (z); YVO<7<r,.

0
- °G
U, £(x) By
Q / B;
&

Figure 2.6: If Q is a & pre-image of Figure 2.7: Every chain of pre-images

B,(z) then Qn B,(z) = @. in che, (B,(r)) has diameter small
enough in such a way that @ + B,,(z) c
B (x).
Proof:
If Zo”/z < 1/4 and 0 < r < §/2, since the orders of the elements in a chain
n>1

beginning in A = { B, ()}, are strictly decreasing (Remark[2.2.11]), we have by item (2) of
[1.3.2]that 1flC (Po, Py, Pk) is a chain of &y —pre-images of B, (x) with ord(P;) = n; then
diam(K) = Z diam(FP;) < ZU”J/leam(B (z)) < Y o"Pdiam(B,(z)) < diam(B,(z))/4 =

n>1

r/2. Thus, by using Corollary m we obtain that By (x) > B, ().

Lets suppose that f is backward separated. Given 0 <y < 1, since Z o"? < +o0

n>1
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we may obtain ng € N such that Y o™ -r < (1-+)r/2. Given z € M, let € > 0 be such

n>ngo
that dist (=, Ui f(x)\{z}) >¢, = tmin{e, 0} and O<r <7y,
Notice that if j < ng and @ is an Ey—pre-image of B,.(x) with order j then B,(z)n
Q=2 VQ €&z, Infact, writing Q = f~V (B, (:v)) (f7|v) 1 (B,(z)) for some V in & ; we

have that @ n (Qf‘j(x)) = (Fv) (B (2)) (Uf (@) > (flv) ™ (@) n (Uf (z)) #

@. Since dist (x,U?Sl f7(x)\{z}) > € and dlam(Q) < 2r < 2¢/3 (last 1nequahty is
consequence of the hypothesis that @) is an £y;-pre-image of B,.(x) along with item (2)

of [1.3.2]), we have that B,(z) nQ = @ (see Figure [2.2.2)).

Then, every chain of &y —pre-images of B,(x) starts with a pre-image with order
bigger than ng. Let (P) = (P, P1,--, Px) be a chain of Ey—pre-images of B,.(z) with

ord(P;) = n;. Then, since diam(P) = dlam(UP) < Z diam (P;) and, for each j €
7=1 7=1

{1,---,k}, we have diam(P;) = SUIIDJ dist(z,y) < su[; o™ 2. dist(fri(x), fri(y)) = omil?-
x,yeP; z,yeP;

SUpP, yep, ( dist(f™(2), 7 (y))) = omil2.diam(B,(z)), we conclude that:

diam(P) < Y o™/ diam(B,(z)) < > o"?-diam(B,(z))

j=1 n>ng

< (- B BAD)_ (g,

and, since any chain intersects the boundary of B,(z), we can conclude that this chain

doesn’t intersect B,,(z) (see Figure 2.2.2). Hence, (B,(z))* (and also B;(x)) contains
B, (x).

a

It is worth to notice that even if for a given f: M — M with almost every point

having (o, d)- hyperbolic times but Z o"?

n>1

Lemma [2.2.13| above replacing f by some iterate f*. If £ is big enough we can ensure that
the sum Y. 0% is smaller than 1/4.

n>1

fails to be smaller than 1/4 we can still apply

2.3 Full induced Markov map for an expanding map

Fix p e Mg,

of points in M. Its not hard to show that h is indeed an asymptotically invariant collection

(f) and consider h = (h(x))enr as the collection of hyperbolic images

and it has positive frequency (see Proposition [1.3.5). Consider a hyperbolic nested set
A c M. Given z € A, let Q(z) be the collection of hyperbolic pre-images V' of A such
that z e V.

Definition 2.3.1. The inducing time on A associated to the “first hyperbolic return to
A7 is the function R: A — N given by
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R(z) - { min{ord(V); Ve Q(z)} seQ(z)+ 2 (2.7)

0 seQz)=0

Definition 2.3.2. The induced map F on A associated to the “first hyperbolic return to
A7 is the map F': A — A given by

F(z) = fE@(2), Vo e A. (2.8)

Since the collection of sets Q(z) is totally ordered by inclusion, it follows that

there exists an unique I(x) € Q(x) such that ord(I(z)) = R(x), whenever Q(z) # @.

Definition 2.3.3. The Markov partition associated to the “first hyperbolic return to A”

is the collection P of open sets given by
P={I(x); xeAeQ(z)+ D} (2.9)

With these definitions, Pinheiro ensures in [24] that it is possible to construct an
induced Markov map for f on an appropriate nested set A ¢ M: We must to assume that

A intersects the hyperbolic attractor associated to p (see ).

Proposition 2.3.4. Consider an open nested hyperbolic set A ¢ M with diam(A) < §/2.
Suppose in addition that AmAiyp + &, where Aiyp is a compact set such that wyp(x) = A{Lyp

for p—a.e.p. x € M. Then (F,P) given by[2.8 and[2.9 is a full induced Markov map defined
on A with induced time R: A — N given by and F is compatible with p.

Proof: See Corollary 6.6 and Lemma 6.7 of [24]
O

The next result ensures that we can lift i to the level of the induced Markov map

F given by [2.3.4]

Proposition 2.3.5. Consider 1 € My,(f), an open nested hyperbolic set A c M with
diam(A) < §/2 and suppose that A n Aiwm # &, where Apy, . is a compact set such
that wyp+(x) = Aiypﬁ for p—a.e.p. x € M. Suppose in addition that (F,P) is the first
hyperbolic return to A with induced time R: A — N (F = fR). Then, there exists £ >0
such that pp(x) > & for p—a.e.p. x e M.

Furthermore, there is a finite F-invariant measure v < p (indeed, v(Y') < u(Y)

for all Borel subset Y ¢ A) such that [ Rdv < ¢ < +oo and

+o00

== f1Wirsiy),
7Y j=o

where v = Z fz(V|{R>j})(M)-
=0
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Proof: We know that h = (h(x)).ens is an asymptotically invariant collection. Then the
function @f(m) = ljln_l)s:g) - i {1 <j<n; fi(z)eh(x)n A} is f-invariant. By ergodicity of
i we conclude that there exists £ > 0 such that ga?(x) > ¢ for p—a.e.p. x € A.

By taking B=A, g= R, G; = H;(f) and using Lemma we obtain that

limsuplﬂ{jz(); zj:ROFk(x)Sn}zg (2.10)
k=0

n—s+oo T

for p—a.e.p. r € A. Since

{jZO; ;ROFk(m)Sn}:{0£j<n; fj(:zc)e(’)}(x)},

it follows from and Theorem 2.1.8| that there exists a non-trivial F—invariant
measure such that v(V') < u(V') for every Borel set V ¢ A (in particular, v < u) with
[ Rdv < % < +00.

+00 .

Now, we use Theorem 2.1.6/to obtain a f-invariant finite measure = > f(v|gs;)
=0

which is absolutely continuous with respect to u. By the fact that p is ergodic, we then

obtain:

+00

n=—= ZfZ(Vl{R>j})7
7Y j=o

+00 .
where v =" f1(v|(rsjy) (M).
=0
O

1t +oo
Remark 2.3.6. We denote by pu(f,v) as the measure = fi(Vlirsjy), 7 = Y. f1(V(rsjy ) (M)
7Y j=0 4=0

obtained from v.

2.4 Lyapunov exponents

In Dynamical Systems, Lyapunov exponents are largely known in connection with
a theorem due to Oseledets (see [22]), which in broad terms say that, under an integrability
condition, the tangent space of almost every point splits into a flag in such a way that
the iterates of vectors have well-defined rates of exponential growth, in norm, restricted
to each subspace of the flag.

More formally, the Multiplicative Ergodic Theorem, due to Oseledets, says that if

p is an ergodic measure such that log™ | D f(x)| is integrable then there exists numbers

3\’1 > e >Xk
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such that for y—almost every point x € M there is a flag
{0} =EfcEjc By = TeM

which depends measurably on the point x and is invariant by Df, such that for ¢ =
17 27"'a ]{T(ZL’) -1,

1 ~
lim —log|Df"(z)v| =\, forallve Ef \EF.
n—s+oo n,

It is easy to see that each ); is an f-invariant function (X;(z) = X;(f(z))). In particular,

if 1 is ergodic the functions ); are constant almost everywhere. Let
A(x) < Ao(x) < < Ng()

be the numbers Xj listed in a nondecreasing order and repeated with multiplicity dimE?,
- dimE7?. These numbers are called the Lyapunov exponents of f at .

In other words, we can say that Lyapunov exponents measure the asymptotic be-
havior of tangent vectors under iteration. Positive exponents corresponding to exponential
growth and negative exponents corresponding to exponential decay of the norm. The uni-
formly hyperbolic case corresponds to nonzero Lyapunov exponents. The non-uniformly

expanding case corresponds to positive Lyapunov exponents.

Remark 2.4.1. It’s worth to say that in the one-dimensional case, be non-uniformly

expanding is equivalent to have a positive Lyapunov exponent, since:

n—1
linsup —log (/") (2)] = limsup > logl (/@)

n—s+oo 1

In dimension greater than one condition is not equivalent to say that f has dim(M)

positive Lyapunov exponents at x € M.
Let f: M — M be a non-flat map and C c M its critical /singular set.

Definition 2.4.2. Let p be an f-invariant ergodic probability. We say that p has all

1
of its Lyapunov exponents finite if limsup — log||(Df™(z))Y||* > oo for u—almost every
neN T

reM.

Remark 2.4.3. Suppose that there are A ¢ M, a p—partition P of A, R: | J P — N
PepP

and an induced Markov map F = f& on A, as in Definitions and (Note that

in this case we are considering f as a non-uniformly expanding map). Then, by using
item a) of|1.3.4| we obtain that F is a piecewise expanding map: There is 0 < k <1 such

that for x in the interior of the elements P € P
IDf(z)7]] < k.

Additionally, we conclude that all Lyapunov exponents for F are positive on A.
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Lemma 2.4.4. If \ is a Lyapunov exponent of F', then Ak is a Lyapunov exponent of
f, where Kk := f Rdv.
A

n—-1
Proof: Let n be a positive integer and for each x € A define S, (z) := Y R(F'(z)). By
i=0

using induction on n, the following equation is easily satisfied:

F" () = f5@) ().

By construction, we know that S, (x) = S,(y) for almost every y near enough of
x. Thus we can take derivatives of the above equation and conclude that if v € T, M then:
1

n
log | D5+ () 1] = s

Sn() log |[|[DF"(z) - vl|.

Since v is an ergodic measure, Birkhoft’s ergodic theorem allows us to conclude
that

lim Sn(z) Z/RdVZK
A

n—+oco 1
for p almost every x € A.

If X\ is a Lyapunov exponent of f then

1
A= lim —log|DF"(x)-v.
n—s+oo 1,

Attending to the equations above, we conclude that

A n 1 1
= 1l ———log||DF" ol = 1
Kk n—ieo S (z) 1 og||DE"(z) v = lim S,.(7)

log||D f5) () - vl|

is a Lyapunov exponent of f (note that, since p is ergodic, the above expression

holds for p—almost every point x € M).
O
The following Lemma can be useful to prove that an ergodic invariant measure

[o must be expanding.

Lemma 2.4.5. Let f: M — M be a C™ map. If u is an f—invariant ergodic probabil-
ity with all of its Lyapunov exponents finite (i.e., limsup L log||(Df"(z))~||"' > —oo for
p—a.e.p. x € M) then p satisfies the slow approximation condition, that is, for each € >0,
there is 6 > 0 such that

n-1
limsup ) -logdists(f/(z),C) <e.,

n—--+oo j=0

for p—a.e.p. x e M.
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Remark 2.4.6. The proof of Lemma can be found in [2])], Lemma 10.2. In this
case, Pinheiro uses the assumption that the exceptional set C for f is constituted just by

critical points (where the derivative fails to be invertible).

With Lemma and by the fact that if z is not a critical point then

n—1

. 1 ; T 1 n 1y
limsup — > log [Df (f'(2))~"|™" < limsup —log||(Df" ()~
neN T ;230 neN T
we easily conclude the following Remark.

Remark 2.4.7. Consider f : M — M as a non-flat map. Then an ergodic invariant

probability p s expanding for f if, and only if, holds for pu—almost every point x € M.



Chapter 3
Technical stability conditions

We will start now some technical considerations. Consider a Riemannian compact
manifold M and a sequence of C''*® local diffeomorphisms f, : M — M, n > 0 with
fn — fo in the C* topology. Now, consider the following reasonable hypothesis (since
we are working in the context of hyperbolic times, these hypothesis make sense): There
exists a topological disk A c¢ M and for each n > 0 there is an open set A, such that
fil: A — A, is a homeomorphism (in fact, a diffeomorphism) that can be extended to
a homeomorphism (in fact, a diffeomorphism) from OAUA onto A, U A,.. To be precise,
we should write (f,|a,)~! instead of f,;!, but we will keep this last notation and warn the
reader when there is a chance of misunderstanding.

We want to show that A,, — Ay in the sense of Hausdorff distance:

Definition 3.0.1. For each n >0 consider a connected open set V,, c M. We say that V,
converges to Vg if Ve >0, Ing € N such that n > nyg = 0V, c V.(0Vy) = {x € M, d(x,0Vp) <
e} and OVy c V(OV,,). In this case we denote V,, — V.

Remark 3.0.2. Before start next Lemma, we want to remark a matter of notation: If
fa — fo in the C' topology this is the same as d(fn, fo) —> 0. In this case, d(-,-)
denotes the distance associated to the C' topology. But f, — fo also implies that
sup{d(f.(z), fo(x)} —> 0, where sup in this expression is taken on M. In this case,
d(-,-) denotes the distance of points in M. We will denote both distances by d(-,-) and

warn the reader if there is a chance of misunderstanding.

Lemma 3.0.3. Suppose that f, : M — M, n > 1, is a convergent sequence in the C*
topology, A, is an open connected subset of M and, for a fized open connected set A c M,
the restriction f;': A — A, is a diffeomorphism from the open set A onto A, (that can

be extended to OAUA). Then there exists a connected open set Ay c M such that

An — Ao.
40
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If we denote fy = hIEl fn, then the restriction fola, : Ao — A is also a diffeo-

morphism from Ay onto A (which can be extended to 0 Ay U Ayp).

Proof: Consider f;, for some i € N fixed. Since f;!: A — A; is a diffeomorphism, we
take some a € A; such that Df;(a) is injective. Defining ¢; := 2||D f;(a)7!||7! it is easily
seen that ||Df(a)-v|| > 2¢-||v|], Vv e T,M. Tt is a well known fact from Calculus that there
is 0 > 0 such that:

d(fl(x)vfl(y)) 2 Cid(xvy)v Va, y e B5(a)'

It is possible to show that ¢; and § may be taken uniformly for all a € A; (since we
are taking fj|4, as a diffeomorphism on it’s image A). Therefore, the previous equation

becomes:

d(fi(x), fi(y)) 2 cid(z,y), Vo, y € A, (3.1)

Now, consider m,n € N and x € 9A u A. By triangle inequality we know that :
O=d(z,x) = d(fmo 3! (@), fuo f(2))

> d(fm o 3! (@), fmo [31 (%)) = d(fm o [31(2), fu o £ (2))
By using the previous inequality and we obtain:

A(fms fr) 2 d(frmo [ (), fro f71(2))
d(fm o [ (), fm 0 £ (7))

Cmn A(f3! (@), 1 (2)),
where in the first inequality we used the fact that d( f,, fn) > d(fm(w), fu(w)), Yw € M,

in the second we used the triangle inequality and in the third we used [3.1] So, we get:

v IV

v

1

d(f, (@), ! () € — - d(fu; fin), (3.2)

Cn,m
for all z € OA UA.

Note that ||f.|| — || fol|, since f,, — fo and || fo|| # 0, since fy is local diffeomor-

1
phism. Then the constants ¢, ,, are bounded away from zero and infinity, and so are :

Cn,m

In this way one can find K > 0 such that < K, VYn,m e N and last equation becomes:

Cn,m

d(f," (@), ! () <K -d(f, fm), (3.3)

for all z € 0A U A.
Since f, — fo, we know that f, is a Cauchy sequence. By we are able
to conclude that, for each x € 9A U A, f-1(x) is a Cauchy sequence too. Hence, fixed

x € 0AUA, the sequence f,!(x) is convergent and we can define a set Ay ¢ M such that:
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0Ag = {xg, Iz € A with zg = lim (x)}. (3.4)
Ag = {xg, Iz € A with 2 = lim ()} (3.5)

We can see evidently by 3.3 that if 2 = lim [t (x) then g = f3'(z). In this
way, [3.3] ensures that A, — Ay in the sense of Definition [3.0.1} In fact, since f,, — fo,
given € > 0 there is ny such that d(f,, fo) < e/K if n > ng. If we take z € JA,, for a given
n>ngand z = f,(z) € A, we obtain bythat d(f1 (), 3 (x)) = d(z,nirgm 1 (x)) <
e, and hence, since nl_i)nzoo 1 (x) € DAy, we get d(z,04Ap) <&, that is, 0A, c V.(0Ap). The
inclusion 0Ag c V.(0A,,) is immediate.

O

Lemma [3.0.3] can be generalized to the case where there exists A,, for each n and

0A, — 07 with f1: A, — A, being an inverse branch.

Lemma 3.0.4. Suppose that f, : M — M, n > 1 is a convergent sequence in the C*
topology and take sets A, that are open connected subsets of M. Suppose in addition that
for each n >0 there is an open connected set A, ¢ M with A,, — Aq and the restriction
fil: A, — A, is a diffeomorphism from the open set A, onto A, (that can be extended

n

to O0A, UA, ), for n>1. Then there exists a connected open set Ag ¢ M such that
An I Ao.

If we denote fo:= lim f,, then the restriction fo|a, : Ao —> A is also a diffeo-
n—--+oo

morphism from Ag onto A (which can be extended to 0AgU Ap).

Proof: In the first part of the proof we aim to prove a version of 3.3 In order to do that,
we will use some of the ideas present in last proof. For each n > 0, consider ¢, given by
B.1] If we take m,n € N, x,,, € 0A,, U A, and x,, € A, U A, triangle inequality gives us
A(@p, T d(fm o [ (xm), fn o fi' (20))

d(fm o [l (@m), o £ (@n)) = d(fm o [ (@), fo o f71 (2n))

An analogous procedure to the last proof allows us to find K >0 such that

that:

v

d(f,;l(xn), fr;bl(xm)) <K - (d(fn, fn) + d(T0, 7)), (3.6)

for all z,, € 0A,, UA,, and z,, € 0A,, U A\,,.

Now consider x € 9AguU Ay. Since A,, — Ag, we can arrange that the sequence
x, may be taken in such a way that d(x,,x) — 0 when n — +oco. With this fact and
having in mind that f, is a Cauchy sequence, we obtain that f,1(x,) is also a Cauchy

sequence, and so there is 7g:= lim f,'(z,). So we can define
n—--+oo
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0Ap = {xg, I, € A, x € DA with xy = lim fil(x), wherex = lim x,}. (3.7)

n—--+o0o

Ag = A{xo, Iz, € Ay, v € A with zg = liIr+1 fil(x), wherez = lim =x,}. (3.8)

n—--+oo

An analogous procedure to last proof shows that the set Ay defined by satisfy
the requirements in this Lemma and this concludes the proof.
|
We should notice that Lemmas [3.0.3 and [A.0.3] both deal with similar scenarios.
But one diference between them is that Lemma deals with continuity of inverse

branches, while Lemma gives us a way to construct the domain of an inverse branch
as the limit of the domain of other inverse branches. This will be particularly useful when
we deal with the construction of a Markov partition by taking the limit of elements of

already known Markov partitions. In order to do that, we need to adapt these results to

deal with nested sets and hyperbolic times. So, we will use now Lemmas [3.0.3[ and [A.0.3|
to deal with hyperbolic nested balls (see Definition [2.2.10)).

Lemma 3.0.5. Consider r >0, x € M and the set B.(z). If f,. is a sequence of non-flat
maps converging to fo in the C* topology such that for each n > 0 the (o,d)-hyperbolic
nested ball A, = (By™)(x) is well defined and non-empty, where 0 <r <§/2 and 0 <o <1

are real numbers, then A, — A,.

Proof: We notice that ¢ is the same for all n. Thus, if (P?, P} -+, P¥) is a chain of
pre-images of B,(z) by f, we conclude by Proposition that the diameter of this

chain is bounded as follows:

k k :
> diam PJ < Zaord(P’%) <> ol ¥n>0.
=0 =0

320

We can conclude that given € > 0 there is [ € N such that Zdiam Pi <¢, for all
52l

chain of pre-images (P9, P},---, P¥) of B,(z) by f,, for every n > 0.

Fix £ > 0 as above and consider z € 9Ag. Then there exists a chain (P?, P} .- PF)
of pre-images of B,.(x) by fy and some 0 < j < k such that d(z,dP}) < £/3. We have two
cases to consider, namely, j <[ or j > [. Suppose that j <[ and set s; := ord(Pg ). See
that P/ is mapped onto B,(z) diffcomorphically by fo’ (f,(B,(z)) = PJ). We have
by Lemma that every g : M — M sufficiently close to f; has an inverse branch
g% : B.(x) — P,, with P, c M, that is close to the inverse branch f,* : B,(z) — P/ of
fo at B.(x). Then, since f, — fy, there is n; € N such that n >n; = 3P? ¢ M such that
fil + B.(z) — PJ is an inverse branch with V.(0P]) c OP] and V.(OP]) c P}, and so

we have constructed a sequence of subsets Pﬂ c M such that Pﬂ; — Pg when n — +oo.
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Thus we can conclude that, since d(x,dP]) < /3, = € V.(OP]) for all n > n,. Since PJ
belongs to a chain of pre-images of B,(z) by f, and P! — Pg , we obtain that there is
nsy € N such that the set P] must belong to some chain of pre-images of B,(z) by f,, for
n > ny. In fact, it 7 = 0 we know that Pg and B,(x) are linked sets. Since P} — Pg we
must have in addition that PJ and B,(z) are linked sets for n large enough. If we have
that (P9, P! ..., P2™") is a chain of pre images of B, () by f, is already constructed, and
Pg L and Pg are linked sets then in the same way as above we can construct sets Pg such
that PJ and P, are linked sets for n latge enough. Thus (PP, PL,---, PJ) is also a chain
of pre images for n large enough. Taking ny = max{ni,ns} we obtain that z € V.(0A,)

for n >ng. If j > ¢, since Z diam Pg < ¢ its easy to see that, by using the chain previously
j2l
constructed, x € VZ(0A,,) for n big enough.

a

Lemma 3.0.6. Consider a sequence of open sets Ag, Ay,--+, Ay, such that A, — Ay
when n — +o00 and a sequence of probability measures vy, vy, -, Uy, -+ with v, — vy when
n — +oo in the weak—* topology and such that vo(0Ag) = 0. If there is C >0 such that
Un(A,) <C¥n>1 then vy(Ap) < C.

Proof: First we will show that |v,(A,) - 19(Ag)] — 0 when n — +oco. Consider € > 0.
Since vy(Ap) = 0, take a neighborhood V' =V, (0A¢) of A, with v > 0 small in such a way
that 19(V') < /6. Since v, — 1y, there is ny > 1 such that n > ny = |1, (V) - 1v(V)| < /6
and |v, (Ag) — 1o(Ap)| < €/3. Since A,, — Ay, there is ny > 1 such that n>ny = 04, cV
and 0Ay c V,(0A,). In particular, for n > ny we have that both A,\Ay and Ay\A, are
subsets of V. Then we can see that |1, (A,) =vn(Ao)| = [Vn(An\Ao) =1 (Ao\AL)| < 2u, (V).

We conclude that, taking ng = max{ni,no}, if n > ng then:

Vn(An) = vo(Ao)| Vi (An) = vn(Ao)| + [V (Ao) = vo(Ao)
2un (V') + | (Ao) = v0(Ao)|
2v5(V) + 2[vn (V) = vo (V)| + [vn(Ao) = v0(Ao)|

< €/3+¢/3+¢/3=¢,

IN

IN

and so
lvn(A,) — v0(Ap)| — 0, when n — +oo. (3.9)

Since |vo(Ao)| < [ (An)|+|vn(An) =10 (Ao)| < C+|vn(A,) —10(Ap)| and the second

term in last sum converges to zero when n — +o0o we conclude that vy(Ag) < C.
O
It is clear that Lemma remains true if we replace < by > in both inequalities

of its statement.
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Lemma 3.0.7. Now we consider f, — fo and for each n >0 a set A,, with 0A,, — 04
and an induced Markov map F,, : A, — A, with partition P, of A, and return time

R, : A, — N. For each n >0 consider a F,—invariant measure v, compatible with F,
(see Definition such that v, — vy in the weak—x topology.

Suppose in addition that there is a function @ : N — R in such a way that

vn({Rn 2 k}) <p(k), YneN.
Then

vo({Ro > k}) <p(k), VneN. (3.10)

Proof: Fix k € N. Define A,, := {R, < k} for each n € N and C :=1-¢(k). By hypothesis
vn(A,) > C. So this result is a direct consequence of Lemma [3.0.6]

a

Remark 3.0.8. If P is a Markov partition on Ac M, R: A — N is an inducing time
function on A (which is constant on each element P € P) and v is a probability on A,

then f Rdv =Y v(R>j). In fact:

j=1

ZV(RZj)

j=1

vV(R21)+v(R22)+v(R23)+ - +v(R2j)+

v(R=1)+v(R=2)+v(R=3)+-+v(R=7j)+-
+v(R=2)+v(R=3)++v(R=j)+-
+v(R=3)+-+v(R=7)+
e
= ijlj"/(R:j):fRdV
Lemma 3.0.9. Let g, : M — M be a sequence of dynamics that converges in the C*
topology to a map gy : M — M. Let v, be a sequence of invariant measures w.r.t.

Ggn : M — M which converge to a measure vy in the weak-* topology. Then vy is an

mvariant measure w.r.t. go: M — M.

Proof: Let F denote the space of all continuous functions ¢ : M — R endowed with
the sup norm || -|lp. We know that a given measure p in M is invariant with respect
to some mensurable transformation f : M — M if, and only if, / wdp = / @ o gdpu,
Vo e F. Also, if we suppose that v, converges to 1y in the weak-* topology, as in the
f pdv, — f wdvy
converge to zero, for all ¢ € F. Therefore, assuming that v, is g,-invariant for all n e N
is equivalent to say that f wdv, = f pogydy,, Vo € F, ¥Yn € N| and if we show that

[ wdyy = / o godry, Y e F, we are done.

hypothesis, this must be equivalent to the sequence of real numbers
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Take ¢ € F. See that
|p 0 gndvn = [ o goduy]
< |f%0°9nan—fS0°90an|+|f€0°90an—fs0°godVo|

< lello - 19 = gollo + 1/ © godvn = [ ¢ © godwol ,
and the last term converges to zero, since g, converges to gg and v, converges to vy. This

concludes the proof.

a

Remark 3.0.10. Consider f,, — fo a convergent sequence of dynamics in the C*—topology
and suppose that for all n > 1 there is an open disk A, c M and an induced Markov map
F,: A, — A, asin Definition[2.8 By Lemmas|[3.0.5 and[3.0.]] there exists Ag ¢ M where
we can define a map Fy: Ay — Ag in the following way: Consider, for each k >0 and
n >0 the set AE € P, such that R,(AF) = k. We can apply Lemma to each connected

component of Ak and thus obtain a set Ak ¢ Ay with Ak — Ak, Defining Py = | A§
k>0

and Ry : Ag — N as Ro(Af) =k and Ry (AO\ U A’g) =0 we can set F: Ay — Ay as
k>0
Fo(x) = fRo@) (). Its clear that with the current notation, Ak ={R, =k}, for alln,k e N.

In next Lemma we assume the context of Remark B.0.10

Lemma 3.0.11. Consider, for each n > 0, a sequence of probability measures v, on
A, ¢ M such that v,, — v in the weak—* topology. Suppose that there is C' >0 such that

f R,dv, <C for alln > 1, where R, is the return time map associated to F,, defined on

A, as in Remark[5.0.10. Then
f RodVO <C.

Proof: Denote a, = v,({R, = k}) and b, := v,,({R,, > k}). By Remark we know
that, for each n >0,

f Rudvy = S kg = Y by

k>1 k>1

Since each v, is a probability measure on A,,, we have that for each n:

Y any=1. (3.11)

k>1

We know by [3.9] that for each k> 1

Ay ) —> Qo , When n — +oo. (3.12)

In order to show that Z by < C, we proceed with the following inductive con-
k=1
struction: Fix k and consider ¢, > 0 (Note that £, may be taken arbitrarily. However in



47

what follows we will consider a suitable choice for €5 to be established later). By we
k

know that Z ans is a convergent sequence. Then, consider nf € N such that
s=1

< Ek.

k k
Z Qs — Z QAs,m
s=1 s=1

m,n2n15:>

k
Set 0 < 7 < 1 such that Zas,n’g = 1 - (see [3.11). Therefore we have that
s=1

k
Zan,s € (1 -7, — e, 1 =y, +€)Vn > nk, that is,

s=1

+o00

Z Qn,s € (fyk_gkvfyk"'gk)avnznlog' (313)
s=k+1

By definition of b, ;, we may write previous statement as:
bk € (Ve = €k> Yk + €x), V0 2 . (3.14)
Setting p(k) := 1 + £, we may apply Lemma and obtain that

b07k <Yk t+ Ek-

To conclude this proof we just need to ensure that Z bor < C. In fact, it’s not
k>1
difficult to see that by construction we have that Z v < C. If we choose ¢ as the general
k=1
term of a convergent series (for instance, g, = k%) then we obtain that

Ybop <Y e <C+ Y ey < +00. (3.15)
k1 k=1 k1
Since the choice of ¢, is arbitrary, we may take };.; € as small as we want and
so [3.19] gives us that Y4 boy < C.
]

Lemma 3.0.12. Consider f,, — fy as a convergent sequence of dynamics in the C'—topology.
Suppose that for all n > 1 there is an open disk A, c M, 0 < o <1, § >0 and an
iduced Markov map F,, : A, — A, as in Definition with (o,0)-hyperbolic re-
turn time R, : A, — N as in Definition [2.5.1. Suppose that there is Ao c¢ M such that

Ao= lim A, and set Fy: Ay —> Ay as in Remark|3.0.10, Then {j e N; fl(z) e O, (7))}

n—>--+oo

18 a subset of natural numbers that satisfy the geometric properties of hyperbolic times
giwen by Proposition [1.3.3.

Proof: Let Fy: Ay — Aj be given by Lemma [3.0.4. We will utilize the notation of
Remark [3.0.10] For each n > 1 and F,, : A,, — A,,, there is a partition P,, build up with
sets A% such that all points y, z € A* satisfy

d(fE(y), [E7(2)) < o?Pd(fE(y), fi(2)); V1<) <k, (3.16)
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as we can see by Proposition [1.3.2}

Now, consider y, z in a connected component of A%. Since fy is continuous in
a compact set, given ¢ > 0 there exists v > 0 such that Vx,w € M, d(z,w) < v =
d(fo(z), fo(w)) < £/8. We may take v small enough in such a way that d(f](z), fI(w)) <
g[8, YO<j<k. By LemmaA,’j —> Ak, Then there is ng € N such that if n > ng there
are Yy, z, belonging to a connected component of A*¥ with d(y,,y) <~ and d(z,,2) <.

By triangular inequality follows that

A(f57 (), f57(2)) < dUS7 @), £ () + d(FE7 () £ () +
ACFET(yn), FE79(20)) + d(FET (z0)o fy 7 (20)) + A fo 7 (20), fy 7 (2))-

By construction, we have that d(f7(y), f87(yn)) and d(f17 (z,), f¥7(2)) are
both smaller than /8. Since f, — fo in the C'—topology, there is n; € N such that
n > ny = d(fn, fo) < €/8. Then, for n > n; we have that d(f27(y.), fi7(y,)) and

d(f¥7(20), £577(2)) are both smaller than /8. yields that d(fa 7 (y,), fa 7 (z,)) <
oI2d( f¥(yn), f(20)). We conclude that d(fy ™ (y), fo (2)) < £/2+092d(fE(yn), f5(z0)).

But again:

A(fy(Yn)s fr(zn)) < dCf3(yn), £6(yn)) + dCF5 (yn), o () +
d(f5 (9), fo(2)) +d(f5(2), 5 () +d(f5 (za), f1 (20)).

With a similar argument we obtain that d(f5(v,), f¥(z.)) <e/2+d(fE(y), f&(2)),

and so:

d(fo (). fo 7 (2)) <e/2+¢/(20) + a7 fE(y), fE(2)).

With this we obtain that all points y, 2z in a connected component of A¥ satisfy

d(fo7 (). fo 7 (2)) < ?Pd(f5(y), fE(2)); V1< i<k (3.17)

This ends the proof.
0
We know by Proposition that if f: M — M is a non-uniformly expanding
map (with respect to a given probability p) then almost every point x has infinitely many
hyperbolic times. In the next Lemma we will pursue the converse of this fact. We obtain
a sufficient condition for f being non-uniformly expanding. As we shall see later, this

condition is connected with the integrability of return times.
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Lemma 3.0.13. Let (Fy,Py) be an induced full Markov map for fo defined on an open
set Ag c M, Ry be the induced time of Fy and ug be an ergodic fo—invariant probability
such that p({Ry = 0}) = 0. If there is an Fo—invariant finite measure vy < po and 6 >0

1
such that 0 < /Rodyo < 0 < 400 then, for py almost every x € Ay, limsup — {0 < j <

n—s+oo T
n; fl(z) e Op, (z)} >0>0.

Proof: Since

Hii> 0 zR o Fi(x) <n} = {0 <j <n; fi(x) € OF (2)} (3.18)
=0
and ‘ .
j j
§{j>0; > Ryo Fy(x) <n}=sup{j>0; Y RooFy(z)<n}, (3.19)
k=0 k=0

1 J
if we show that limsup —sup{j > 0; ZRQ o F¥(x) < n} > 0 then we are done. Denote

n—s+oo T k=0
J
vn(z) :=sup{j > 0; Y Rgo Fy(x) <n}. We know that 1y is ergodic, since yq is ergodic.
k=0
Then, by Birkhoft’s theorem we have that

R |
0< lim EZROOFg(x):/ROdVO<5<+oo
s=0

k—>+00

vn(z)+1

for vp—almost every point z € Ag. In particular, 0 < lim sup Z Ryo F§(x) =
5=0

n—>s+00 'Un(.Z') + 2
[ Rodyy < +00. By construction, we have that
1 vp(x)+1

1 o F5(z n _n v ()
v () +2 S;) Ro o Fo( )Zvn(a:)+2 () va(x)+2°

vn (2)+1

what gives us that limsu < limsu Rypo FZ(x) < +oo and hence
s . v () P vp () +2 SZ:(:) 0° F5(w)

n

_ v () 1
1 > 0 >0.
rlLH—1>S+uo£) n f RO dl/o 202

a
The following Lemma is a straightforward fact, which we will present without

proof.

Lemma 3.0.14. Suppose that f, — fo in the C topology and that, for each n > 0,
tin(fry Vn) 18 the measure obtained from v, and f, as in Remark . If v, — vy in the
weak—x topology, then pi,(fn,Vn) — 1o(fo,v0) in the weak—* topology.
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Remark 3.0.15. The strategy to prove Theorem[4]is go back to the approach of induced
maps and lift each p, to an absolutely continuous measure v, which is invariant with
respect to an induced map F, associated to f, in a suitable set A, (which need not to
be the same for all m >0). It’s not hard to prove that since f, —> fo, there is partition
Po of Ag which is the limit of the partitions P, (the meaning of this last assertion will
be properly defined in the sequel) and a map Fy also defined in A such that F,, — Fy.
Formal statements will appear latter. With Lemma we can obtain a Fy—invariant
measure vy which is the limit of v, in the topology weak-*. In this scenario we take into
account the property of positive frequency of hyperbolic times to obtain some bounds to the
measure of the tail of return times, both for v, and vy. This will ensure the integrability
of the return time function Ry with respect to vy. Now, if we take pg as the normalization

of the projection of vy, we obtain by Lemmas|2.4.4), [2.4. and|3.0.15 that o must be an

expanding measure for fo, that is, po € M, (fo).



Chapter 4

Proof of Theorems Al and B

4.1 Proof of Theorem [A]

In the next theorem we utilize some results of Chapter [3|to obtain a model result
which we believe that can be used in many other situations besides the present context.
Essentially it says that if we have suitable Markov partitions for a sequence of dynamics
fn and f,, — fo in the C''—topology, then one can construct a suitable Markov partition
for fo.

Before we enounce the result, we will make clear the meaning of suitable Markov
partition we quote before. We know by Proposition that if p is an expanding

measure for f and A ¢ M is an open hyperbolic nested set small enough that intersects

f
hyp,+

Markov partition in A and Markov map F': A — A which is based on hyperbolic returns

the statistical hyperbolic attractor A

(see Remark [1.3.15)) then one can construct a

R(x) of x to A. Even more, there exists an F'—invariant measure v < p with respect to
which the return time R is integrable. The value of this integral is related to the frequency
8¢ > 0 of hyperbolic returns. In the opposite direction, if we begin with the hypothesis
that we already built an induced Markov map F' on some set A c¢ M and the inducing
time is in fact the hyperbolic return time to A, which is integrable with respect to some
F—invariant measure v, then we will observe positive frequency of hyperbolic times for
almost every point in M from the point of view of the projection p of v. This projection
will be, in fact, an expanding measure (see Theorem and Lemma .

As we can see, the integrability of the return time plays a key role in the process
of obtain an expanding measure. So, what we mean with the term “suitable Markov map”
quoted before is a Markov map for which there exists an invariant measure and the return
time is integrable with respect to this measure. In the next result we show that if there

are suitable Markov maps for each f,, then there exists also a suitable Markov map for fj.

Theorem 4.1.1. Suppose that for each n > 1 there exists an induced Markov map F), :
51
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A, — A, defined in some topological disk A, with return time R, : A, — R and a
Markov partition P, = (P*)reny on A,. Suppose in addition that there is a F,—invariant
measure v,. If there is a set Ny such that A, — Ag, there are sets Py c Ao,k € N, such

that for each k we have P¥ —s PY and there exists C' >0 such that
f Rydv, <C, ¥n>1,

then Py := (Pé“)keN is a Markov partition on Aq, there is an induced Markov map Fy :
Ay — Ay with inducing time Ry : Ag — N given by Ro(PF) = k and there exists a
measure vy on g such that f Rodry < C.

Proof: We will see that P, := (Pé“)keN is in fact a Markov partition on Ay and that
(Fo,Py) is a Markov map induced by fy with return time Rj.

By construction, the elements of Py are open sets. See that if k; # ko then
A’gl N Agz = @. In fact, if by contradiction we suppose that some connected component
fllgi of Algi, for © = 1, 2 is such that /1’81 n AISQ + @ it means that for all € > 0 we have
AR c V.(Ak2) or 9AF ¢ V.(AF). By construction, there is a sequence of sets Ak € P,
such that AF — fl'gi when n — +oco. With this and using that flgl N fng + J, we can
easily conclude that given € > 0 we have OAR ¢ Ve(flfﬁ) and AR c Ve(flff) for n big
enough, and hence AX nA* # g for n big enough, what is an absurd since P, is a partition
of A,, Vn >1. Then we know that P, satisfies the first condition in Definition [2.1.1

By construction we know that given P € Py then Fy(P) = Ag and also P is sent
diffeomorphically onto Ay by Fy (and Fy|p can be extended to a diffeomorphism between
P and A_O), that is, Py satisfies second and third conditions of a full Markov partition. It
is easy to see that if z € Ay and C;-)([L') denotes the j—cylinder containing x with respect
to Py, then lim diam(Cj(x)) = 0. In fact, given = € NusoF " (Upep,), set Pj = Po(Fi(x)).
As diam(’Po,nJ(x)) = diam((Fy|p,) ' o (Fo|lp,) L oo (Fylp,) 1 (Ap)). Then we can conclude
that Py is in fact a full Markov partition of Ay with respect to Fy and that (Fy, Pp) is a
full induced Markov map defined on A,.

Define a function Ry : Ag — N by setting Ry(z) = k, if z € AX and Ry(x) =0
otherwise. Also, define a map Fy: Ag —> Ag by Fy(x) = fé{‘)(x)(x).

Since for all n the measures v, satisfy [ R,dv, < C, by utilizing we can

ensure that:

O<[R0dl/0§c.

m]
See that in Theorem we require that all the integrals are uniformly bounded
by the same constant C' > 0. It is not clear yet if this condition can be weakened to, for

instance, / R,dv, < C,, with C, >0 or any other weaker form.
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Remark 4.1.2. We will prove Theorem [A] in the case where the contraction rate o is
the same for every dynamics. However it is not difficult to see that the Theorem remains

valid when we consider each f, with a contraction rate o, with o, — oq¢. In fact, Lemma

remains valid if each R, is a (0,,0)—hyperbolic return with o, — 0y.

Proof of Theorem [Al Consider a sequence f,, of non-flat maps converging to fy in the
C" topology and suppose that there is p, € My (0'/2,4,6,0, f,) for n > 1 where X, 4,6 >0
and ¢ € N are fixed. We may consider without loss of generality ¢ = 1, the other cases
are treated analogously. Proposition [1.3.13| gives us, for each n > 1, the existence of a
statistical ergodic attractor Azyp
Remark .

Consider Ay, . = nl_i)ngoofl
take = € A?Lyp’ .- We know by construction that if V' 5 x is a neighborhood of x then
Vn A}

P ) for infinitely many n € N. Restricting ourselves to a subsequence if

necessary we may assume that V' n Azyp7+ + & for all n.

such that wy, 5. () = A? . for p,-a.ep. x € M (see

,+ hyp,+

as the limit set given by Definition [2.1.9| and

n
hyp,+

Fix n > 1 and consider the hyperbolic nested set A, := B/ (z) associated to f,
as given by Definition [2.2.10] By Proposition we may take A, as some hyperbolic
nested ball B?(x) such that diam(A,) < §/2.

Taking V = A,, we know that A, n Azyp7+ # ¢. Then Proposition gives
us that there exists a full induced Markov map (F,,P,) on A,, where P, is a Markov
partition on A,, with induced time R, : A, — N. F},, R, and P,, are given, respectively
by 2.8 and [2.9]

Also, since AnmAZW . # @, Proposition gives us the existence of a F,,—invariant
measure v, << f, compatible with F,, and &, > 0 such that wﬁ"’f" () > &, for p,—a.e.p.
x € M (where cpﬁ"’f "(z) denotes the frequency of hyperbolic returns to A, see [1.14) and

also

1
f Rudv < . (4.1)
for all n > 1. Hence, by Theorem [2.1.7| we get
+ 00 .
Mn = — Z (fn)i(Vn|{Rn>j})a
Tn j=0

+00 .
where 7, = Z (fn)i(yn|{Rn>j})(M)'
=0
We know that P, is a Markov partition of A, which is composed by a family of

sets AF, k> 1, where AF is a union of connected open sets (the elements of the partition
P,, with induced time k) which are mapped diffeomorphically onto A,, by F,, (see that,
restricted to these sets, F,, = f¥). Take an open connected component of A% which we
will denote by Ak.
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Until now we have maintained n fixed. By varying n we may consider the sets A,
as defined above and also define the set Ag := B°(z). By Lemma we know that
A, — Ag. Applying Lemma to Ak and A, we obtain that, since F, = fk — fk
(restricted to AF), there exists an open connected set fl’g c A such that the restriction
folag Ak — Ag is a diffeomorphism. We denote by Ak to the union of all connected
open sets A obtained by this construction applied to all connected components of A%
and we define P, := |_J Af.

k>1
Take a finite cover B = { By, By, -, By} of M with balls with radius r > 0 such

that 2r < 6/2. By hypothesis, 6y, > 6 for all n > 1. So, for each n > 1 there is a ball
B; € B such that the frequency of hyperbolic returns to B; satisfies gofj’f" > 6 (otherwise,
if gpfj’f" < @ for every B; € B, we would have, by definition, that 0 < 0, contradicting our
hypothesis). Passing to a subsequence, if necessary, we may assume that B; is the same
for all n > 1. It is a straightforward fact that this set satisfies:

0
Bin A, * 2.

Let B; = B,(x), for some z € M. Thus, there is no harm in assume that the sets
A, can be taken as A, = B} (x), with 0 < 2r < 21" < 6/2. We have just assured that we
can take B; = B,(z) c A, = B (z), with diam(A,,) < §/2.

Since B; c A,, and (pfj’f"(y) > 0, for p,—almost every point y € B;, we have a
fortiori that goﬁ"’f"(y) > 0, for u,—almost every point y € A,. Therefore, may be

rewritten as:

f Rydv, < % (4.2)

1
Since for all n the measures v,, satisfy , setting C' := 7 and utilizing Theorem
we can ensure that Py = (A’g )ken 18 a Markov partition on Ay and there is an induced

Markov map Fy: Ay — Ay for fy with inducing time Ry. Furthermore:

0<[R0d1/0§%.

We have just concluded that Ry is integrable with respect to 1. Then, by using
Theorem [2.1.6| we obtain an ergodic measure py on M such that vy << pg. By Lemma
3.0.14] we obtain that in fact, passing to a subsequence if necessary, p, — o when
n — +oo. Lemma [3.0.9] gives us a measure that po which is in fact an fy—invariant

measure.

Claim. 4.1.3. ug is an expanding measure for fy.
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Proof: By construction, there is a region A c¢ M such that for p—almost every point
x € A belongs to a hyperbolic pre-ball where the geometric properties of hyperbolic times
(items 1. and 2. of Proposition holds in a contraction rate given by o!/2. Since
p—almost every point x € A satisfies the geometric properties of hyperbolic times, item b)
of Remark gives us that [[DF(z)7|| > 071/2 for v—almost every point z € A. So F
has all of its Lyapunov exponents bounded by ¢ := —log /2 > 0. Setting x := [ Rdv < +oo,
we can use Lemma to conclude that f has all of its Lyapunov exponents bounded
by c. By Theorem [5.2.1] we conclude that there exists A > 0 and ¢ € N such that p is a
(A, £)—expanding measure for f.
0
In this way, we have just shown that A is a region satisfying go?o‘jhyp > 0 pp—almost
every point (and so, 0y, > ). Also, by Lemma we conclude that pp—almost every
point x € Ay admits a pre-ball that expands with respect to f in a rate controlled by o%/2
and the size of hyperbolic balls is §, which can be extended to pp—almost every point of
M by ergodicity of ug, that is, pg € Me;p(01/27€,0,6, fo), as we wanted.

a

Remark 4.1.4. We can see that te geometric expanding behavior is obtained in Theorem
via continuity arguments. If we want to go further and recover NUE behavior (as in the
analytical definition) for a measure that has bounded parameters we need to assume that
the exceptional set C of the dynamics involved is constituted only by critical points (where
the derivative fails to be invertible) or only by singular points. This restriction is necessary

because to recover slow recurrence to the exceptional set (in the proof of Theorem ,
Oliveira uses Lemma[2.4.5 (see Remark [2.4.6).

4.2 Proof of Theorem

The objective of this section is to prove the following result.

Theorem 4.2.1. Givene >0, f: M — M and a measure i € Moy (c?,0,6,0, f), 37> 0
and o2 > 0 with |o'-c| < & such that if d(f, g) <~y then there exists v € My (012,£,6,0,q)
with d.(u,v) <e.

Theorem [B]is a direct consequence of Theorem [4.2.1]

Lemma 4.2.2. Let x € M and consider w = 9, as the Dirac measure supported on x.
Then, given € >0, 3¢ >0 such that y € M, d(z,y) < ( = d.(w,v) <&/3, where v :=d,.
+00 1 +00 1
Proof: In fact, given ¢ > 0, consider iy > 0 such that ) i < e/12 (because ) 5 is a
i=io i=1
convergent series) and ¢ > 0 suitable to the uniform continuity of each ¢;, i € {1, i}.

Precisely, ¢ > 0 is such that
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20—1

1
Vay,xe € M, d(xy,22) < (= |pi(x1) — pi(x2)| < 5/( 3 2’“) Vie{l,ig—1}, (4.3)
k=1
which is possible since we have a finite number of ¢!s and each ¢; is uniformly continuous
on the compact M).

Thus, if y € M is such that d(z,y) < ¢ and v = §,, we have that

di(w,v) = 212 fgpldw [goidy
'Ll
= 222 i (x) = i(y)
i=1
ip=1 1 +o00 1
- S L@ -+ 3 e - e
=1 =10

1
< g/6+2- Z—<5/6+2 e/12=¢/3.

i= 10
In the last inequalities we used the fact that |p;(x1) —@i(22)| < 2, Vg, 29 €
M, VieN, because the functions ; are taken in the unit ball B!
0
Lemma above can be generalized in such a way that one can obtain the

following:

Remark 4.2.3. For each e >0 and n €N there is ( >0 such that d(y,x) < ( then
1n 1

1= 1
( Zf] iji/)<s/3
To do this it is enough to require that ¢ satisfies [{.3 and the points y are in a
¢—neigborhood of x in such a way that d(fi(z), fi(y)) <, ¥j€{0,---,n—1} (that is, y is

a (-shadow for x until the nt'—iterate). In this way we have:

1n1

(et

1 ; 1=l
= - zd - 3 - zd - y]f
Ralf el ) Lol %)
11 ; ;
< Z€N2—E]0fcplofdw fgplofdy
- 33t e @) - o )
= z’eNZn . lie P(2) = pio fly
i0—1 n—l ] )
- _121%Z|%0fj(1‘) Gio PWI+ Y gm 2o P@) =0 )

1
< gf4+2- Z—<5/6+2 e/12=¢/3.

zzo
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Remark 4.2.4. Consider 6 >0, 0 <o <1 and suppose that p is a periodic point of period
n such that n is also a (0,0)— hyperbolzc time for p. By definition of hyperbolic time (see

Definition |1.3.1), we have that H I(Df o fi(x))7 Y] < o™ what, by Chain Rule, gives that

IDf™(p)~t| < o™ < 1, that is, p zs a periodic repeller of f (see item a) of Remark-

The orbit of periodic repellers is a particular example of uniformly hyperbolic
sets.

We know that hyperbolic fixed points have the following property:

Fact 4.2.5. Let f € Dif fr(M) and p be a hyperbolic fixed point of f. Then, there are
neighborhoods N of f in Dif fr(M) and U of p in M, and a continuous map p: N — U
which associates to each g € N the only fized point of g in U, and that fived point is
hyperbolic.

We may now prove Theorem [£.2.1] The strategy to prove this theorem is to use
hyperbolic continuation (Fact [4.2.5)) in order to obtain an invariant probability measure
for every dynamic g close enough to f and then ensure that the measure obtained is

indeed an expanding measure for g.
Proof of Theorem [4.2.1;  Consider u € M, (0'/2,4,6,6, fo) and a typical point x of

n—1

1
i, that is, a point such that — Z di(z) — p in the weak—» topology when n — oo. By

simplicity we consider ¢ = 1. The case where £ > 1 is treated analogously.

Let € > 0 and consider ng € N such that

dy (Vg, 1) <€/3, (4.4)

no—1
where v, == — Z 0 i (z)-
Con81der A c M with diam(A) < /2 and suppose that A n Ay, . # &, where
Apyp+ 18 a compact set such that wy p(z) = Apyp+ for p—a.ep. e M. Let F: A — A
be a map with return time R : A — N, as in Definitions and (we know
by Proposition that F' is indeed a full induced Markov map with respect to f).

Without loss of generality, we can take x € A. For example, if Z o"?

n<l1

backward separated we can take A as some hyperbolic nested ball B} (y), with 0 < r < §/4
and z € B}(y), given by Lemma[2.2.13

Let P be an element of the Markov partition P in A with R(P) = k € N. We know
that P is mapped (with expanding behavior) onto A by F, that is, [|[DF(z)™| < o* <1
for z € A (see item a) of Remark [.3.4). Thus (F|p)~': A — P is a contraction map

and so F' admits a fixed point in P. Since P has countable many elements, we may write

< - if f i
401"1f18

P ={Py, Py, Py,---}. We can associate to a given point y € A it’s itinerary in the elements
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of the partition P by defining i,(y) := k se fi(y) € P,. Define the cylinder C'(jo, j1, = jn)
associated to the map F as the set of points y € A such that F*(y) € P;,, Vs e {0,---,n}. It
is not difficult to see that the inverse of F restricted to this cylinder is also a contraction
map. So each cylinder C'(jo, j1, -+ jn) contains a periodic point of F' with period n + 1.

Consider a cylinder C'(jo, j1, - jmo-1) containing z. Since P is a Markov parti-
tion, we have that diam(C'(jo, j1, *** Jmg-1)) —> 0 when my —> +o0. Then given ¢ > 0 we
may take mg large enough such that diam(C(jo, j1, - jmo-1)) < ¢, where ( is as obtained
on Remark (it’s clear that we may always take mg > ng). In this way, we ensure that
d(fi(z), fi(xy)) <, Vje{0,1,--,mp} and also that

1 mo—1
d*(— Z 6fj(x),fo) <8/3, (45)

mo =
1 mo=1
where v, := o JZ:;) 0fi(a,)-
By Fact we conclude that there is v, > 0 such that if di(g, f) < 71 then
g admits a hyperbolic periodic repeller z, close enough to x;: since the map p above
is continuous we conclude that x, may be taken in such a way that d(f/(z,), f/(zy)) <
¢, VO < j <myg, where ( is taken as in Thus we can ensure by Remark that

di(Va;,va,) <£[3, (4.6)

1 mo—1
where v, := o Y Ogiay)-
Jj=0

1 mo—1
By construction, mg > ng yields that d, (— Z 5fj(x),,u) <di (v, p). So

and {4.6| yields that d.(vy, ) < di(Vey, Ve, ) + du(Vay, Ve) + di (Ve 1) < €.

Define v := v, , which is an ergodic invariant measure, since it is supported in
a periodic orbit. For the same reason, we can see that, if ¢ is taken sufficiently close to
f, points in the orbit of x, that are close to the respective points in the orbit of z; will
have the same hyperbolic times (although the contraction rate for points in the orbit of
xy may be different, lets say, bounded by some 0 < ¢’ < 1, which may be taken such that
|o — 0’| < € since x, is obtained via hyperbolic continuation). So, a fortiori we have that
the frequency of hyperbolic times for points in the orbit of x; and z, will be the same.
Also the radius of hyperbolic balls will be bounded the same constant > 0. We conclude
that v € My (0"1/2,0,6,0, ).



Chapter 5

Proof of Main Theorem

5.1 Integrability of the first hyperbolic time map

In this section we relate the integrability of the first hyperbolic time map with
the frequency that hyperbolic times appear for the majority of points, and hence, with the
existence of expanding measures related to sequences of dynamics. This kind of situation
was studied by Alves, Aratjo in [5] in the case of one fixed dynamic, where they showed
that integrability of the first hyperbolic time map is sufficient condition for the existence of
positive frequency of hyperbolic times for points in a set of full measure. The idea behind
their proofs is to ensure that integrability of the first hyperbolic time map implies that
the system is non-uniformly expanding and so (by using Proposition [1.3.5] for instance)
obtain that almost every point has positive frequency of hyperbolic times. Since we are
dealing with invariant reference measures, our approach is different from theirs.

Consider a non-flat map f and suppose that there exists (o, d)—hyperbolic times
for almost every point with respect to a given f-invariant ergodic reference measure
p. As we saw in Section [I.3] this allows us to introduce a map h : M — Z* defined
p—almost every where which assigns to x € M its first (o,0)-hyperbolic time (in other
words, h(z) := min{n € N; x € H,(0,d, f)}). Observe that by definition of hyperbolic
time, if n is a o—hyperbolic time for z € M and ¢ is a o—hyperbolic time for f(z) then
n+{ is a o—hyperbolic time for x. Moreover, since h is well defined p—almost everywhere
and we are working with f— non-singular measures (f preserves sets of measure p zero),
then p—almost every points must have infinitely many hyperbolic times.

The case we are mainly interested is a sequence of dynamics f,, converging to
fo where for each n € N there is an f,—invariant ergodic measure p, and the first
(0,9)-hyperbolic time map for f,, which we denote by h,, is u,—integrable (note that o
and § are fixed).

Theorem 5.1.1. Let f, : M — M be a sequence of non-flat maps which converge in
59
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the Cl=topology to a non-flat map fo. Fiz 0 < o0 <1 and 6 > 0 and suppose that the
first (o,0)—hyperbolic time map h,, associated with f,, is integrable with respect to an
fn—invariant ergodic probability p.,, with the same bound K >0 for alln>1 (i.e., there is
K >0 such that f hndp, < K, ¥n>1). Then there is 6 > 0 such that for all accumulation
point g of p, the frequency of (o,)—hyperbolic times with respect to fy is bounded from
below by 0 for pg—almost every point x € M.

Proof: Fix s > 1. We will show that ps—almost every point on M has infinite (o, §)—hyperbolic
times and then ensure that these hyperbolic times occur with frequency higher than
0" = % Since s is taken arbitrarily, by applying previous results we conclude that every
accumulation point of the sequence u,, must belong to M, (0'/2,4,6,0, fo).

Let Y; ¢ M be the set of points where hg is defined. By construction, us(Ys) = 1.

Since pu, is fs—invariant, pi, (ﬂ( fs 1)’(}/5)) =1 and so we conclude that p,—almost every
point is such that h; is deﬁnlggl in the entire orbit of this point by f;. We know that if
n is a o—hyperbolic time for x € M and /¢ is a o-hyperbolic time for f"(z) then n + ¢
is a o—hyperbolic time for x. Thus, if we take x € M such that hy is defined in every
point of Oy, (x), we easily conclude that x has infinitely many hyperbolic times, and hence
(s—almost every point x in M has infinitely many hyperbolic times.

To conclude the second part, we use Lemma applied to f, F and h, and
obtain that in fact there are A, 6 and ¢ which do not depend on s such that ug is a
(A, £)—expanding measure with frequency of hyperbolic times higher than ¢’. In particular,
by using Lemma [1.3.16| and equation [1.15] we can find 6 > 0 such that the ps—frequency
of hyperbolic returns satisfies 6y, > 0. It is clear that if we take some open region A
intersecting the statistical hyperbolic attractor Ais . then pg—almost every point in this
region is contained in hyperbolic pre-balls where the contraction rate is given by o!/2,
where o = e=4. We conclude that s € My (0172,4,6,0, f). Since s was taken arbitrarily,
we are allowed to use Theorem [A] to conclude that every accumulation point ug of the
sequence fi5 belongs to My, (01/2,0,8,0, fo). In particular, it satisfies: po—almost every
point has pg—frequency of hyperbolic returns 6y, higher than 6. By Claim we know
that pg is in fact an expanding measure for f;. By Proposition [1.3.5 we conclude that
there is > 0 which is a lower bound for the frequency of hyperbolic times of jig—almost
every point x € M. Since the frequency of hyperbolic times is higher than or equal to the

frequency of hyperbolic returns, the proof is complete.
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5.2 Proof of the [Main Theorem

In this section we prove our main result and we take into account the influence
of Lyapunov exponents on the dynamic (see Definition .

We saw previously by Lemmathat if p1is a (A, £)—expanding probability for a
non-flat map f: M — M with non flat critical/singular set C then there exists o,d,6’ > 0
such that p—almost every point x € M has (o, d)-hyperbolic times with frequency greater
than 0. In [21] Oliveira shows that if a measure has all of its Lyapunov exponents positive,
this is a sufficient condition for the existence of hyperbolic times with positive frequency,

as we can see in the following result.

Theorem 5.2.1. Suppose that f: M — M is a C'™*® map with non-degenerated critical
set C which preserves an ergodic invariant probability measure p. Suppose in addition that
log™ [|Df]| is u—integrable and that p has all its Lyapunov exponents positive. Then there

exists £ € N and a real number X\ >0 such that p is a (X, €)-expanding measure for f.

In particular, by Proposition [1.3.5 we conclude that p—almost every point admits

positive frequency of hyperbolic times.

Remark 5.2.2. Theorem is a restatement of Lemma 3.5 of [21]. Its worth to note
that in this Lemma Oliveira uses the hypothesis of strong transitivity on the dynamics.
However, this hypothesis is utilized to prove the existence of periodic points in dynamic

balls, and not to estimate the frequency of hyperbolic times.

By chain rule we may easily conclude that

. 1 nf N[ < 1 1 i oAN-1]-
limsup —log | D f" ()| ™ 2 limsup — 5 log [ Df(f*(x)) |-
=0

n—oo N n—->-00

Then we see that expanding measures have all Lyapunov exponents positive. Conversely,

Theorem [5.2.1| shows us that positiveness of Lyapunov exponents implies NUE behavior

(also see Claim [4.1.3)). So

My () = ML(S).

In this way, we can prove our [Main Theorem|in the context of expanding mea-

sures, and the same conclusions will hold when we assume positiveness of all Lyapunov
exponents. We will use Theorems [A] and [B] in the proof of the [Main Theorem| Most of

the work is already done, we only need to consider some adjustments in order to obtain
a suitable decomposition as in item 1 of Definition [1.4
Lemmas [5.2.3] and [5.2.4 below provide another point of view for Theorems [A] and

[B], respectively: the statement of those theorems implies the statement of these lemmas
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(actually, they are equivalent). We stress that the distance d( f, ¢g) is considered associated

to the C'-topology.

Lemma 5.2.3. Given ¢ > 0 and a non-flat map f : M — M there exists v > 0
such that if d(f,g) < v then for all v € Myy(0™?,0,6,0, ) there exists a measure u €
M (c?,0,6,0, f), with |0’ — | < & such that d.(p,v) <e.

Proof: We argue by contradiction. Suppose that there exists € > 0 and a non-flat map
f+ M — M such that for each v > 0 there exists a non-flat map ¢ : M — M with
d(f,g) < v satisfying: Every v € M, (c'/?,¢,6,60,g) is such that d.(u,v) > ¢, for every
€ Mep(a'/2,0,6,0, f). Setting v, = 2, we obtain, for each n > 1 a dynamics g,, and a
measure v, € My, (012,4,6,0, g,,) such that g,, converges to f and d.(u,vy,) > ¢, for every
€ My (0112,0,6,0, ) (we can ensure that v, exists by using Theorem . But this is a
contradiction to Theorem [Al

a

Lemma 5.2.4. Givene >0, a non-flat map f: M — M and a measure p1 € My (c/?,¢,6,0, f)
, 3v>0 and 0’12 > 0 such that if d(f,g) <~ then there exists v € Myp(0"12,0,6,0, g) with
d.(u,v) <e.

This Lemma has the same statement as Theorem [£.2.11 We have rewrote it here
again for the fluency of the text to the reader. Before we prove our main result, we ensure
that in fact measures with bounded parameters are in fact expanding measures.

Now we prove our main result.

Proof of[Main Theorem Fixo,/,4,0 >0 and consider ¢’,¢’,60’ > 0 such that ¢’ > o, 6’ >
§ and €’ > 0. It is a straightforward fact that My, (0'1/2,0,8,0, f) > My (0/2,£,6,0, f),
Meep(012,0,6,0, ) > My (0172,0,8",0, ) and M, (0172,0,8,0, ) 2 Mo (a/2,2,6,6", f).

Consider the family of sets given by My, := LZJ M (2/(2+1),5,1/1,1/2, f),0 > 1.

s=1

By the inclusions in last paragraph, we have that /\;lf,l c Msgcc My, c---. By
construction we know that each element of My, is in fact an expanding measure. Also,

its clear that each element of M1 (f) belongs to My, for some 2 € N. Then we can write

ML(f) =UM;..

1>1

Also, for each g in a neighborhood small enough of f, define

Mg, = OIMW(@/(ZJr 1),s,1/1, 1/@,g)ULZJ1MmJ((@+ D/(e+2),8,1/1,1/1,9),1> 1.

We know by Theorem |C| that M, (1/2,5,1/2,1/2, f) is a compact set, V2,5 € N.

So, each set My, is in fact a compact set, since it is a finite union of compact set.
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Therefore, ML(f) is o—compact in the weak—x topology. Analogously we obtain that
ML1(g) is o—compact in the weak—» topology.
In order to conclude that for each 2 > 1 the function g - M,, is continuous

at f it is enough to see that given € > 0, there is v > 0 such that if d(g, f) < v then
d(M;y,,M,,) <e (in the Hausdorff topology), that is:

1 For each p1 € My, there exists v e My, with d.(p,v) < e and
2 For each v e M, there exists v € My, with d.(p,v) <e.

But items 1 and 2 above are achieved by applying Lemmas [5.2.3| and [5.2.4] to

and v, respectively, and we are done.




Chapter 6

Future perspectives

6.1 Partially hyperbolic diffeomorphisms

In [30] K. Rocha extends the construction of induced Markov maps (built in
hyperbolic times) proposed by Pinheiro to partially hyperbolic diffeomorphisms whose
central-stable direction is uniformly contractive and central-unstable direction is non-
uniformly expanding and also obtained a lifted measures for hyperbolic measures asso-
ciated to the partially hyperbolic diffeomorphism (see Theorems A and B of [30]). So a

natural question is:

Question 6.1.1. Can we extend our notion of continuous variation for partially hyper-
bolic diffeomorphisms whose central-stable direction is uniformly contractive and central-

unstable direction is non-uniformly expanding?

6.2 Non-hyperbolic flows

Question 6.2.1. Is it possible to obtain results about continuous variation of expanding

measures for semi-flows in the non-uniformly expanding context?

6.3 Iterated Functions System (IFS)

We consider an [terated Function System, or IFS, as a finite collection G =
(go, -+, ge-1) of diffeomorphisms of a compact connected manifold M. Consider now the
semigroup generated by these transformations. An IFS can be embedded in a single dy-
namical system, the 1-step skew-product pg : ¢# x M — (% x M over the full shift o on
0% ={0,-+-,¢ - 1}%, which is defined by pg(w,z) = (0(w), gu, ())-

In this scenario, for any ergodic pg—invariant measure pu, Oseledets theorem

associates its fibered Lyapunov exponents, which are the values that can occur as limits
64
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1
lim  ~10g [ D(gu, 1 @ © guy ) (#) - v, (Where v € T, M\{0}
n

n—s+00
for a positive measure subset of points ((w,),x) € £Z x M.
In [T2] Bochi et al. obtained robustness for IFS exhibiting vanishing Lyapunov

exponents. In an opposite direction, we would like to understand:

Question 6.3.1. Under what conditions there is some kind of continuous variation for

imwvariant probability measures of an IFS with non-zero Lyapunov exponents?

6.4 Stability of equilibrium states for partially hy-

perbolic skew-products

This application refers to the theory of equilibrium states. In the classical setting,
given a continuous map f : M — M on a compact metric space M and a continuous
potential ¢ : M — R we say that p, is an equilibrium state associated to (f,¢) if j, is

an f-invariant probability measure characterized by the following variational principle:

PHO) =ty (£)+ [ odus= sup (1) + [ odul.

peMyp (M)
where Pr(¢) denotes the topological pressure, h,(f) denotes the metric entropy and the
supremum is taken over all f—invariant probability measures.

In the uniformly hyperbolic context, which includes uniformly expanding maps,
it is well known that equilibrium states always exist and are unique if the potential ¢
is Holder continuous and the dynamics f is transitive. However the scenario beyond
the uniformly hyperbolic context is pretty much incomplete, despite several advances
obtained by several authors. In particular, we can cite work of Ramos, Viana [26] and
Ramos, Siqueira [27]. Under some constraints on the potential and the dynamics, they
obtained both existence and uniqueness of equilibrium states and also some statistical
properties for those measures.

Theorem A and B of [26] state that for a hyperbolic Holder continuous poten-
tial ¢, there exists a conformal measure v which happens to be an expanding measure.
Also, requiring that the dynamics is transitive, there exists an unique f-invariant ergodic
equilibrium state p4 which is absolutely continuous with respect to v.

In a work in progress by Alves, Ramos, Siqueira, they study statistical stability
of equilibrium states in the context of Theorems A and B of [10]. That is, they want to
obtain statistical stability for the absolutely continuous measure. The following question

takes place:
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Question 6.4.1. Is that possible to obtain some kind of continuous variation for the set

of conformal measures v?

6.5 Metric entropy

In [8] Alves, Oliveira and Tahzibi prove that the metric entropy varies continu-
ously when one considers sequences of invariant measures which are absolutely continuous

with respect to Lebesgue. Also, in [I4], Carvalho and Varandas deal with an analogous

problem for diffeomorphisms but using different techniques. We know by [Main Theorem|

that the set of expanding measures varies continuously in compact pieces. One can ask
about the continuity of the entropy on the set of expanding measures, at least when we

restrict ourselves to measures with bounded parameters.

Question 6.5.1. In statements of Theorems[4] and[B, can we obtain measures i, — po
such that h,, — hy,?



Appendix A

Auxiliary results

We state here the so called Pliss Lemma, which is strongly used to ensure the

abundance of hyperbolic times in an expanding set.

Lemma A.0.1. Given 0 < ¢; < ¢y < A let 0 = (co—c1)/(A=-c1). Given real numbers

ay, -, ayn satisfying a; < A for every 1< j <N and
N
Z a; 2 CQN,
j=1
then there are I > 0N and l numbers 1 <ny <---<n; <N so that
Y aj>ei(ni—n)
j=n+1

for every0<n<n; andi=1,--- 1.

Proof: See [25].

The proof of the last Lemma can be found in [25].

Lemma A.0.2. Let {G,}en be a collection of ensembles of M such that fi(x) € G,—; V0 <
j<nVxeG,. Seja BcX andlet x € B be such that {j > 0; x € G, e fi(x) € B} = oo.
Let T: Oj(z)n B — Of(x)n B be a map given by T'(y) = f99 (y), where g : LjJGj — N

is a function with 1 < g(y) <min{j eN; ye Gj e fi(y) € B}. Then
J
fH{l1<j<n;zeGjef/(z)e By <i{j>0; > g(T"(x)) <n}.
k=0

1 ‘
Furthermore, if limsup — {1 <j<n; v €Gje f/(x) e B} >0 >0, then
n

n—>o0

1 n-1 )
liminf — ) goT7(z) <O~

67
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The next result, whose proof can be found in Lemma 2.5 of [20], states that
inverse branches vary continuously with the associated map. In fact, even differentiability
can be obtained by this method.

Lemma A.0.3. Let f : M — M be a local homeomorphism, where M is a compact,
connected Riemannian manifold. Let B = Bs(x) ¢ M be a ball such that the inverse
branches fy,--, fs + B — M are well defined as homeomorphisms onto their images.
Then the map that assigns to each local homeomorphism f its inverse branches (f1,+, fn)

1S continuous.

By definition, a periodic point p with period n is a repeller if, and only if, D f"(p)
is well defined and the absolute value of any eigenvalue of D f(p) is bigger than 1. We
know that

lim ||((Df”(p))_1)”°||% = min{\™*; \ é um autovalor de D f"(p)}, (A.1)

and so, the periodic point p is a repeller if, and only if, there exists ng > 1 such
that p is a periodic point for f:= fro with period n and such that log||(Df*(z))Y|-! >
0; Vo e OF (p) (The “only if” part is immediate. In order to conclude the “if” part, it is
enough to take any prime number ny € N big enough).

One can show that the orbit of a periodic repeller point is an example of an

expanding set, as we can see in next result.

Lemma A.0.4. If p is a periodic repeller point with period n > 1 and O;(p) NC =g then
given any Ao > 0, there exists £ > 1 such that p is a periodic point with period n with respect
to f:=f' and O7(p) is a Ag-ezpanding set for f.

Proof: Proof can be found in [24] Lemma 9.2.
a
In Theorem we relate a condition involving integrability of return times to
the existence of invariant measures. In the next result we utilize a condition involving
integrability of the first hyperbolic time (which could be replaced by a hyperbolic re-
turn time with some easy adaptations on the proof) to ensure that a measure is in fact

A—expanding, for some A\ > 0.

Lemma A.0.5. Consider a probability ergodic measure p invariant with respect to f :
M — M and suppose that the first (o,0)—hyperbolic time function h is integrable with
respect to p: IK > 0 such that [ hdp < K. Then there are A > 0 and 0 < § < 1 which
depend only on o, § and K such that p is a A—expanding measure for f for which almost

every point has frequency of hyperbolic times higher than 6.
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Proof: Assuming that [ hdu < K we obtain by Theorem 1.1 of [37] that there exists a
measure v < g that is an ergodic invariant probability with respect to the induced map
F:Y — Y given by F(x) := f*®)(z).

Since p is an invariant ergodic probability, we have, by Birkhoft’s Theorem that

1n—1 )
lim —ZhoF’(w):fhdu,
0

n—>--+o0o n j—

for p—almost every point x € M.

Fix z € M as a typical point for p.

Claim. A.0.6. .
ﬂ{0<£§ Y hgoFl(x); e Hg(a,é,f)} =n.
=0
n-1
Proof: We argue by induction on n. In fact, for n =1, we have that ) ho Fi(z) = h(z).
=0
n-1
So, ﬁ{é <Y hoFi(z); x € Hj(o, 5,f)} =1, since h(z) is the first hyperbolic time of z.
=0

Suppose that the result is valid for n € N. For n + 1 we have that

u{0<€§ zn:hOF](l'), Qj‘EHg(O',(S,f)}

J=0

ﬂ{0<€gT§hSon(x); a:eHg(a,é,f)}

+
§=0
ﬁ{zz-tol hso Fi(x) <{<hoFn(x); xe Hg(O’,(S,f)} =
n-1
n+ﬂ{ZhOFj(x) <l<hoF™(z); IEHZ(O',(S,f)} = n+l,
=0
where in the second equality we used the induction hypothesis and in the third equality

n-1

we used that H{Z hoFi(x)<{<hoF™(x); e Hyo, 5,f)} = 1, because if it is higher
=0

n-1
than 1, we would have that there is a hyperbolic time for z between Y ho F/(z) and
=0

ho F"(x), and so, the first hyperbolic of F"~1(z) would be smaller than h(F"!(x)), what
is an absurd. o ]
Since H{O <0< Y hoF/(x); x e Hyo, (5,f)} =n, we know that
=0
H{0<€§Z§L=_01hon(x); xeHy(o,6,f)} n
S0 hs o Fi(z) X ho Fix)

! > ! > ! fo almost
> — for p—alm
Thiv = [hdp " K "

every point x € M (because v < ). But the expression

o HO< ST ho Fi(a); we Hio,6, /)
n—»+00 Z;lz_()l h o F]({E)

and by Birkhoff’s theorem this last term converges to
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indicates precisely the frequency of hyperbolic times of x. We conclude that p—almost

every point has frequency of (o, d)-hyperbolic times higher than 6 :=1/K.
1 n-1 )
Setting A := —logo, we easily conclude that limsup— ) log||Df(f/(x))7"||™" >
n

n—s+00

logo™' = A > 0. By Lemma this condition implies that in fact u is a A—expanding

measure for f.



Appendix B

Continuous variation of the first

hyperbolic time map

Denote h, s ¢(x) as the first (o,d)-hyperbolic time for x with respect to f. In
this section we present auxiliary results that allow us to deal with the frequency of hy-
perbolic times in terms of the integral of the first hyperbolic time map. We will see that
integrability can be extended to dynamics close enough maybe if we have less contraction

in hyperbolic times.

Lemma B.0.1. Consider x € M such that hy5¢(x) =n € N. There exists g >0 such that
for every € >0, < e, there is a neighborhood V 3 x such that y € V = hy.c5¢(y) = n.
Proof: Consider ¢ > 0. By the continuity of Df we have that the functions & :=
n-1
[T I(Dfof7)7!|, 0 <k < n are continuous on x. Since &, () < o* there is a neighborhood

j=n-k
V' 5 x such that & (y) < (o +¢e)*, V1<k<n. Sonisa (o+e,0)-hyperbolic time for every

y €V (with respect to f). In addition, see that we can take V" and e small enough in such
a way that n is the first (o +¢,0)—hyperbolic time for every y € V' (with respect to f). In
fact, if we assume by contradiction that x is accumulated by a sequence of points y with
hyperbolic time smaller than n (we can assume, passing to a subsequence if necessary,
that = is accumulated by a sequence of points with (¢ + &, d)—hyperbolic time equal to s,
for some 1 < s < n) then by continuity of Df we have that & (y) < (o +e)*, V1<k<s
and so s is a hyperbolic time for x as well. Since € > 0 was taken arbitrarily, making
e — 0 we conclude that s is also a (o, 0)—hyperbolic time for z, what is a contradiction,
since hys () = n. Then, there must exists gy > 0 such that ¢ < ¢y implies hgics(z) =1
and hence, h,i.5/(y) = n for every y € V. If C #+ @ we also consider the functions
& = ds(fm*,C), which are obviously continuous on z ¢ C. By utilizing an argument

analogous to the one above, the result follows.
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Denote H:(0,d,f) = {x € M, h,s5s(x) = n} as the set of points whose first
(0,0)-hyperbolic time with respect to f is n. Since h, s is integrable with respect to f,
hoses.f is also integrable with respect to u (because hgics f(x) < hysp(x) for p—almost
every x € M). Since the image of h is a subset of the natural numbers, we can write

[ hovessdi= Yk u(Hi (o 42,6, 1)),

k>1

Now consider p,x,2¢,2, and my as in the proof of Theorem . We will see
that (if my is large enough) then v, is close enough to p in such a way that we can
ensure that f hoies pdvy ; < K (remember that, by hypothesis, f hes pdp < K and hence
[ hovespdp < K).

We know, by Lemma that for each j € N, Hi(o +¢,0, f) is an open set.
By simplicity we will denote here this set by H7. Also, since p is a probability measure,
> u(H;) =1. Consider 7 >0 and jy € N big enough such that ) j-u(H;) < 7/2 (which is

i)zolssible since hgye 5 is integrable with respect to p). Thus, ljoizotaking myg large enough,
we can ensure that p and v, are close enough in the weak*—topology in such a way that
one has
1(H ) = v, ()] < + V1< < jo
In this way we have that

‘f h0+5,6,fdﬂ_/ha+5,6,fdyxf
[_JZQSH: h0+€,5,fdu_fh0+s,5,fdyxf+[J

TI2+7T[2=T.

. ho+5,6,fdlfl‘

12jg H4

IA

Taking 7= K = [ hoc s pdp, we have that [ hocspdv,, < K.
n-1
Fix z € M and define & ,(f) = [] [[(Dfo f7)(z)||, 0 <k <n. Consider &> 0.

j=n-k
If we allow f to vary in the C'—topology we obtain that there exists 75 > 0 such that

if d(g, f) < 72 then &.(f) < (0 +&)* = &..(g) < (0 + &) for each 0 < k <n. Applying
this to = xy and since we already know by Lemma that if ¢ > 0 is small enough
then d(zs,74) < ¢ = &.,(g9) < (0 +2). We conclude that there exists &’ > 0 such that
hgoser5(2g) = hforers(xs). Then / hg overs(4)dv < K.

Remark B.0.2. Let f: M — M be a non-flat map and p € My, (01/2,0,0,6, f). If there
exists 0 < A< 1 and C >0 such that for each, n> 1, p(T',,) < C\, then u({h >n}) < C\,,
where h is the first (o,0)—hyperbolic time map.

In fact, Remark gives us that if we choose, for example, o = e* then

{1<j<n; xeHi(o,6,f)} >60'n
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n-1 n-1
whenever 1 > log||Df(f7(x)|| >\ and 1 > —logdists(f7(z),C) < i By definition,
" j=0 n 520 160

if © € (I'),)¢ then the expansion time function and the recurrence time function on x are

smaller than n. It means that for some ng <n one has

no—1

=S log [DF(P (@) 2 A
§=0

and
1 no—1 ) A
— > —logdists(f/(z),) <=
520 B
and so there exists at least one (o, d)—hyperbolic time for x smaller than ng <n. This fact
implies that h(x) <n.
We have just concluded that (I'),)¢ c {h <n}. So {h>n}cT, and from this we

obtain that the estimates made on the tail T',, will be the same for {h >n}:
w(lTy) <Co™ = u({h2n})<Co".

We can see that working with dynamics whose the first hyperbolic time map is integrable
isn’t a strong restriction, since every expanding measure with exponential decay of the
measure of the tail '), satisfies this hypothesis (in fact, we can see that even if u(I',) has
polynomial decay, with order at least 2, then the first hyperbolic time will be integrable
with respect to ).
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