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Resumo

O conceito de hiperbolicidade uniforme introduzido por Smale e os modelos hiperbdélicos
sao ainda fonte de intimeros problemas em aberto. No contexto de dinamica a tempo
continuo, as contribuicoes de Bowen, Ruelle e Ratner nos mostram que fluxos hiperbdlicos
sao semi-conjugados a fluxos de suspensao sobre um shift. Este resultado nos permite es-
tudar propriedades de um sistema a tempo continuo a partir do shift associado. Nesta tese
abordamos duas questoes, nomeadamente os expoentes de Lyapunov de cociclos lineares
e otimizacao ergodica.

No contexto de cociclos lineares, mostramos a simplicidade do espectro de Lyapunov
para cociclos sobre fluxos hiperbdlicos que preservam uma medida hiperbdlica ergédica
com estrutura de produto local. Mais precisamente, mostramos que existe um conjunto
aberto e denso de geradores infinitesimais que geram cociclos com esta propriedade. Aqui
usamos a topologia no espago dos geradores infinitesimais com regularidade pelo menos
Holder.

No contexto de otimizacao ergddica, provamos que, para um fluxo hiperbélico, funcoes
Holder continuas genéricas possuem uma tnica medida maximizante, a qual é suportada
em uma Oorbita periédica. No contexto de fungoes continuas, mostramos que para um
fluxo hiperbdlico func¢oes continuas genéricas possuem uma tnica medida maximizante

com suporte total e entropia zero, em contraponto com o caso mais regular.

Palavras chaves: Fluxos hiperbdlicos; Cociclos lineares; Expoentes de Lyapunov;

Otimizacao ergddica.



Abstract

The concept of uniform hyperbolicity introduced by Smale and the hyperbolic models
are still the source of numerous open problems. In the context of continuous-time dy-
namics, the contributions of Bowen, Ruelle and Ratner show that hyperbolic flows are
semi-conjugated to suspension flows over a shift. This result allows us to study proper-
ties of a continuous time system from the associated shift. In this thesis we address two
questions, namely the Lyapunov exponents of linear cocycles and ergodic optimization.

In the context of linear cocycles, we show the simplicity of the Lyapunov spectrum
for cocycles on hyperbolic flows that preserve an ergodic hyperbolic measure with local
product structure. More precisely, we show that there is an open and dense set of in-
finitesimal generators that generate cocycles with this property. Here we use the topology
in the space of infinitesimal generators with at least Holder regularity.

In the context of ergodic optimization, we prove that for a hyperbolic flow, generic
Holder continuous functions have a single maximizing measure, which is supported in a
periodic orbit. In the context of continuous functions, we show that for a hyperbolic flow
generic continuous functions have a single maximizing measure with full support and zero

entropy, in counterpoint to the more regular case.

Keywords: Hyperbolic  flows; Linear  cocycles; Lyapunov  exponents;

Ergodic optimization.
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Chapter 1
Introduction

Uniform hyperbolic dynamical systems were introduced by Smale in the 1960’s. Since
then the theory has been developed in many directions, one of them being the area
of nonuniformly hyperbolicity, with the study of the Lyapunov exponents. Non-zero
Lyapunov exponents assure asymptotic exponential rate of divergence or convergence
of two neighboring trajectories, whereas zero exponents give us the lack of any kind of
asymptotic exponential behavior. A central question in dynamical systems is to determine
whether we have non-zero Lyapunov exponents for a given dynamics and some or the
majority of nearby systems. An answer for that usually depends on the smoothness and
richness of the dynamical system, among the other aspects.

The ergodic theory of hyperbolic systems has also been developed. Hyperbolic flows
have been studied since the 1970’s and, in particular, its geometric structure is very well
understood. By the works of Bowen, Sinai and Ruelle [15, 13, 40] hyperbolic flows admit
finite Markov partitions and are semi-conjugated to suspension flows over hyperbolic
maps. The Markov structure was strongly used to study the thermodynamic formalism
for hyperbolic flows and it was established in the 1970’s (see [15]) that there is a unique
equilibrium state g with respect to any Holder continuous potential £ : A — R. In
addition, p¢ is obtained as a suspension of a og-invariant measure v with the usual local
product structure, where og is a subshift of finite type. It is known that the set of invariant
measures for hyperbolic dynamical systems is large (see for example [39]), which is the
best scenario for the problems of ergodic optimization, where, roughly speaking, we are
interested in maximizing (or minimizing) integral of functions under invariant measures.

In this work we give contributions for both study of Lyapunov exponents and ergodic
optimization for uniformly hyperbolic flows.

First we deal with Lyapunov exponents for hyperbolic flows. Given a linear differential
system A : M — s((2,K) over a flow (X");er : M — M (see Subsection 2.1.3), the Lya-



punov exponents associated to A detect if there are any exponential asymptotic behavior
on the evolution of the time-continuous cocycle (®%); along orbits (cf. [5]). Under certain
measure preserving assumptions on (X'); and integrability of log ||®%||, the existence of
Lyapunov exponents for almost every point is guaranteed by Oseledets’ theorem ([36]).

For discrete-time dominated cocycles over uniformly hyperbolic maps Bonatti and
Viana [11] proved that for the majority of cocycles all Lyapunov exponents have multi-
plicity 1. Avila and Viana [1] exhibited an explicit sufficient condition for the Lyapunov
exponents of a linear cocycle over a Markov map to have multiplicity 1. More recently,
in [2] Backes, Poletti, Varandas, and Lima proved that generic fiber-bunched and Hélder
continuous linear cocycles over a non-uniformly hyperbolic system endowed with a u-
Gibbs measure have simple Lyapunov spectrum. In the context of continuous flows over
compact Hausdorff spaces Bessa ([7, 8]) proved the existence of a residual set R, i.e. a
C%-dense G5 (a countable intersection of open sets), such that for any conservative linear
differential system in R either the Oseledets’ decomposition along the orbit of almost
every point has dominated splitting or else the spectrum is trivial, meaning that all the
Lyapunov exponents vanish. Considering the L” topologies, Bessa and Vilarinho proved
in [10] the abundance of trivial spectrum for a large class of linear differential systems.

In this work we are interested in proving abundance of non-zero Lyapunov exponents
for more regular time continuous cocycles (at least Holder continuous) taking values in
SL(2,K), where K= C or K=R. Our purpose here is to contribute to the better un-
derstanding of the ergodic theory cocycles over a hyperbolic flow and to answer some
of the questions raised by Viana, namely part of Problem 6 of [43]. First we address
the case of suspension flows (as a model to flows that admit a global cross-section) and
then deal with the uniformly hyperbolic flows. The strategy used to prove the result for
SL(2,K)-cocycle over suspension flows is to make a reduction to the discrete-time case
by considering an induced cocycle in the fiber that also depends on the roof function. We
perform perturbations on the space C™ (M, sl(2,K)) of the infinitesimal generators so the
induced discrete-time cocycle satisfies the hypothesis of the criterion of [1]. Here we point
out that instead of making perturbations on the discrete-time cocycles, our perturbations
are on the space of its infinitesimal generators, which demands extra work.

Our strategy uses [11, Proposition 9.1], where more general SL(d,K)-cocycles, with
d > 2, are considered. But in their proof they constructed a dominated splitting to find,
by perturbation, periodic points without complex eingenvalues. This splitting needs to be
Holder with respect to the point on the basis. This fact is not proved in [11, Proposition
9.1], what makes the proof incomplete.

Our second point of view is about ergodic optimization. Let T : X — X be a con-



tinuous map, where X is a compact metric space, and let My be the collection of those
Borel probability measures on X which are preserved by T'. The objects of interest in the
field of ergodic optimization are those T-invariant probability measures which maximize,
or minimize, the space average [ fdu, for f: X — R, over all 4 € My. These are the
maximizing measures and minimizing measures for the function f (with respect to the
dynamical system 7' : X — X). Since maximizing measures do exist, the fundamental
question of ergodic optimization is: what can we say about the maximizing measures? For
example, is there only one maximizing measure for typical observables? Can we describe
the support of a maximizing measure?

The problem of describing the set
P(E) :={¢ € E : there is a single ¢g-maximizing measure supported on a periodic orbit},

where F is some suitable set of continuous observables has been studied by several au-
thors in the discrete-time context. See for instance, Contreras [19], Contreras, Lopes
and Thieullen [20] for the expanding case, Fathi [22] for an approach using KAM theory,
Bousch [12]. Quas and Siefken [37] for the one-sided shift. See also Yuan and Hunt [45],
Morris [34] and references therein. For continuous-time, Mané [33] conjectured that for
a generic Lagrangian, there exits a unique minimizing measure, and it is supported by a
periodic orbit. See also Garibaldi, Lopes and Thieullen [24] for a relation with lagrangian
systems in the context of ergodic optimization. Based on various approaches utilized in
the literature, we can emphasize that the regularity of the observables plays an important
role in the proofs: for Lipschitz potentials, one can obtain maximizing measures supported
in periodic orbits, whereas for continuous potentials, the support of the maximizing mea-
sure is the whole space. We shall consider ergodic optimization for flows with respect to
both continuous and Holder continuous observables.

We prove that for a hyperbolic suspension flow there is a open and dense set of Holder
observable with a single maximizing measure, which is supported on a periodic orbit.
We also prove that for a hyperbolic suspension flow there is a dense set of continuous
observables with a single maximizing measure which has full support.

This thesis is organized as follows. In Chapter 2 we given necessary definitions and
state the main results. In Chapter 3 we give preliminary results that will be used in
Chapters 4 and 5. In Chapter 4 we deal with Lyapunov exponents for hyperbolic flows.
In Chapter 5 we deal with ergodic optimization. Finally in Chapter 6 we comment on

some open question on both themes of the thesis.



Chapter 2

Main results

2.1 Some definitions

2.1.1 Hyperbolic flows

Let M be a closed Riemannian manifold and d : M x M — [0, 00) distance function
given by the arc length of a minimizing geodesic. Let (X');: M — M be a smooth flow
generated by a C! vector field X : M — TM. Let x € M be a critical point for the field
X, that is, X(z) = 0, and let J denote the Jacobian matrix of X at z. If the matrix J
has no eigenvalues with zero real parts then x is called hyperbolic critical point. Note that
if z is a critical point for the field X, than z is a fixed point for the flow (X?),, that is,
X*(x) =z for all t € R. So a hyperbolic critical points may also be called hyperbolic fized
points.

Now let A C M be a compact and (X*);-invariant set. We say that a flow (X*);: A — A
is uniformly hyperbolic if for every x € A there exist a DX'-invariant and continuous

splitting T, M = E: @ EX & E* and constants C' > 0 and 0 < 6; < 1 such that
IDX"| B < C6 and [(DX")™ | By < €4, (2.1.1)

for every t > 0. We say that (X*), is an Anosov flow if (X*);: M — M is uniformly
hyperbolic. It has been shown by Gourmelon in [25] that there exists an adapted metric
which allows us to take C' = 1.

Now let A be a hyperbolic set for (X*);cg. For each z € A, we consider the sets

Wi(x) ={y € M : d(X'(y), X" (z)) —— 0}

and
W'(z)={y e M :d(X"(y), X" (x)) — 0}.

4



And for any sufficiently small € > 0, we consider the sets
We(x) ={y e M :d(X"(y), X" (x)) <efort>0}
and
Wh(z)={y e M :d(X"(y), X" (x)) < efort <0}
These are smooth manifolds, called respectively local stable and unstable manifolds (of
size €) at the point x. Moreover:
1. T,W?(z) = E and T,W*(z) = EY;
2. for each t > 0 we have

X{(Wer) € WX (@) and X7 (We(x)) € WX (2));

3. there exist K > 0 and v € (0, 1) such that for each £ > 0 we have
d(X'(y), X'(2)) < my'd(y, ) for y € We(w),

and
d(X(y), X '(x)) < p'd(y,z) for y € Wi(x).

We define the weak local stable and unstable manifolds as

Wrs(z) = Wi (X (x))

teR
and

we(z) = | J WX (@),

teR

respectively. These sets are invariant manifolds tangents to ES ® EX and EX @ E* em z,
respectively.

We also introduce the notion of a locally maximal hyperbolic set.

Definition 2.1.1. A set A is said to be locally mazimal (with respect to a flow (X*);er)
if there exists an open neighborhood U of A such that

A= X'0).

teR
Now let A be a locally maximal hyperbolic set. For any sufficiently small €, there
exists a 0 > 0 such that if z,y € A are at a distance d(z,y) < 6, then there exists a
unique t = t(z,y) € [—¢, €] for which the set

[, y] = WE(X (2)) N W ()
is a single point in A (see [28, Proposition 7.2]).

5



Definition 2.1.2. We say that A is a hyperbolic basic set if
1. A contains no fixed points and is hyperbolic;
2. the periodic orbits of (X*);]A are dense in A;
3. (X")¢|A is a topologically transitive flow, that is, (X*);|A has a dense orbit;
4. A is locally maximal.

Definition 2.1.3. The nonwandering set € for the flow (X*); is defined by

Q ={x € M : for every open neighborhood V" of = and every ¢ty > 0
there exists t >t so that X*(V) NV # 0}.

The flow (X*); is said to satisfy Aziom A if its nonwandering set ) is the disjoint union

of hyperbolic sets and a finite number of hyperbolic fixed points.

2.1.2 Local Product Structure

Given a regular point x € M for the C* vector field X : M — T'M, that is, X (z) # 0,
the Tubular Neighborhood Theorem (see for instance [31, Chapter 3]) ensures the exis-
tence of a positive number § = §, > 0, an open neighborhood U? of x, and a diffeomor-
phism U, : US — (—6,6) x B(x,8) C R x R4, where B(z,9) is identified with the ball
B((i §) N {(1,0,...,0)%), and ((1,0,...,0)*) denotes the hyper-space orthogonal to the
vector (1,0,...,0), such that the vector field X in U? is the pull-back of the vector field
Y :=(1,0,...,0) in (=6,0) x B(x,d). More precisely, Y = (), X := D(V,),1 X (V).
In this case the associated flows are conjugated, that is, Y*(-) = W, (X*(¥_!(-))) for every
t sufficiently small.

Let A be a hyperbolic set. Given x € A and ¢ > 0 small enough, both invariant
manifolds W (X! (y)) and W¥(X(y)) have size of at least € for all y € ANU? and all ¢ such
that Xt(y) € US. As a consequence, if we consider the section ¥, = W-1({0} x B(z,))
at point x, then for any y € A N U?J the intersection Fo = W2 (y) N, (respectively
Fy =W (y)N ;) defines a smooth and long stable (respectively unstable) submanifold
in ¥, (see Figure 2.1.1).

Since the angles between stable and unstable foliations are bounded away from zero
in hyperbolic sets, it is not difficult to verify that for all y,2 € A N U? the intersection
ly, 2], := F,' M F; consists of a unique point, since ¢ is small (see [30] and Figure 2.1.2).

Define

NE(6) = {[r,0]s, -y € ANTP} C 5, 0 F

6



A

Figure 2.1.1: Stable and unstable leaves.

A
A

[Z,h Z]E;n

T _r/f;\
X

Yy

Figure 2.1.2: Intersection of unstable and stable leaves.

as a u-neighborhood of z in ¥, and

NE@) ={[y,2]s, :y €ANT} C S, NF:

T

a s-neighborhood of z in X,. The set N, (5) := A NU? is a neighborhood z in A. Then
the transformation
TV : No(0) —=NX(0) x N2(9) x (—96,0) (2.1.2)
y = ([r.yls, [y 2ls,, ),
with ¢(-) uniquely determined by X*®)(y) € ¥,, is a homeomorphism.
A Borel (X")-invariant probability measure p on M is called hyperbolic if for p-almost
r e M andveT,M\{R-X(x)} we have that

.1 ¢
JAim = log |[DX (z) - v]| #0.

Recall that given measurable spaces (X7,%;) and (X3, Y5), a measurable mapping
f: X1 — X5 and a measure p : X1 — [0, +00|, the pushforward of p is defined to be the
measure f,(u): Yo — [0,400] given by

((1)(B) = (f~'(B)) for B € 5.

We can now define a local product structure for flow invariant measures.

7



Definition 2.1.4. A hyperbolic measure p has local product structure on A if for all
x € supp(p) N A and a small 6 > 0 the measure (17)./t|n;,(s) is equivalent to the product
measure p2 X pif x Leb, where pi), denotes the marginal measure of (1), (¢|n, 5)) in N2(6),
for i = u,s, and Leb is the Lebesgue measure on the interval (—¢,¢) identified with a
segment of the trajectory through z and Y, is given by (2.1.2). We denote by s the

marginal measure f|y,(5) in X obtained via projection along the direction of the flow.

2.1.3 Linear differential systems and infinitesimal generators

We now describe the set of time-continuous linear differential systems associated to
an infinitesimal generator A : M — sl(2,K), where K=C or K=R and sl(2,K) is
the special linear Lie algebra of 2 x 2 matrices with trace zero and with the Lie bracket
[X.Y]:=XY-YX. Givenr > 0and v € [0, 1], with r+v > 0, denote by C"" (M, s1(2,K))
the Banach space of C"*” linear differential systems with values on the Lie algebra s((2, K),
endowed with the topology C™" defined by the norm

4l = sup sup [D/A@)] + sup 12D =AW

0<j<r zeM ayeM |z —yl|
Ty

(2.1.3)

Given A € C™(M,sl(2,K)) and a C'™ flow (X'); : M — M the dynamics on the
fibers is given by a cocycle in continuous time ®% : M — SL(2,K). For each x € M we
obtain ®,(z) as a solution of the equation

Oru(s) = A(XY () - u(t), u(0)=uo € SL(2,K) (2.1.4)
known as linear variational equation (or equation of the first variation). The unique
solution of (2.1.4) with u(0) = 14 is called fundamental solution related to the system A.
This solution is a curve of linear applications (®%(z))ier in SL(2,K) which can be seen
as a skew product flow

FY : M xK*— M xK?

(z,0) = (X" (z), ®4(x)v),
for all ¢ € R. The cocycle identity holds for the fundamental solution of (2.1.4), that
is, 4 (z) = @5 (X(x)) o Y4 (x) holds for all z € M and t,s € R and, clearly, A(x) =
0P ()]4=o for all z € M (see Figure 2.1.3). It follows from the previous cocycle identity
that, for all z € M and t € R, (®(z))~! = &, (X'(x)) and (®%(z))~" coincides with the
solution of the differential equation associated with the infinitesimal generator — A, that
is,

ou(s)| = —AX"(z)) - u(t), (2.1.5)

s=t

because of the time reversal.
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Figure 2.1.3: Action of the cocycle on the fibers.

For the proofs of ours main results (see statement in Section 2.2) it is enough to
consider v = 1, that is, we can assume A to be Lipschitz. In fact, if A is v-Holder
continuous with respect to the metric d(+, -), then A is Lipschitz with respect to the metric
d(-,-)”. Therefore, up to a the change of metric, we can assume that A is Lipschitz.

We now recall Oseledets” Theorem, which guaranties the existence of Lyapunov ex-
ponents. If y is a (X')-invariant probability measure such that log ||®%(-)X!|| € L'(u),
for each t € R, then it follows from the Oseledets theorem ([36]) that for u-almost ev-
ery x there is a decomposition K* = E] @& E? (which can be trivial), called Oseledets

decomposition, and for 1 < i < 2 there are well defined real numbers
1 ‘ -
(A, X 2) = 1tligcn glog |®% (z)vs|, Vu; € EL\ {0}
—too

called Lyapunov exponents associated to A, (X'); and z. The Oseledets decomposition is
(®!)),-invariant, that is, @ (z)- £ = E%.,, for every ¢t € R. Moreover, if 1 is ergodic, then
the Lyapunov exponents are constant for almost every point. We say that \;(A, X*, z)
has multiplicity 1 if dimFE* = 1, and that the cocycle ®% has simple spectrum on z if
Ai(A, Xt ) has multiplicity 1 for all 1 <4 < 2, in other words, if all Lyapunov exponents
associated with A, (X*), and x are distinct. Since we deal with cocycles taking values in
the Lie algebra sl(2,K), this implies that A\;(A4, X', ) = —\o(A, X', z) (see, for example,
[44, Subsection 4.3.3]). If A\(A, X', 2) = 0 we have a trivial decomposition, that is, we
define E! = {0} and K? = E2.

Remark 2.1.5. For more general GL(2,K)-cocycles the sum of the exponents may not
be zero, so simple spectrum means that two exponents are different, but not necessary

symmetrical.



Definition 2.1.6. Let (X*); : M — M be a smooth flow and let A C M be a hyperbolic
set for (X");. Let 0; > 0 be the constant of hyperbolicity of (X*); in (2.1.1). We say that
the cocycle (®4); associated with A is fiber-bunched if there is 0 < f < 1 such that

19 ()| - [[(@% ()| - 617 < 62 (2.1.6)
for all t > 0 and all z € A.

Note that the latter defines a C°-open set in the space of linear cocycles.

2.1.4 Ergodic optimization

Let M be a closed Riemannian manifold and (X*),: M — M a smooth flow. Denote
by My (M, (X*");) the set of all (X*);-invariant Borel probability measures in M. Given a
continuous function ® : M — R, a mazimizing measure for (X'), with respect to ® is a
measure p € My(M, (X");) which maximizes the integral of ® among all (X*);-invariant

Borel probabilities, that is

/@du:max{/q)du

Note that this maximum always exists because M;(M, (X?*);) is compact in the weak*

ve M (M, (Xt)t)}.

topology and v — [ ®dpu is continuous. We denote

M(®,(X"),) = max{/cbdu

v e Mi(M, (Xt)t)} :

Analogously, if f : ¥ — ¥ is a continuous map and ¢ : ¥ — R is continuous,
a mazimizing measure for f and ¢ is a f-invariant Borel probability measure i which

maximizes the integral of ¢ among all f-invariant Borel probabilities, that is

/gpdﬁ:max{/cpdﬂ

We denote M (¢, f) = max { [ @dv|v € My(Z, f)}.

ve Ml(E,f)}.

2.2 Statements

2.2.1 Simplicity of Lyapunov spectra

Our main result about simplicity of Lyapunov spectra for cocycles over hyperbolic

flows is the following (definitions will be given in Chapter 3).
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Theorem A. Let (X*'); be a smooth flow on a compact Riemannian manifold M, and let
A be a hyperbolic set for (X*),. Assume that p is an ergodic, hyperbolic measure and has
local product structure on A. Then there exists an open and dense subset O of infinitesimal
generators in C™ (M, sl(2,K)) with fiber-bunched associated cocycles, such that for any

A € O the cocycle 'y has simple Lyapunov spectrum for p-almost every point.

Let us mention that Fanaee [21] proved that there exists an open and dense set of
fiber-bunched SL(d, K)-cocycles over Lorenz flows that have simple spectrum. In compar-
ison with [21], our theorem is stated with respect to open and dense set of infinitesimal
generators while in [21] the author uses a stronger topology on the space of linear differ-
ential systems with a much strong domination condition and does not characterize fiber

bunching.

2.2.2 Ergodic optimization

For ergodic optimization our first result concerns suspension flows over a two-sided
subshift of finite type and Holder observables.

Let C*(X, R) denote the space of a-Hdlder observables ¢ : ¥ — R: there are constants
C,a > 0 so that

0(x) = ¢(y)| < Cd(x,y)" (2.2.1)

for all z,y € 3.

Theorem B. Let 0 : ¥ — Xr be a two-sided subshift of finite type. Given a Hélder
continuous function r : Xr — R, let (X")ier be the suspension flow over o with height
function r. There exists an open and dense set R, C C*(Xk,R) of observables ¢ : X —
R such that, for every ® € R, there is a single (X');-maximizing measure with respect

to @, and it 1s supported on a periodic orbit.

Using Theorem B and semi-conjugation we extend this result for a flow with a hyper-

bolic basic set. More precisely:

Theorem C. Let M be a d-dimension compact boundaryless Riemannian manifold and
(X ier be a C-flow in M. If there is a hyperbolic basic set A C M for (X')icr embedding
on a suspenston flow over a subshift of finite type, then there exists an open and dense set
R C C*(M,R) of observables ® : M — R such that, for every ® € R, there is a single

(XY ier-mazimizing measure, with respect to ®, and it is supported on a periodic orbit.

We also achieve the following result for continuous observables:

11



Theorem D. Let f : M — M be a continuous transformation of a compact metric space
satisfying Bowen’s specification property. Given a Holder continuous functionr : M — R,
let (X")ier be the suspension flow over [ with height function r. Then there exists a dense
Gs set Z C C°(M",R) such that for every o € Z, there is a single (X');ecr-mazimizing

measure, it has zero entropy and support equal to M".

12



Chapter 3

Background material on hyperbolic

flows

In this chapter we recall necessary results on hyperbolic flows which will be used in the
remaining chapters. More precisely, we will see how to use Markov systems constructed
by Bowen and Ratner for basic hyperbolic sets for flows to associate symbolic dynamic
to these sets. This will be used to semi-conjugate a hyperbolic flow to a suspension flows

over a shift map.

3.1 Symbolic dynamics

Let ¥, = {1,...,n}% be the space of all sequences x = {z;}2°___ with z; € {1,...,n}

i=—00

for all i € Z. We define the (left) shift homeomorphism o : %, — ¥, by o ({ycZ 0 ) =

1=—00

{zi1}2 - f Ris an n x n matrix of 0’s and 1’s, let

Yr={zeX,:R =1forallicZ},

LiLi41

we call the restriction og = o|Xr : Yr — Xr the subshift of finite type map. Now
let ©F = {1,...,n} be the space of all sequences z = {z;}3°, with z; € {1,...,n}
for all i € N. We define the one-sided (left) shift homeomorphism o* : Xt — 3t by
ot ({x:}20) = {xiz1}2,- If R is an n x n matrix of 0’s and 1’s, the one-sided subshift of

finite type determined by R is given by

Sh={zeX Ry, =1foralieN}

LiLi+1

and we call the restriction og, = o7|Sk : 25 — X the one-sided (left) subshift of finite

type map.

13



For ¢ : ¥r — R continuous we define the variation of ¢ on k-cylinders by

varg¢ = sup{|¢(z) — ¢(y)| : ;3 = y; for all |i] < k}.
Let Zr be the family of all continuous ¢ : ¥gr — R for which varyg < bc® (for all k > 0)
for some positive constants b and ¢ € (0,1).

Remark 3.1.1. For any 8 € (0,1) one can define the metric dg on ¥g by ds(z,y) = pN
where N is the largest non-negative integer with x; = y; for every |i| < N. Then Zg is
the set of functions which have a positive Holder exponent with respect to dg. In fact,
for z,y € ¥g there is N € N such that ds(z,y) = B, this means that z and y are in a
N-cylinder and for ¢ € .#r we have that

vary ¢ < beY

and this implies that
[6(z) — ¢(y)] < be™.
So choosing « € (0,1) such that ¢ < 5% we have

[6(z) — o(y)| < 08"
=0(8")°
= bds(z, y)".
By (2.2.1) this means that ¢ is a-Hélder in the metric dg. From now on will consider the
metric dg for some fixed 8 € (0, 1).

Remark 3.1.2. We have that of : X; — X5 is an expanding transformation. If p € (%, 1)
the ball of radius p around of any point (p,), € X% is the cylinder [0; po]r that contains
this point. We have that

(05 (n)n, 0 (Yn)n) = d((Zn11)n, (Yns1)n) = Bd((@n)n, (Yn)n)

for any (), and (y,), in the cylinder [0;po]r. Moreover, og ([0; po]r) is the union of
all cylinders [0;¢] such that R,,, = 1. In particular, it contains the cylinder [0;p;]r.
Since cylinders are open and closed sets of X, this shows us that the image of the ball
of radius p around (p,), contains a neighborhood of the closure of the ball of radius p

around (p,41)n. This shows that op : 3 — X4 is a Ruelle expanding transformation.

3.2 Suspension Flows

Here we introduce the notions of suspension flows and the Bowen—Walters distance

following [4]. Let f : ¥ — 3 be a homeomorphism of a compact metric space (X, dyx)
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and let 7 : ¥ — (0,00) be a continuous function bounded away from zero. Consider the
quotient space
Y={(z,t):0<t<r(z),zreX}/~ (3.2.1)

where (z, (z)) ~ (f(x),0).
Definition 3.2.1. The suspension flow over f with height function r is the flow (X');cr

in X7 with X' : X" — Y7 defined by X'(z,s) = (f"(x),s’), where n and s" are uniquely
determined by

i
L

r(fi(z))+s =t+s, 0<s <r(f"(z)). (3.2.2)

I
=)

Example 3.2.2. Consider ¥ = [0,1], f : [0,1] — [0,1], 2 + 2z (mod 1) and take
the height function r : [0,1] — R, = — sin(25%) + 3. See Figure 3.2.1. We have that
f(0.2) = 0.4, f2(0.2) = 0.8 and f3(0.2) = 0.6. For the height function we have In this
case we have r(0.2) = 4, 7(0.4) = 3, r(0,8) = 3. Therefore X°(0.2,2) = (0.6,1). In fact,

taking s = 2, t = 9 and s’ = 1 the equation in 3.2.2 becomes

r(0.2) +7(0.4) +r(0,8) + s =t +s
4+3+3+1=9+2.

What is true.

| f(z) =2z (mod 1)
0.8 1

Figure 3.2.1: Suspension flow over f : [0,1] — [0, 1],  + 2z (mod 1) with height function
r:[0,1] = R, z — sin(%2%) + 3.

Now we describe a distance introduced by Bowen and Walters in [16] for suspension
flows. Without loss of generality, one can always assume that the diameter diamX of
the space X is at most 1. When this is not the case, since > is compact, one can simply

consider the new distance dys/diam> in X.
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We first assume that the height function r is constant equal to 1. Given x,y € ¥ and

t € [0, 1], we define the length of the horizontal segment [(x,t), (y,t)] by

ph((l',t), (yat» = (1 - t)d2<w7y) + tdE(f<x>7f(y))

Clearly,

pr((2,0),(y,0)) = ds(z,y) and pn((z,1),(y,1)) = ds=(f(2), f(y))-

Moreover, given points (z,t), (y,s) € X" in the same orbit, we define the length of the
vertical segment [(z,1), (v, s)] by

po((7,1), (y,5)) = inf {|g| : XU(x,t) = (y,s) e ¢ € R}.

For the height function r = 1, the Bowen—Walters distance d((z,t), (y,s)) between
two points (z,t), (y,s) € X" is defined as the infimum of the lengths of all paths between
(x,t) and (y, s) that are composed of finitely many horizontal and vertical segments.

Now we consider an arbitrary continuous height function r : ¥ — (0,00) and we

introduce the Bowen—Walters distance dyx- in 2.

Definition 3.2.3. Given (z,t), (y,s) € X" , we define

dE”(('%.? t)u <y7 5)) = d((%, t/?”(l')), <y7 S/T(y)))u
where d is the Bowen—Walters distance for the height function r = 1.

For an arbitrary function r, a horizontal segment takes the form

w = [(ZL‘, t- ’I"(I‘)), (yv t- T‘(y))],

and its length is given by

U(w) = (1 —t)ds(z,y) + tds(f (), f(y))-

Moreover, the length of a vertical segment w = [(z,1), (x, s)] is now

by(w) = [t = s|/r(x),

for any sufficiently close ¢ and s.

It is sometimes convenient to measure distances in another manner. Namely, given
(x,t),(y,s) € X7, let
ds(z,y) + |t — s,
dr((z,t), (y,s)) =min | dg(f(2),y) +r(z) —t+s, p- (3.2.3)
dsr (2, f(y)) +1(y) — s +1,
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We note that d, may not be a distance. Nevertheless, the following result relates d, to
the Bowen—Walters distance dyx-. The proof of the next proposition can be found in [4,

Proposition 2.1].

Proposition 3.2.4 ([4]). If f is an invertible Lipschitz map with Lipschitz inverse, then

there exists a constant ¢ > 1 such that

¢ dr(p, q) < dsr(p,q) < cdr(p,q) (3.2.4)

for every p,q € 7.

Let v be a measure in X invariant by f. We denote by Leb the Lebesgue measure
in R. The measure (v x Leb)|sr is invariant by the suspension flow (X*),. We call

p = (v x Leb)|sr the suspension of v. We that for every mensurable function ¢ : 3" — R

Jvin= [avta) | " e @)s.

u(Er) = / Ldy = / r(z)dv(x).

Given a (X');-invariant measure p, we will build a f-invariant measure i on ¥ from g

In particular

following [35, Section 3.4.2]. For each p > 0, we denote ¥, = {z € ¥ : r(x) > p}. Given
V C X, and 6 € (0,p], we denote V5 = {X'(z) : 2 € Ve 0 <t < ¢}. Observe that the
application (z,t) — X*(x) is a bijection from V' x (0, 0] in Vs. We shall assume that ¥ is

endowed with a o-algebra of measurable subsets for which
1. the function r and the maps f and f~! are measurable;
2. if V. C 3, is measurable then Vs C X7 is measurable, for all § € (0, p|.

Lemma 3.2.5 ([35]). Let V' be a measurable subset of ¥,, for some p > 0. Then the
p(Vs)
o

function § — is constant in the interval (0, p).

Proof. Consider any 6 € (0,p] and ¢ > 1. It is clear that V; = Uf;éX%(V%) and this
union is disjoint. Using that p is invariant under the flow (X*);, t € R, we conclude that
wu(Vs) = Z,u(V%) for all § € (0, p] and all £ > 1. Then, u(Vys) = su(Vs) for all 6 € (0, p] and
all rational number s € (0,1). Using that the two sides of this relation vary monotonously
with s, we conclude that the equality remains valid for all real number s € (0,1). This

implies the conclusion of the lemma. m

For any measurable subset V of ¥,, p > 0, we define (V') = for any ¢ € (0, pl.

1(Vs)
5

Then given any measurable set V' C ¥, we define (V) = sup, i(V N %,).

17



Lemma 3.2.6 ([35]). The measure fi in X is invariant by the map f.

Proof. We begin by observing that the complement of the image f(X) has zero measure.
Indeed, suppose that there exits a set [ C X\ f(2) with a(F) > 0. It is not restriction to
assume that £ C X, for some p > 0. Then, p(F,) > 0. Since p is finite, by hypothesis,
we can apply the Poincaré’s recurrence theorem in the flow (X ~%);cg. We obtain that
there is z € F), such that X °(z) € F, for values of s > 0 arbitrarily big. By definition,
z = X'(y) for some y € F and some t € (0, p|]. By construction, the past trajectory of y
intersects ¥ and therefore there x € ¥ such that f(x) = y. This contradicts the choice of
F'. Therefore our assertion is proved.

Given a measurable set F' C X, we denote £ = f~!(F). Furthermore, given ¢ > 0,
we consider a measurable partition of F' in measurable subsets F* satisfying the following

conditions: for each ¢ there exists p; > 0 such that
1. F"and E' = f~!(F") are contained in X,
2. sup(r|E?) — inf(r|E?) < ep;.

Then choose t; < inf(r|E?) < sup(r|E*) < s; such that s; —t; < ep;. Fix §; = p;/2. Then,

using the fact that f is surjective,
Therefore, using the hypothesis that u is invariant,
1(Es,) = (X (E5,)) > plF5 s —e)

and

p(Es,) = n(X(E3,)) > i(Fy, (s5,—1)-
Dividing by d; we obtain that

(si —t)

i

A(E") 21— A(F") > (1= 2e)p(F")

and

B pm) > (14 20(F).

UE) <1+

%

Finally, summing over all values of ¢, we conclude that
(1 =26)a(E) < a(F) < (1+2€)u(E).
Since € is arbitrary, this proves that the measure ji is invariant under f. O
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Remark 3.2.7. 1t is easy to see that yu — [ is onto and one-to-one. In fact, every f-
invariant measure v is of the form fi for p = (v x Leb)|s-/ [ rdv on X7, which means that
p — fuis onto. And if puy and po are two different (X*);-invariant measures, there must
be some set £ C X such that uy(FEs) # pe(Es) which implies that fi; # fie and p — fi
is one-to-one. Moreover, we have a bijection between the set M (X", (X)) of the (X*);-
invariant probabilities measures and the set M (%, f) of the f-invariant probabilities. For
this, we just consider u + ji, where

P

(%)

3.3 Hyperbolic flows

The results in this section follow [6, Chapter 3], which was based on the works of
Bowen [13] and Ratner [38]. Let (X');cr be a C! flow in a smooth manifold M. This
means that X° = id,

X'o X* = X' for t,s €R,

and that the map (¢, z) — X'(x) is of class C.

Let (X*);er be a C* flow with a locally maximal hyperbolic set A. Consider an open
smooth disk D C M of dimension dimM — 1 that is transverse to the flow (X*),cr, and
take © € D. Let also U(z) be an open neighborhood of x diffeomorphic to the product
D x (—e¢,€). The projection wp : U(x) — D defined by mp(X*(y)) = y is differentiable.

Definition 3.3.1. A closed set R C AN D is said to be a rectangle if R = intR (with the
interior computed with respect to the induced topology on A N D) and 7p([z,y]) € R for
z,y € R.

Now we consider a collection of rectangles Ry, ..., R, C A (each contained in some

open disk transverse to the flow) such that
R,NR; =0R,NOR; for i# j.
Let I' = Ule R;. We assume that there exists an e such that:
L A= UtG[O,e] XHT);
2. for each i # j either
XY R)NR; =0 forevery te€[0,¢,

or
XY Rj))NR; =10 for every t € [0,€].
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We define the transfer function 7: A — [0, 00) by
7(z) =min{t > 0: X*(z) € '},
and the transfer map P : A — I" by
P(z) = X™@(2). (3.3.1)

The set T' is a Poincaré section for the flow (X*);cg. One can easily verify that the

restriction of the map P to I' is invertible. We also have P"(z) = X™®)(z), where

|
—

n

Ta(z) = ) 7(P'(2)).

%

Il
=)

Now we introduce the notion of a Markov system.

Definition 3.3.2. The collection of rectangles Ry, ..., Ry is said to be a Markov system
for (X*)ier on A if

P (int (W¥(z) N R;))  int (W*(P(2)) N R;)

and
P! (int (WX (P(x))) N R;) C int (W*(x) N R)
for every x € int P(R;) NintR,;.

It follows from work of Bowen [13] and Ratner [38] that any locally maximal hyperbolic
set A has a Markov system of arbitrary small diameter. Furthermore, the map 7 is Holder

continuous on each domain of continuity, and
0 <inf{r(x):2 €T} <sup{r(z):z € A} < 0.

Now we describe how a Markov system for a hyperbolic set gives rise to a symbolic
dynamics.
Given a Markov system Ry, ..., Ry for a flow (X*),cr on a locally maximal hyperbolic

set A, we consider the k x k matrix R with entries

1 if intP(R;) NintR; # 0,

rij =
0 otherwise,

where P is the transfer map in (3.3.1). We also consider the set Sg C {1,...,k}” given
by

ER = {( . 'i_lioil . ) “Tinina — 1forn e Z} s
and the shift map or : Xr — Xr defined by or(- - ig ) = (- Jo - -+), where j, = ins1

for each n € Z.
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Definition 3.3.3. The map og is said to be a (two-sided) topological Markov chain with

transition matriz R.

We define a coding map p: Yg — Ule R; for the hyperbolic set by

p(- g+ ) = () (PIT) 5 (intR;, ).

JEZ
One can easily verify that

poor = Pop. (3.3.2)

Given [ > 1, we equip Yr with the distance d given by

d((-iyigin - ), (- - j_rjosr - ) = Z B, — gl

n=—oo

As observed in [13, Lemma 2.2], it is always possible to choose the constant £ so that the
function 7o p : ¥g — [0, 00) is Lipschitz. By (3.3.2), the restriction of a smooth flow to a
locally maximal hyperbolic set is a factor of a suspension flow over a topological Markov
chain. Namely, to each Markov system one can associate the suspension flow (Y*);cg over
or|Xr with (Lipschitz) height function » = 70 p. We extend p to a finite-to-one onto
map 7 : g — A by
m(z,5) = (X* 0 p)(a)
for
(x,s) e Xg ={(x,t) : 0 <t <r(x),x € Eg}/ ~

where (z,0) ~ (or,r(z)). Then
moY'=X'or (3.3.3)

for every t € R. We denote by X the set of (one-sided) sequences (igi; - --) such that
(G071 - ) = (jog1 - +) for some (- -j_1joji- ) € ¥R,
and by X g the set of (one-sided) sequences (- - -i_yig) such that
(- +iz1do) = (- - j_1Jo) for some (- -j_1joji- ) € Xg.
The set X can be identified with ., where R* is the transpose of R, by the map
Yr D (- viqig) — (igig - ) € Tk
We also consider the shift maps o : ¥ — X§ and og : ©g — Xg defined by
op(igir - ) = (1112 - ) and og(--i_1ip) = (-1 — 2i_1).
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Now we describe how distinct points in a stable or unstable manifold can be characterized
in terms of the symbolic dynamics. Given z € A, take w € Yg such that p(w) = z. Let

R(x) be a rectangle of the Markov system that contains x. For each «’ € ¥g, we have
p(w") € W (x) N R(x) whenever p_(w') = p_(w),

and

plu) € Wi(z) N R(x) whenever p. () = ps (),
where p; : Yr — X5 and p_ : g — Xy are the projections defined by
,0+(- Ci_q%0% - ) = (’ioi1 . )

and

p— (- i_qigiy - ++) = (- - i_1dp).
Therefore, writing w = (- - “i_14piy - --), the set W*(x) N R(z) can be identified with the
cylinder set

Cih = {(jojr =) € S 1 jo =0} C S,

and the set W2(z) N R(x) can be identified with the cylinder set

C’ig = {( j_1jo) € ¥R 1o = io} C g
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Chapter 4
Cocycles over hyperbolic flows

In this chapter we show that for an open and dense set with respect to SL(2,K)
fiber-bunched cocycles (cf Definition 2.1.6), the Lyapunov exponents are non-zero almost
everywhere.

Let (X')icr be a C'! flow on M with a locally maximal hyperbolic set A C M. Assume
that p is an invariant probability measure of (X*); that is ergodic, hyperbolic and satisfies
the local product structure on A. Let also A € C™(M,sl(2,K)) be an infinitesimal

generator with fiber-bunched associated cocycle Y.

4.1 Lipschitz continuity

We start by showing that the cocycle ®% () is also Lipschitz continuous with respect

to variable z, for each t € R.

Lemma 4.1.1. Given any t € R and A € C™"(M,sl(2,K)), there is C; = Cy1(t,A) >0
such that, for all y,z € M, we have | ®%(y) — ®4(2)]| < Cid(y, 2).

Proof. Fix x € M and t € R. Since ®%(z) is the solution of the differential equation
dwu(t) = A(X*(x)) - u(t), we obtain that

t
DY (z)v = v+ / A(X? ()% (z)vds.
0
Similarly we have

(@4 (x)) o = v / AP () (@ () ods.

Hence we have .
19 (z)v]| < ]| +/0 JACXE (@)l - |95 (z)v||ds (4.1.1)
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and
t
(@ ()" vl < [lv] +/0 TAX = (@) - (D% ()~ vllds. (4.1.2)
We make use the Gronwall’s inequality, that is given by the following

Lemma 4.1.2 (Gronwall’s inequality). Let u,v : [a,b] — R be non-negative continuous

functions that, for some o > 0, satisfy

u(t) < a+/ u(s)v(s)ds

u(t) < aexp [/:v(sms]

Proof. See [26]. O

for allt € [a,b]. Then

for allt € [a,b).

Hence, from (4.1.1) we have

[0y @)ll < [lo]l exp [ / ||A<Xs<x>>||ds} (1.13)

and, thus, ||®%(z)v| < elAlt||v]| for all t € R and v € R%. Since A is Lipschitz, there is
a constant K > 0 such that ||A(z) — A(y)|| < Kd(z,y). Applying Gronwall’s inequality
to (X*); we have that

%400 — ¥4 :)ol < | A @) — AGE )19 ol + AN o — @5 (2)ol] ds
< PR [ ety s + [ AN - @Gl
< lXIMo] Kd(y, = / LA ()0 — @5 (=)ol ds.

Applying again Gronwall’s inequality to ®, it follows that

18 () — @, ()] < HIAHIXD Ry, ),

which proves the lemma. O

The next lemma tells us that fixing + € M and ¢ € R the matrix ®%(z) varies

continuously with respect to the infinitesimal generator A.

Lemma 4.1.3. Givent € R and A, B € C""(M,sl(2,K)), there exists Cy, = Cy(t, A, B) >
0 such that for all x € M and allv € K* , we have || D! (x)v — DY (z)v| < C1||A— B||||v]-
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Proof. We have that

oY () =0 —I—/O A(X?(2))®% (x)vds
and .
PL(r)v =v+ /0 B(X?®(x))®%(x)vds

for all t € R. So

|8 ()0 — @) < / JAGE @) — BEC @)1 (@)o] + 1A 8% ()0 — @(x)olds
< By / JA — Blds + / AN ()0 — @ (x)o|ds

t
< elBIH ) 1 +/ A9 ()0 — ®%(2)v]|ds
0

(Gronwall inequality) < |t][|v]|e!BIHel Al 4 — By
< |t|||U||€(IIAII+IIBII)ItI||A — BJ.

So we have ||®!,(z)v — &% (z)v|| < C1||A— B|||v|| for all z € M with C; = [¢|- eUIAIFIBIDI

which proves the lemma. O
Note that there exists a C°-open set in the space of fiber-bunched linear cocycles.

Lemma 4.1.4. Let A € C™"(M,sl(2,K)) be an infinitesimal generator and (X*);: M —
M be a smooth flow on M. Let A C M be a hyperbolic set for (X*), and 6, € (0,1) the
hyperbolicity constant as in (2.1.1). If ||A(x)]| < %log 07" for some o > 0 and all x € A,
then

1R% @) - (@ @) < 7
1
forallx € A e allt € R,

Proof. Since, by hypothesis, |A(z)] < %log@fl, for all x € A, we have ||A(X*(x))| <
%log 0!, for all s € R. By (4.1.3), we have

G
o] o

for all v # 0. Hence |®%(x)|| < /7= for every z € A. Similarly, using (4.1.2), we find

@
that ||(®4(z))7Y| < #. Hence, it follows that | ®%(z)|| - [|(®4(x)) 7] < # for all

te R [
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4.2 Proof of generic simplicity of Lyapunov spectra

We begin by describing the criterion for simplicity of the Lyapunov spectra presented
in [1] for discrete-time cocycles.

Let f : ¥ — ¥ be an invertible measurable map and A : ¥ — GL(d, C) be a measurable
function with values in the group of invertible d x d complex matrices. These data define

a linear cocycle Fy over the map f,
Fy:2xC* =N xCh  Fa(z,v) = (f(z), A(x)v).

Note that F%(z,v) = (f*(z), A"(x) - v), where A"(z) = A(f" *(z))--- A(f(x))A(z) and
A™(x) is the inverse of A™"(f™(z)) if n < 0.

Symbolic dynamics

Let ¥ = NZ be the full shift space with countable many symbols, and let o : ISy
shift map:

o ((Tn)nez) = (Tnt1)nez-
Let us call cylinder of )y any set of the form
(2o s 021320520, -y 0] = {Z 1@y =1, for j=m,...,n}.
Cylinders of ¥* = N{"=0} and ¥ = N{»<% are defined similarly, corresponding to
[10;21, -y tp) ={Z :xj =1 for j=0,...,n} C X"
and
[ty yto1y0] = {2 x5 = for j=m,...,—1} C ¥°
We endow 3, X%, X" with the topologies generated by the corresponding cylinders. Let
Q" : 3 — 2 and Q°: 3 — ¢ be the natural projections. We also consider the one-sided
shift maps o : X% — X" and ¢° : ¥* — ¢ defined by
o' oQ"=Q"ocand 0* 0 Q* = Q%00 .

For each & = (2 )nez in 3, we denote z* = Q*(2) and z* = Q*(2). Then & — (z*, 2*)

is a homeomorphism from S to the product »% x ¥*. In what follows we often identify

the two sets through this homeomorphism. When there is no risk of ambiguity, we also
identify the local stable set

We(x") = Wi (z) = {(Yn)nez : Tn = yp for all n > 0} with X°
and the local unstable set

Wi(x®) = W) = {(Yn)nez : Tn = yn for all n < 0} with X4,

via the projections Q) and Q".
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Local product structure

Let ji be an ergodic o-invariant probability measure and let p* = Q¥ and p® = Qi
be the images of i under the natural projections. It is easy to see that these are ergodic
invariant probabilities for o* and ¢°, respectively. We assume p® and pu* to be positive on
cylinders. Moreover, we assume i to be equivalent to their product, meaning there exists

a measurable function p : 3 — (0, 00), bounded away from zero and infinity, such that

~

= p(E)(p* x p"), &€

Stable and unstable holonomies

Definition 4.2.1. Let A : ¥ — GL(d,C) be a measurable function and Fj : 3 x C* —
¥ x C? be a linear cocycle over the map o : S 3. A stable holonomy for A is a
continuous map H3 : (z,y) — Hj ,,, where z € S,y € W9(x), and Hj,, €GL(d,C),is
such that

(i) Hj,, is alinear map from &, = {z} x C* in &, = {y} x C%
(i) H3,,=1dand Hy, o H,, = Hj, ., for every y,z € W*(x)
(iil) Hj,, = (A"Y) " 0 HY puiyy gy © A™(@) for alln € Nand y, 2 € W*(z) .
Unstable holonomies H} , , are defined similarly as the stable for holonomies for f -1,

As an easy example, if A is constant on each cylinder [i], i € N, then we can define
Hj,,=1id and Hj , = id. We will see that fiber-bunched cocycles also admit stable

and unstable holonomies.

Statement of the criterion

A ~

Let U : & — GL(d,C) be a continuous cocycle over the full shift map o : % — 3.
Let p € 3 be a periodic point for o and q(p) > 1 be its period. We call 2 € S a
homoclinic point of p if Z € W(p) and there exists some multiple [ > 1 of ¢(p) such that
ol(2) € W2(p). We assume that U admits stable and unstable holonomies, respectively,
HZ and HY. Then we define the transition map (see Figure 4.2.1)

.rd d 178 T2 u

gzt Co =G Gpe = HG iy, 0 V(2 0 H
Theorem 4.2.2 ([1, Theorem Al). Let ¥ : & — GL(d,C) be a continuous cocycle over
the full shift map o, such that U admits stable and unstable holonomies. Suppose that i
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<P ol(2)
Figure 4.2.1: Transition map.

is an ergodic o-invariant probability measure with local product structure. Suppose also
that there exists a periodic point p € )y of o and some homoclinic point Z € ) of p such

that
(p) All the eigenvalues of WP (p) have distinct absolute values.

(t) For any invariant subspaces (sums of eigenspaces) E and F of WP (p) with dimE +
dimF = d, we have (g ; .(E) N F' = {0}.

Then all the Lyapunov exponents of the cocycle U for the measure i have multiplicity 1.

We refer to (p) as the pinching property and to (t) as the twisting property.

Remark 4.2.3. Let E;, j = 1,...,d, represent the eigenspaces of Pa(®) (p). For d = 2 the
twisting condition means that (g ,.(E;) # Ej for all 1 <4,j < 2. For d = 3 it means
that (g ;;(£;) is outside the plane E; & Ej and Ej; is outside the plane (g ;. (E; @ Ej),
for all choices of 1 < 4,7,k < 3. In general, this condition is equivalent to saying that
the matrix of the transition map in a basis of eigenvectors of Qap) (p) has all its algebraic
minors different from zero. Indeed, it may be restated as saying that the determinant of
the square matrix
Bii, - B 01y - O
(4.2.1)
B(M1 Bd,ir 6d,j1 5d,js
is non-zero for any I = {iy,... 4.} and J = {iy,...,is} with r + s = d, where the
d;; are Dirac symbols and the B; ; are the entries of the matrix of (g ;. in the basis of
eigenvectors. Up to sign, this determinant is the algebraic minor B[.J¢ x I] corresponding

to the lines j ¢ J and columns i € I.

Remark 4.2.4. As pointed out in [1, Appendix A] the simplicity criterion extends directly
to cocycles over any subshift of countable type or : ¥g — Xr. This will be important

for the rest of the present work.
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4.2.1 Reduction to a cocycle over a Poincaré map

Let A be a hyperbolic set for the flow (X*);cg. Let T' be a Poincaré section for the
flow (X*)ier such that A = (J,cjp 4 X*(I'). The transfer function 7 : A — [0, 00) is given
by

7(z) =min {t > 0: X'(z) € T},

and the transfer map P : A — I is given by
P(z) = X" (). (4.2.2)
as in Section 3.3. By defining
Wa(e) K = Khy,), Walr) = 47(),

for z € T', we obtain a cocycle over P.

One can build a P|p-invariant measure pp on I' from p (see [35, Section 3.4.2]).

Lemma 4.2.5. If i is ergodic and has local product structure, then pp is ergodic and has

local product structure.

Proof. Suppose that p is ergodic and has local product structure. We recall that

_Hp x Leb
Jordup

and, given a measurable set A C I,

(4) = [ xadn - Awmq[@mwwwa

Jomdup

where ds indicates integration with respect to the Lebesgue measure Leb and x4 is the
characteristic function of set A.

If B C T is invariant under P, then the set B = U,cg X*(B) is invariant under the
flow (X*);. Hence, since u is ergodic, we have that ,u(g) =0 or u(B\) = 1. Suppose
that pp(B) > 0, this implies that ,u(é) > 0, therefore ,u(é) = 1. By the other, if
pp(B) < 1 we have that the complementary set B€ is such that up(B€) > 0, what implies
that ,u(E\C) = p(Uyer X'(B°)) > 0, which is an absurd since B N B¢ = () and u(B) = 1.
Therefore pup(B) = 1 and pp is ergodic.

By Definition 2.1.4, local product structure for g means that, up to a chenge of co-
ordinates, p = p* x p® x Leb. In [27, Section 6] Haydn shows that the local product
structure of u passes to up through projection along the weak stable and weak unstable

leaves, that is, up = p'% X pp, up to a change of coordinates. [
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Let I, : {z} x K* — {y} x K? be the natural identification given by
Ly {x}xK? — {y} xK?
(x,v) —= (y,v).
The identifications {I,,} are S-Holder on a neighborhood of the diagonal in M x M and

satisfy for some constant C' and any unit vector u € {z} x K? (see [29, Proposition 4.2]),
Ly =1, |pyu—ul < Cd(z,y)’, and hence |||, || — 1| < Cd(z,y)". (4.2.3)

The cocycle W4 is said to be S-Hoélder, if W4(z) is f-Holder with z, specifically, if there
is C' such that for all close points x,y € T’

10 a(x) = Tt py © Paly) o Lyl < Cd(z,y)”. (4.2.4)

Definition 4.2.6. We say that the reduced cocycle W, is fiber-bunched if there is 6y < 1
such that
14 (@)] - [(@a(x) 7] - 077 < 6, (4.2.5)

forall z €T.

Note that if ® 4 is fiber-bunched, then so is ¥4 as a direct consequence of Definition

2.1.6. Moreover, their Lyapunov exponents differ by a multiplicative constant.

Lemma 4.2.7. The Lyapunov exponents of W 5 relative to the measure pup coincide with

the Lyapunov exponents of ®4 relative to the measure p, up to the multiplicative factor
fF Td,up.

Proof. Since pp is ergodic, by the Oseledets theorem, for pp-almost every x € I' there are
a W4 (z)-invariant decomposition T,I' = E} @& E? and Lyapunov exponents well defined
by

NV, Ppp) = lim g [ W4 ()]
for all v; € E{\{0} and i = 1,2. Note that we take one of the E' as trivial if the

Lyapunov exponents are equal to zero. On the other hand, since up is ergodic, it follows
T(”)(r)
n

" (z) = Z?’;& 7(f7(x)). In particular, if 79(z) denotes the first time that a point z € A

from the ergodic theorem of Birkhoff that lim,, = fr Tdpp, where we denote

reaches T, then for p-almost every x € A we have that X™@(x) € T and we define

the spaces El = CI)fom(Xm(@ (2)) - Eé(fo(r)(z

almost every point z € A, if E9 = R - X(x), the decomposition T,A = E? & E! @ E? is

) for all ¢ = 1,2. By construction, for u-

@', (x)-invariant. Moreover, for p-almost every 2 and any v; € E\{0}
1
M@l X1 p) = T~ log [0 ()]
n—-+oo N,

1 —T0(T To(®
= lim_—log [[@5 ™ (X" (2))07 (z)uy.

n—+oo N
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If we write 29 = X™@ () € T, w; = @7 (2)v; and n — () = 7V () + s(¢, xo) for
any £ > 1 and 0 < s < 7(P*(xy)), then

1 S i
(@4, X' ) = lim —log |85 (P (0)) W (o)

o 1 l s(¢,xo) Y Vi
= i s B 1 (P ) o
1 14
= lim - log || W* ;
Z—}I-‘Poo ¢ T(=1) ( 0) + S(g, .170) o8 || A(xO)w ||
s(4,wo) ( pe ¢ ,
+ lim 1 ¢ log K (PZ(xO))\IJA<IO>wz||
t=+oo £ T (20) + s(€, x0) | W (o) wy |
1
- —Az \Ij 7P7 )
fr Td,LLP ( A ILLP)
since
1 ( |95 (P (0)) Wy (o) i
lim - = 0.
t=+oo £ T (20) + s(€, x0) |04 (o) w; |
This proves the lemma. ]

4.2.2 Existence of holonomies for the reduced cocycle V4

The following proposition, proved in [29], establishes existence and some properties of

the stable and unstable holonomies. We include here for the reader convenience.

Proposition 4.2.8 ([29, Proposition 4.2]). Suppose that the cocycle V 4 is fiber-bunched.
Then there ezists C' > 0 such that for any x € I and y € W?(x),

(a) 1(P5(y)~" 0 Ipr@yprey) © Valz) — Luyll < Cd(w,y)” for alln € N;

(b) The limit H ,,, = lim (U (y)) " o Ipn(mypr(y © Wi(x) ezists and is a linear map
o n—00
satisfying (1), (i) and (iii) of Definition 4.2.1 and

(i) (|1 H3 0y — Lyl < Cd(@,y)”;
(c) The holonomy satisfying (iv) is unique.

Furthermore, Hj ,, can be extended to any y € W*(x) using (iii) of Definition 4.2.1.
Similarly, fory € W*(z) the unstable holonomy Hy ,  can be defined as

HY ., = lim (W5(y) " o Ipnpriy) © V().

n——oo
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Proof. Fix z € T and denote z; = P*(z). Then for any y € W(z), if y; = P'(y), we have

(W5 Y) " 0 Loy, 0 Vh(@) = (V57 (1)) 0 (Pal¥n) ™" © Loy, © Ya(wn-1)) © Ui (2)
= (U5 ()" © (Lo syus + 7o) 0 W3 (2)
(P (W)™ 0 Loy iy 0 U (2)+
+ (U3 (W) ora o Wy (2)
Lt S oo W),
= (4.2.6)
where we use recursively the argument in the first equality of (4.2.6) and r; = (U 4(y;)) o
Loiryirs © V() — Ly,

Since W 4 is fiber-bunched, there exists 6, < 1 such that | ¥ 4(z)|-||(V4(z))~|-6]"7 <
0, for all z € T. For the function n(z) = 67 we denote

7]1(;1:) = 7](1;0)7](3;-1) - 7](331.71) _ elzk;oT(l‘k)’

which is a multiplicative cocycle. Then it can be estimated that d(P™(z), P"(y)) <
d(z,y) - nu(y), for all n > 1 (see [17, Lemma 1.1]). We need the following auxiliary result.

Lemma 4.2.9. [29, Lemma 4.3] If V4 is fiber-bunched , then there exists Cy > 0 such
that (W) ()] - ¥4 (x)| < Coblm(u)~7, for all = €T, y € W(x), and i > 0.

Proof. Using (4.2.3), (4.2.4) and the fact of || W4(-)|| > 1, there is a uniform Cy > 0 such
that

Watell _ 1Yal@e) = Ly, © Vale) © Lol | 1255 g0 © Wa(ye) © Lol
[Pl = @A () P a(yi) |

S Cl<d(xk7yk)) + || xk+1yk+1l| ’ H[Zkka
S 1+ CZ(d(a:k?yk)) )

for all £ > 0. We estimate

W% ()M 1T () < HPal) - IV ayn) M- 1)) -
NWalzi)] - [Walz)] - II‘PA(x)II

[2a(@)l
=TT I1wa)ll - 12 alye)) " - H A7
k=0

H‘I’A
< 1:[9277(%)_5 : 1:[(1 + Cy(d(wr, yi))").-
k=0 k=0
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Since the distance between z, and v, decreases exponentially, the second product is

uniformly bounded, and we obtain the existence of a uniform Cj > 0 such that

122~ W) 11 (@) < Coblymi(y) ™.
O

We now complete the proof of Proposition 4.2.8. Since ¥, is Holder continuous (see
(4.2.4)) we have

7l = 1P a(i) " 0 Loy igiss © Wa(i) = Loy,
<NPa) ™ o Loy |- W al@s) = L0 0 Wa(yi) © Loyl (4.2.7)
< Cs(d(zi,1:))? < Cs(Cyd(z, y)mi(y))’.

It follows from (4.2.7) and Lemma 4.2.9 that for all ¢ > 0
(%4 ()~ o rs 0 Thy() || < (T ()~ - (@) - ]
< Coﬁéni(y)_ﬂCngd(x, ) ni(y)° (4.2.8)
= Csd(z, )"0

Using (4.2.6), (4.2.8) and )7 6" = 115 < 0o, we conclude that there is a constant C' > 0

7

(depending only on A and the identifications) such that

n—1
PR ™ © Luyy, 0 Wh(2) = Lyl < D I(WY()) ™" o7y 0 Wiy(a)]]
i=0
< Cd(x,y)’.
(b) It follows from the estimates in (4.2.6) that
IOVE (@)™ 0 Loy 0 WA (@) = (Wa(Y)) 7 0 Loy, 0 Wi ()| = [[(Vh () om0 Wi(2)]).

Therefore, it follows from (4.2.8) that {(¥%(y)) "o I, © ¥4 (x)}, is a Cauchy sequence,
and thus, since SL(2,K) is complete, this sequence has a limit H3 , , : & — &,. Since
the convergence is uniform in the set of the pairs (z,y) where y € W¢(z), the map H3 , ,
is continuous at z and y. Clearly, the maps H} , , are linear and satisfy H3 ., = Id. It
follows from (a) that ||HS, , — Iyl < Cd(z,y)?. We also have

Hi = lim (W4 (y) ™ o (W5 (P"(9)) " 0 Ipiqaypry © Wy "(PH () 0 Wh(x)  (4.2.9)

— 00

= (V5()) ™" 0 H pn(ay pry) © Val2),
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for all n > 0. To show Hj , o Hj}, = Hj,  we use (4.2.3) and Lemma 4.2.9 to obtain,
as in (4.2.8), that

10 = Hiye © Hwy | < IR oz = Tz, © Loz - 125 (2)]

which tends to zero as n — oc.
(c) Suppose that Hj and Hj are two stable holonomies satisfying |[H} ., — Ly <
Cd(z,y)?, for i = 1,2. Then using the equation (4.2.9) and the Lemma 4.2.9 we obtain

||H}X,:p,y - Hi,x,y” = ”(\Iﬂ;}(y))_l ° (Hil,P”(z)P"(y) - Hi,P”(x)P"(y)) ° \IJZX(:E)H
< Coblym(y)~"Cd(P"(2), P"(y))” = Cob3

which tends to zero as n — oo. Hence HY = H3. O

4.2.3 Reduction to a cocycle over a subshift of finite type

Let Ry, ..., Rx be a Markov system for a flow (X*);cg on the hyperbolic set A, we

consider the k£ x k matrix R with entries

1 if intP(R;) NintR; # 0,

rij =
0 otherwise,

where P is the transfer map. We also consider the set ¥g C {1, ..., k:}Z given by
ZR = {( . -7:_1Z'07:1 . ) : /rininJrl =1 for n c Z} ,

and the shift map or : ¥ g — Xgr. Recall that we define a coding map p: ¥g — Ule R;
by

pl- i - ) = () (PID) I (iR,

JEL
and the diagram
YR —> YR (4.2.10)
/| g

P

——T
commutes, that is,
poor = Pop. (4.2.11)
Defining
Va(p) = Valp(p)). with p € S,
we obtain a cocycle over og. The next lemma, proved by Backes, Poletti, Varandas and

Lima in [2], shows that the product structure of pp can be lifted to a og-invariant measure

in ER.
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Lemma 4.2.10 ([2, Proposition 4.1)). There is a or-invariant probability measure v on

YR, such that v is or-ergodic, has local product structure and pup = V.

Lemma 4.2.11. The Lyapunov exponents of (I\JA coincide with the Lyapunov exponents
Of \I/A.

Proof. Since pp is ergodic, by the Oseledets theorem, for pp-almost every x € I' there is
a W (r)-invariant decomposition T,I' = El $ E*> ¢ --- & E¥®) and there are Lyapunov
exponents well defined by

1 n
Ai(Wa, P, pp) = lim —log || W73 (x)vi
n—oo N,

for every v; € E‘\{0} and 1 < i < k(x). Thus, given p € 3 regular for v in the sense
of Oseledets, we define Ef = E;(ﬁ), for 1 < i < k(m(p)). Hence, given w; € Efr(ﬁ)\{O}, we

have

~ . 1 s
Ai(Wa,0m,v) = lim —log || W (p)w;||

n—-+oo N

) 1 no A
= lim —log ||V (7m(p))w;| = \i(Va, P, up).

n——+oo N
Therefore, the Lyapunov exponents of U A coincide with the Lyapunov exponents of W 4.

[]

~

Proposition 4.2.12. The cocycle Fg : Yr x K* = Xr x K?, (p,v) = (0r(p), Ya(p)v),

18 continuous and admits stable and unstable holonomies .

Proof. The continuity of v A follows from the fact that ¥4 and 7 are continuous. If p and 2
are in the same local stable manifold for or, then 7(p) and 7(Z) are in the same local stable
manifold for P. Thus, we can define stable holonomies for U, as ﬁj’ﬁyé = H} ) n(2)-
Similarly, if p and Z are in the same local unstable manifold for og, then 7(p) and 7(2)
are in the same local unstable manifold for P. Thus, we can define unstable holonomies

for U4 as ﬁ[}jl = H}Y []

71372 A?”(ﬁ)77r(é).

As a consequence of Lemmas 4.2.7 and 4.2.11 and and Proposition 4.2.12, we obtain

the following

Lemma 4.2.13. The following three statements are equivalent:
e The cocycle \/I\IA has simple spectrum for v-almost every point in XR.
e The cocycle W4 has simple spectrum for pp-almost every point in T.
e The cocycle Dy has simple spectrum for p-almost every point in A.
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4.2.4 Density and openness of twisting and pinching cocycles

First we show that for any given infinitesimal generator and any small perturbation
of the time-one map of its solution, there exists an infinitesimal generator close to the
original one which realizes the perturbation map. Our main tool for that is the Lemma
4.2.14 which was proved by Bessa and Varandas in [9].

Given S € SL(2,K), we can see S as the time-one map of the linear flow solution of
the linear variational equation @(t) = S(¢) - u(t) with initial condition u(0) = id. In other
words, u(t) = ®& is solution of @(t) = S(t) - u(t) and ®§ = S. By Gronwall’s inequality,
we have

t
104 < exp {/0 ||S(s)||,wds} forall ¢ > 0.

Hence, we say that S € SL(2,K) is §-C™"—close to identity if S is §-C™"-small,that is,
IS, < 0.

Lemma 4.2.14 ([9]). Let A € C™(M,sl(2,K)) be an infinitesimal generator over a flow
(XY on M, x € M any nonperiodic point (or periodic with period 1) and € > 0. There
exists 0 = §(A, €) > 0 such that if S € SL(2,K) is isotopic to the identity and 6-C™ -close
to identity, then there exists B € C™" (M, sl(2,K)) satisfying:

(a) |B— Al <e€and
(b) Op(x) = Dy(x)o S,

Proof. By the tubular flowbox theorem there exists a smooth change of coordinates so
that there exists a local conjugation of X on a neighborhood of the segment of orbit
{X*(z) : t € ]0,1]} to a constant vector field on R?, d = dim(M). With this assumption

we consider z = 0 and {X*(z) : t € [0,1]} = {(£,0,...,0) e R : t € [0,1]} C 8%1, where

9

B denotes the direction spanned by the direction z; = (1,0,...,0). Given p > 0, let

— i —
B(0,p) C (%) denotes the ball centered in 0 of radius p contained in the hyperplane
orthogonal to 8%1. The perturbation will be performed in the cylinder C = B(ﬁ, p)%x[0,1] =
{X"(B(0,p)) : t € [0,1]}. Using the fact that M is compact we can take

K= max {[|®(2)]lrv, [(@%(2) " s Al }- (4.2.12)

z€M,t€(0,1]

Fix any € > 0 and choose ¢ := —=. Consider the isotopy S; € SL(2,K), t € [0, 1], such

6K3
that:

(1) S, = (1 — t)id + tS:
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(2) S; is the solution of the linear variational equation dyu(t) = S(t) - u(t) with infinites-

imal generator S = (S,)/(S;)™!, where (S;) = S — id, satisfying the inequality
, S(t
Il = supsup DS (o)) +sup OS5
0<5<r tef0,1] t#s |t — s
Consider a C*° bump-function « : [0, 00[— [0, 1], with a(s) = 0if s > p and a = 1 if
s € [0,p/2]. Given z € B(0,p), consider the linear isotopy Sy(z) € SL(2,K), t € [0, 1],

between Sy(2) = id and S;(2) = a(||2]|?)S obtained as solution of the equation du(t, z) =
S(t, z) - u(t, z) with infinitesimal generator S satisfying

) S —S
1, 2)llvw = sup sup |DIS(z + (1,0,...,0))] + sup o) =S
0<5<rt€[0,1] z#y d(z,y)

Then, if T;(z) = ®4(2)a(]|2]])Si(2) and we consider time derivatives one notices that

T(2)' = 4 (2) a(llz])Si(2) + D% (2) (e[S (=)

Y (2)a(llzDSi(2) + @y (2) (a(ll=]) Si(2))’

Ti(2) + 4 (2)(all2])S:(2)) (Te(2)) ' To(2)

+ @ (2)a([[2[)Si(2) (@ (2)allz])Su(2)) 1] Tu(2)

+ @4 (2)a([l2IDS(2) (S (=)~ (ellz]) (@4 (2) 7] Te()
+ @ (2)S1(2)(Se(2) " (P (2)) ] Te(2)

T(X'(2)] Tu(2),

where T'(X*(2)) = ®4(2)S(t, 2)(®4(2)) 7!, with S(t,2) = S;(2)(Si(2))™!, in the flowbox
coordinates (z,t) € C = B(0, p) x [0, 1] and outside the flowbox cylinder C we let T' = [0].
Consequently T, is a solution of the equation dyu(t,z) = B(X'(2)) - u(t, z) with initial
condition equal to the identity, where B(X'(z)) = A(X'(2)) + T(X"(2)) for all ¢ € [0,1]
and z € B(0, p).

We will prove condition (a) of the conclusions of the lemma, that is, that | B—A||,, < €
or, equivalently, that |T||., < e. We will perform the computations for r = 0 with all
the details. For r € N we can estimate easily using the chain rule and Cauchy-Schwarz
inequality. Whenever we consider points z,y in the tubular flowbox C (the support of
the perturbation) we write them in the flowbox coordinates = = (z,t) , y = (w, s), where
t,s €[0,1] and z,w € B(0, p).

We shall estimate 7" in both coordinates and then the estimates on ||T'||o, = ||T]|, can
be obtained on B(0, p) x [0,1] by means of a triangular inequality argument.

If z;, w; are inside the same laminar section in C, that is, z; = (2,t) and w; = (w,t),
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then using (4.2.12), it follows that

IT(2e) = T(we) || = 9% (2)S (¢, 2) (@ (2)) ™ — @ (w)S(t, w) (LY (w)) |

< [[@%(2) [S(t, 2) — S(t, w)] (Phy(2)) "+
+ 1 [®la(2) = Ph(w)] S(t,w) (P (2) |1+
+ (|25 (w)S(t,w) [(D(2)) ™" — (D (w) 7] ]

< K?|S(t,2) = S(t,w)|| + K[| (2) — @ (w)[[[[S(t, w)l]
+ KISt w) (@4 (2)) " — (@h(w)) I,

and so
[T (z0) = T(we)l

sup < K%+ 2K¢é° < e.
Zjﬁﬁ’u)t d(Zt, wt)y

Analogously, for z;, z, inside the same orbit in C, it follows

|17 (z) = T(zs) |l = 194 (2)S (2, 2)(P(2) ™" — P5(2)S(s, 2) (P2 (=)'l
< [|[@4(2) [S(t,2) — S(s,2)] (24 (2)) "I+
+ | [24(2) — ®4(2)] S(s, 2)(D(2) I+
+[134(2)8(s, 2) [(P(2)) ™" — (@4(2) '] |
< K?|IS(t,2) — S(s,2)|| + K ||<I>tA(z) [id — o5t (Xt(z))} H IIS(s, 2)|
+ K[IS(s, 2)|| [[(4(2)) 7 [id — (@57 (X () ']

and so

[7(z0) = T(z)| lid — @3 (X ()l

su < sup | K% + K26 +
Zt;égs d(zta Zs)y t;élsj |: |t — Sly
gl = @K )
|t — s]”

id — S X
§K2(5—|—supK2§ [H@ A ( (z))||+
t#s [t —s|”

lid — (‘Pit(Xt(Z)))‘l\q
|t = sl

< K26 + sup K26(2||Al))
t#s

+

< K2%25 4+ 2K36 < 3K36 < e.

Notice that we consider v = 1. This is enough to deduce condition (a) using a triangular
inequality argument.
Finally, we will prove condition (b) of the conclusions of the lemma, that is, that we

have the equality ®L(z) = ®!(z) 0 S. We are considering = = 0, so let us prove that
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—,

dL(0) = ®L(0)oS. Just observe that T;(z) is a solution of the linear differential equation

u'(t,2) = [A(X"(2)) + T(X'(2))] - ult, 2) = B(X'(2)) - u(t, 2). (4.2.13)

But, given the initial condition u(0,z) = z, this solution is unique, say ®%4(0). Since
Ti(z) = @Y (2)(]|2]|)Si(2) and it also satisfies (4.2.13), we obtain that, for z = 0, ®%(0) =

@', (0)(]|0]])S¢(0). Thus, we obtain that, ®5(0) = ®%(0)a(0)S,(0) = ®%(0)S, and the

lemma is proved. [

Density and openness of twisting property

The next proposition shows that the set of infinitesimal generators for which the

reduced cocycles are twisting, is an open subset of C"™" (M, sl(2, K)).

Proposition 4.2.15. Let A € C™(M,sl(2,K)) be an infinitesimal generator and V4
be the corresponding reduced cocycle. Let p € T' be a periodic point for the return map
P:T =T and z € I" be a homoclinic point for p. Suppose that WV, satisfies the twisting
property for p and z. There exists an open set U C C™"(M,sl(2,K)) containing A, such
that for all B € U, the reduced cocycle Vg satisfies the twisting property for p and z.

Proof. Let A € C™(M,sl(2,K)) be such that its reduced cocycle U4 satisfies the twisting
property for the periodic point p € I', with period ¢(p) > 1, and the homoclinic point
z € I" associated to p.

By Lemma 4.1.3, the map which associates A € C™"(M,sl(2,K)) with the matrix
U4 (p) = %) (p) varies continuously with A. Thus the map A — U5 (p), which asso-
ciates the infinitesimal generator A € C™ (M, sl(2,K)) to the matrix \I/ffl(p) (p) € SL(2,K),
also vary continuously with A. Since the holonomies varies continuously with the in-
finitesimal generator, the map A + (4,., which associates the infinitesimal generator
A e C™(M,sl(2,K)) to the map Ca,. € SL(2,K), also varies continuously with A.

Thus, for any B € C"™(M,s[(2,K)) that is C"-close to A, the invariant subspaces of
\Iqu(p ) (p) are close to invariant subspaces of \11?4(? ) (p). If the subspaces E, F C K? are close,
their images Ca,.(E) and (g, (F), under Ca, . and (g, ., respectively, are close.

Therefore, for each A € C™ (M, sl(2,K)), fix E4 C K? and F4 C K? invariant spaces
under A, such that (a,.(E4) N Fy = {0}. For any open neighborhood V C SL(2,K)
of Cap., there exists an open neighborhood U C C™(M,sl(2,K)) such that if B € U,
then (p,. € V. Thus, taking V and U small enough, Ep, Fg C K? invariant subspaces
under \Iqu(p) (p), close to E4 and Fy, respectively, we have (g, .(Ep) N Fp = {0}. Since
dimK? = 2, the number of choices of proper invariant subspaces is at most 2, it shows

that B is twisting with respect to p and z. This completes the proof of proposition. []
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Now we prove the set of cocycles satisfying the twisting property for any periodic point

p and any homoclinic point zis dense in C"™" (M, s((2,K)).

Proposition 4.2.16. Let A € C™"(M,s1(2,K)) be an infinitesimal generator over a flow
(X" : M — M. For any neighborhood ¥V C C™"(M,sl(2,K)) of A, any periodic point p
and any homoclinic point z, there exists B € V such that Vg s twisting with respect to p

and z.

Proof. Let A € C™"(M,sl(2,K)) be an infinitesimal generator. Suppose that W4 is not
twisting. The condition of not satisfying the twisting property can be described as follows:
for any periodic point p with a homoclinic point z € W¥(p, P), with P'(z) € W2 (p, P), | >
1 multiple of ¢(p), the period of p, there are subspaces F and F' invariant under \I'qA(p ) and
satisfying dimFE+dimF' = 2, such that the transition map Ca,. = HY Pl(z)p o\IllA(z)oHX%z
satisfies (ap..(E) = F. Let wy € E be such that (4, .(w1) € Ca,-(E). Choose 1 < k <,
we will perturb the cocycle ¥4 in a neighborhood of the point P*(z). Let

wy = (\DZ(Z) o Hz,pg) (wl) € K?Dk(z)

Denote by Ry the rotation of angle 6 in K2. If §; > 0 is small enough, by Lemma
4.2.14, we can find B € C™"(M, sl(2,K)) that is C""-close to A such that ®L(P*(z)) =
L (P*(2)) o Ry,. Thus

Wp(PH(2)) = @T“”“(” <Pk<z>>
= q> (
= ‘I)A(Pk(z (
= 7" CV(PH(2)) o Ry,
= W4 (P*(2)) o Ry,.

X
(

So

Uh(2) = Up(P7 (2) o...0 Ug(P*1(2)) o Up(P*(2)) o Ug(P*1(2))o...0 Up(z)
= W (P"(2)) o Royarar © Wa(2).

Note that H?

By = Hipis, € Hy. = Hi .. In fact, since 1 <k <, the limits

Bpiy = m (U5(p)) " 0 Ipn(pi(aypr(p) © WA (P(2))

n——+o0o
and

HE,p,z = hm (WZ(Z))_I (@) IPn(p)Pn(z) (@) \I/Z(p)

n——oo
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do not depend on the expression Wg(P*(2)). Thus, the transition map (g, . associated

with infinitesimal generator B is given by

l
<B,p,z = :Z,Pl(z),p © \DB<Z> © Hx,p,z

= :Z,Pl(z),p o \Ilil_k(Pk(z)) o Ry, o \Ifg(z) oHy, .

Thus we have (g, .(w;) ¢ F. Since the number of choices of E and F is finite, we have

that Up is twisting for p. O

Density and openness of the +pinching property

The next proposition will show that the set of infinitesimal generators for which

the reduced cocycles are pinching with respect to some periodic point is an open set
in C™" (M, s1(2,K)).

Proposition 4.2.17. Let A € C™(M,sl(2,K)) be such that its reduced cocycle V4 sat-
isfies the pinching property for a periodic point p. Then there is an open A € U C
C™(M,sl(2,K)) such that for all B € U, the reduced cocycle Vg satisfies the pinching

property for p.

Proof. Let p € T be periodic point for the return map P : I' — T', with period ¢(p). Again,
the map A — \I/i(p) (p), which associates the infinitesimal generator A € C™" (M, sl(2,K))
with the matrix U4 (p) € SL(2,K), varies continuously with A.

We know from the Spectral Theory that the eigenvalues vary continuously with the
matrix. So, if \Ili(p ) (p) has all eigenvalues with different norms, there is an open V C
SL(2,K) containing \IJ?q(p ) (p) such that all matrices in V have eigenvalues with different
norms. Therefore, the pre-image of V under the map B — ‘I/‘fg(p ) (p) is an open U C
C™(M,sl(2,K)) containing A such that if B € U, then \If%(p) (p) has all eigenvalues with

different norms. This proves the proposition. O

The next lemma is inspired by [11] and shows that there is a dense set of fiber-bunched

infinitesimal generators in C™ (M, s(2, K)) whose reduced cocycles are pinching.

Lemma 4.2.18. Given a cocycle ¥ € C™(T',SL(2,K)) and any ¢ > 0, there are ¥ €
C™(T',SL(2,K)) such that |¥ — ||, < € and a periodic orbit p € M, and [TAR (p) has

two eigenvalues with distinct norms.

Proof. Let ¥ € C™(T", SL(2,K)) be fixed. The lemma is clear in the case that K = C.
In fact, suppose ¥ € C™(I', SL(2,C)) and for a periodic point p with period ¢(p) we
have that W) (p) has two eigenvalues \; and A, with the same norm, then W) (p) is
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diagonalizable, that is, there exists a 2 x 2 invertible matrix ) and a 2 x 2 diagonal matrix
D such that WP (p) = QDQ~'. We also have that A; - Ay = det W9?)(p) = 1. Define

@=Q<1+60 (1) )Ql\l’

O 1+¢g

Then ¥*% (p) has two eigenvalues with distinct norms, det ) (p) = 1 and, if ¢; is small
enough, U is C™ close to W.

In the case that K = R, if there exists a periodic point p so that ¥9®) has two real
eigenvalues then, up to a arbitrarily small perturbation we find a cocycle ¥ so that
W — ¥|,, < e and TP has two distinct real eigenvalues. For that reason in what
follows we are reduced to the case where the cocycle W is so that W) has some complex
eigenvalue for every periodic point p (here ¢(p) > 1 denotes the period of p).

For simplicity of the presentation, we suppose that p is a fixed point for P, and let z
be a homoclinic point with respect to p. The general case follows along the same lines.

Suppose that W 4(p) has a pair of complex conjugate eigenvalues. Let
1 2
Ep © Ep

be the splitting of R? into eigenspaces of W 4(p).

Let A, be the horseshoe generated by local stable and unstable manifolds of p crossing
through z, that is, A, = NyezP"(Uy U Uy) with Uy, Uy disjoint neighborhoods of p and z,
respectively. Up to a finite multiple of P we may assume that P(Up) N U; # 0. Hence,
for each n there exists a periodic point x,, of increasing period equal to [ + n, such that
the first n iterates of x,, belong to Uy and the following [ iterates belong to U (see Figure
4.2.2). Those [ iterates are precisely the ones equal to the orbit of z different from p.
Defined in this way x,, as n increases, the point z,, is as close as desired to p and the
matrix W' (z,,) inherits the dynamical behavior of W¥(p).

By continuity of the eigenvalues, every cocycle ¥y in a C° neighborhood U of ¥4 has
a pair of complex eigenvalues over z,, for every large n (independent of Wy).

The case when W™ (z,,) reverses the orientation of E} @ E? is easy, as we shall see
right after the statement of the next claim. For the time being, we suppose that ‘Iffj”(xn)
preserves the orientation of E;n b Eﬁn Hence, the same is true for every nearby cocycle
WUo. Then we denote p(n, ¥y) the rotation number associated to W5 (z,). Moreover,
given a continuous arc B = {Z;} of cocycles close to ¥ 4, we denote d(n, B) the oscillation
of p(n, =) over the whole parameterization interval. The main step in the proof of Lemma
4.2.18 is the following.
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Figure 4.2.2: Periodic points x,,.

Claim 4.2.19. There exists a continuous arc A = {=; : t € [0, 1]} of C" cocycles in U with
Zo = V¥4 and such that for every ¢ > 0 there exists n; > 1 so that

S S it € [0,1]}) > 1,

for every n > ny.

Let us explain how Lemma 4.2.18 follows from Claim 4.2.19, after which we shall prove
the lemma.

Firstly, for every ¢ and every large n the matrix Z:7"(z,) has a pair of complex
eigenvalues. Secondly, in the orientation preserving case we may use Claim 4.2.19 to
conclude that there exists ¢ arbitrarily close to zero and n > 1 for which the rotation
number p(n, Z;) is an integer. This means that Z/7"(z,,) has some real eigenvalue. Observe
that in the orientation reversing case this conclusion comes for free. So, in general, by
an arbitrarily small perturbation close to z,, and preserving E;mt @ Eimt, the splitting of
R? into eigenspaces of ZL7"(x,,), we can obtain a cocycle Z' for which there are two real
and distinct eigenvalues. Thus, we find a periodic point py and a continuous cocycle Wy,
arbitrarily close to the initials p and W4 such that all the eigenvalues of ¥y over the orbit
of pg are real. This concludes the proof of Lemma 4.2.18.

Finally, we prove Claim 4.2.19.

Proof (of Claim 4.2.19). We begin by fixing, once and for all, a basis of R? coherent with
the decomposition E} @ EZ: each vector in the basis is in some E!, and the matrix of
U 4(p) is a rotation (of angle p;), relative to this basis. We always consider the (constant)
system of coordinates on the fibers {z} x R? defined by this basis. Given any 6, we define
Ry to be the linear map given by the rotation of angle # along R2. In this system of
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coordinates, Ry can be written as
cosf) —sinf
Ry = _ :
sinf  cos6

() = Rye - Wa(x), fortel0,1],

We choose

where € > 0 is fixed small enough so that all these cocycles be in U. Reducing ¢ > 0 if
necessary, we may find » > 0 small enough so that every E;mt is a graph over E;, restricted

to the r-neighborhood of p. Moreover, we write

\ijz—n(x) = Otnn- " Otnl - Bt,n

where the o4 5, ; correspond to iterates inside the r-neighborhood of p, and 3; ,, encompasses
the iterates outside that neighborhood. Since there are finitely many of the latter, 3,
converges uniformly to some f;, as n — oo. Thus, in order to obtain the conclusion of
the lemma, it suffices to show that the variation of the rotation number of the matrix
Qp -+ Qpna Over every interval [0, 1] goes to infinity when n — oco. For this we observe
that, by the definition of Z;, the o, ; are uniformly close to the rotation of angle te + p,
if the radius 7 is chosen small enough. Since the a;,; preserve the orientation, all their

contributions to the rotation number roughly add up, yielding the claim. O]

]

Proposition 4.2.20. Given a infinitesimal generator A € C™(M,sl(2,K)) and any € >
0, there are B € C™(M,sl(2,K)) such that ||A — B||,, < € and a periodic orbit p € M,

such that \If%(p) has two real and distinct eigenvalues.

Proof. Let A € C™(M,sl(2,K)) be an infinitesimal generator. If there is a periodic point
p such that \Ilil(p ) has two real and distinct eigenvalues we are done. Otherwise, up to
a small perturbation we may assume that \I/ilq(p ) has a complex eigenvalue v for every
periodic point p. Recall that complex conjugate 7 is also an eigenvalue for \Iqu(p ),

Let p be a periodic point of period ¢(p) > 1 for P. By Lemma 4.2.18 we can find a
cocycle U that is C™"-close to W4 and a periodic point z,, close to p such that \f!q(x")(xn)
has two real and distinct eigenvalues. By Lemma 4.2.14 we can find B € C™ (M, s((2,K))

C¥-close to A such that Wz = W. This finish the proof of the Proposition. ]

Denote by Per(P) the set of periodic points for the map P. Now we prove that there
is an open and dense set O C C™"(M,sl(2,K)) such that for every A € O we have that
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the reduced cocycle W4 is both twisting and pinching for some p € Per(P) and some

point z homoclinic with respect to p. For each p € Per(P) consider the following sets

T, ={A e C"(M,sl(2,K)) : Uy is twisting for the point p € Per(P)

and some homoclinic point z},

P, ={A e C"(M,sl(2,K)) : Uy is pinching for the point p € Per(P)},

TP, ={AeC™"(M,sl(2,K)) : U, is twisting and pinching for the point p € Per(P)

and some homoclinic point z},

and
TP .= Upeper(p)TPp.

We will prove that T'P is an open and dense subset of C™" (M, sl(2,K)).

By Proposition 4.2.15 and Proposition 4.2.17 the sets T}, and P, are open for every
fixed p € Per(P). Since TP, = T, N P, we also have T'P, is open for each p € Per(P),
then T'P is also open.

To show that T'P is dense, take any A € C™(M,sl(2,K)), p € Per(P) and a ho-
moclinic point z for p. If ¥, is not pinching for p, by Proposition 4.2.20 we can find
B € C™(M,sl(2,K)), close to A, and periodic points z,, for P, so that x, — p such
that U is pinching for z,. If Up is not twisting to x,, by Proposition 4.2.16 we can
find C € C™(M,sl(2,K)) close to B, such that U¢ is twisting for z,. Since P, is
open, we have that we can take C' € T'P, . Thus, taking approaches sufficiently small,
Ae C™(M,sl(2,K)) is close to C' € TP, so T'P is dense in C™ (M, s[(2,K)).

This concludes the proof of Theorem A.
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Chapter 5

Ergodic optimization for hyperbolic

flows

The results in this chapter were obtained in collaboration with Paulo Varandas and
Roberto Sant’Anna.

5.1 Hyperbolic flows

Our starting point is a result due Contreras for Ruelle expanding maps. Let X be a
compact metric space and 7' : ¥ — X be a Ruelle expanding map: there are numbers
k € Z* and 0 < X\ < 1 such that for every point € ¥ there is a neighborhood U, of x in
> and continuous branches S;, i = 1,..., ¢, < k of the inverse of T" such that

Ez
T'U,) = Si(U,), ToSi=1Iy,

i=1
for all 7, and

d(Si(y), Si(2)) < Ad(y, z)
for all y, z € U,. Assume without loss of generality diam > = 1.

Theorem 5.1.1 (Contreras [19]). If ¥ is a compact metric space and T : ¥ — X is a
Ruelle expanding map then there is an open and dense set O C C*(X,R) such that for all

F € O there is a single F-maximizing measure and it is supported on a periodic orbit.

Actually, in [19], Theorem 5.1.1 was proved for Lip(3,R), the space of Lipschitz
observables, instead of C*(¥X,R). But a Lipschitz function is a Holder function with
a = 1 and the result remains true as we stated here up to a change of metric. In fact,
a Holder function ¢ € C*(X,R) with respect to the metric d(-,-) becomes a Lipschitz
function if we just change the metric to d, (-, -) defined by d,(z,y) = d(x,y)*.
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For generic continuous observables Morris showed in [34, Corollary 1.3] the following.

Theorem 5.1.2. Let T : M — M be a continuous transformation of a compact met-
ric space satisfying Bowen’s specification property. Then there is a dense G set Z C
CY%(M,R) such that for every f € Z, there is a single T-maximizing measure, such that

it has support equal to M, has zero entropy and is not strongly mizing.

5.1.1 Ergodic optimization for the shift map

We recall the following result by Bowen, whose proof will be included for reader’s

convenience. Recall that for R a n x n matrix of 0’s and 1’s, we denote
Sr={z €%, Ry, =1foraliecZ}

and call 0 : Sr — Zg, 0 ({#:}2_) = {zi+1}32_o, a subshift of finite type. Also recall

1=—00

that for ¢ : ¥ g — R continuous we define the variation of ¢ on k-cylinders by

vargg = sup{|¢(z) — ¢(y)| : v; = y; for all [i| <k}

and denote .Zgr the family of all continuous ¢ : ¥g — R for which varyg < bc® (for all

k > 0) for some positive constants b and ¢ € (0, 1).

Lemma 5.1.3 (Bowen [14, Lemma 1.6] ). If ¢ € Fgr, then there exists a continuous
function u : ¥r — R such that ¢ := ¢ +uoo —u € Fr and Y(x) = Y(y) whenever
x; =y; for all i > 0.

Proof. For each 1 <t < n pick {ay.}3>

p(x) = z* where

€ Yr with ap, = t. Define p : ¥g — X by

—0o0

T for k>0
agq, fork <O0.
Let

u(z) = Z(sb(aj () — oo’ (p(2))))-

J

Since o (z) and o7(p(z)) agree in places from —j to +oo,

|6(7 (2)) — ¢(0? p(2)))] < varj¢p < ba’.

As Z?‘;o ba? < oo, u is well defined and continuous. If z; = y; for all |i| < n, then, for
j € (0,7,
|6(0? () — ¢(o” ()| < var,_;¢ < ba""

47



=r
5 |
<2b o+ Z o’
=S
< .
T 1«
This shows that u € .#r. Hence ¢ := ¢ — u+ uo o € .Fr. Furthermore
z) + Z 0—J+1 O-]+1 + Z UJ+1 (aj(p(g))))
]—71

)+ Z ¢(o7(z)) — 607 (p(2)))) -
The final expression depends only on {z;}%°,, as desired. O

Now we analyze the previous coboundary map as a function of the observable. Note
that by Remark 3.1.1, up to a change of metric, we have that #r = C*(Xg,R). So we

have the following.

Lemma 5.1.4. Let DT be defined as

DY = {¢y € C*(Zr,R) : ¥(z) = ¥(y) whenever x; = y; for all i >0} .
Then the application = : C*(Xr,R) — DT given by Z(¢) = ¢ +uo o —u, where u = uy :
Yr — R is given by Lemma 5.1.3, is a submersion.

Proof. First we show that the transformation U : C*(Xg,R) — C*(Xg,R) given by

o0

U)x) =) (8(o?(2)) — dlo? (p(x))))

=0
is linear on ¢ € C*(Xg,R). Then, for ¢,9 € C*(Xgr,R) and A € R we have that

(& + M) (07 (2)) — (¢ + M) (07 (p(2))))

M

<
I
o

U(p+ Mp)(z) =

(60! (2)) + Mp(o7(2))) — (60 (p(z))) + M (0? (p(2)))))

Il
.Mg

<
I
o

(60! (2)) — ¢(o” (p(2))) + AW (07 (z)) — ¥( (p(2)))))-

I
WK

.
Il
o
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Since
and

are convergent series, we have that

U+ M) (x) = U()(z) + AU(Y)(z).

This proves that U is linear. Hence, = : C*(3g,R) — D™ is linear, since it is a sum of
linear transformations. Note also that Z is surjective by construction of D*. This implies
that Z: C*(Xg,R) — DT is submersion. O

Remark 5.1.5. If ¢ € C*(X, R) one can associate to ¢ an observable ¢ € C*(Xg,R) by
o ({z)2 o) = ¢ ({z:)20)

1=—00

where {z;}22, € ¥, is the natural projection of {z;}3° _ € Yr. Note that ¢ : ¥g — R
is constant along local stable leaves. Reciprocally, if ¢ € C*(Xg,R) satisfies ¢(z) = qg(g)
whenever z; = y; for all i > 0, then one can associate to ¢ an observable in ¢ € CEL,R)
by

¢ ({2:}%0) = & ({2} o) -
The observables in C%(X%, R) are thus identified with the subclass of C*(Xg,R) formed

by observables that are constant on local stable leaves. More precisely, given identification
YR o~ Em/~,
where z ~ y if x; = y; for all i > 0 and z,y € ¥R, one can identify
C*Ch,R) = C*(Zg,R)/~ ~ DT,
where DF = {¢) € C*(Zg,R) : ¢(z) = ¥(y) whenever z; =y; for all i > 0}.

The next result is a version of the main result in [19] for bilateral subshift of finite

type.

Proposition 5.1.6. There is an open and dense subset R C C*(Xgr,R) such that for all
¢ € R there is a single ¢p-mazimizing measure and it is supported on a periodic orbit of

0:YR — XR-
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Proof. By Remark 3.1.2, we can apply Theorem 5.1.1 to o : 3 — X} and obtain an
open and dense set O C C%(X4, R) such that for all ) € O there is a single -maximizing
measure and it is supported on a periodic orbit. By Remark 5.1.5 we have that O is
isomorphic to an open and dense set OF C DT, such that for all ¢» € OF there is a
single ¥-maximizing measure and it is supported on a periodic orbit. In fact, for every u
o-invariant measure in X there is a natural way to make y into a measure on ¥ 4.

Following [14, Section C], for ¢ € C°(Zg,R) define ¢* € C°(ZL, R) by

" ({zi}i2o) = min{é(y) : y € ¥R,y = 2; for all i > 0}.

Notice that for m,n > 0 one has
[(poo™) 00™ —(doo™™M)|| < var,o.

Hence

‘/(fb oo")dp — /(¢ o 0”+m)*du‘ = ’/(gb oo™)* o o™dy — /(¢ o a”+m)*du‘
< var,¢

which approaches 0, as n — 0o, since ¢ is continuous. Hence

/qbd,&: lim [ (¢oc™)*du

n—oo

exists by the Cauchy criterion. It is straightforward to check that i € C°(Zg,R)*. By
the Riesz Representation Theorem we see that i defines a probability measures on >g.
Note that

[oeotdi=tin [@oo"ydu= [ odn

proving that fi is o-invariant. Also [¢dji = [<pdu for ¢ € CO(Lk,R) with ¢ as in
Remark 5.1.5.

Note that if ¢ = ¢ +uoo —u, then M(¢p,0) = M (¢, 0) and the maximizing measures
for ¢ and v are the same. Hence, by Lemma 5.1.4 the pre-image =~ '(O™) is an open
and dense subset of C%(Xg,R), and for every for every ¢ € Z~1(OT) there exists a single

¢-maximizing measure and it is supported on a periodic orbit. O

5.1.2 Proof of Theorem B

The next Lemma, similar to [3, Lemma 3.4], shows that the maximum value M (®, (X*);)

varies continuously with respect to the observable ®.
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Lemma 5.1.7. Let (®y) be a sequence of continuous observables converging to ® : 3" — R

in the C°-topology. Let y, be any mazimizing measure for ®, and p be an accumula-

tion point of the sequence (). Then, klim M(®y, (X)) = M(®, (X)) and p is a
—00

d-maximizing measure.

Proof. For any € > 0, and and for k sufficiently large,
O(x,t) — e < Dy(x,t) < P(x,t) €

for all (z,t) € ¥".
This shows

M(®,(XY,) —e < M(Py, (X)) < M(®, (X)) + €.

Furthermore, we have M(®y, (X)) = [ ®pdpg, M(P, (X");) = [ ®dp and (up to a sub-

sequence),
lim | ®pduy = /@d,u
k—o0
because ju;, converges to u in the weak™ topology and ®; goes to ® in the strong topology.
O

5.1.2.1 Reduction to base dynamics

In this subsection let ¢ : ¥g — Xgr be a two-sided subshift of finite type and let
(X"); be the suspension flow associated to o with a Holder continuous height function
r : Yr — R, bounded away from zero. We also consider u € M; (X%, (X");) and
o€ Mi(3R,0), such that p is induced in ¥ by . By Remark 3.2.7 we have that

_ jx Leb

b= . (5.1.1)
fZR rdfi
Lemma 5.1.8. For each continuous function ® : X — R, define p : ¥g — R by
r(z)
o) = [ e () ds.
0
for every x € ¥r. Then
Jii
/ Dy = fER—(pde. (5.1.2)
R fZR rap
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Proof. By (5.1.1) we have

J

@du:/q)oxgﬁdu
B 1
fZR rdi

owrii o /. :
= — Do xyr (x,s)dsdji
fZerlL Yr /R ER( )

1 / /T(w) B
= — O(X%(x))dsdp
fER le’[/ ER 0 ( (

S wdi
fER rdii’

T
R

/ ® o xsy, (7, s)din x Leb
ERXR

Lemma 5.1.9. The map §: C*(XR,R) — C*(XR,R) given by

r(z)
§@)= [ o) ds
0
18 a submersion.

Proof. § is clearly linear in ®. Therefore De§(H) = §(H) for H € C*(Xg,R). To show
that De3F is surjective, we take any ¢ € C%(Xg,R) and present a & € C*(Xg,R) such

that F(P) = ¢. It is sufficient to take ®(x,t) = go((x))
r(x

does not depend on ¢,

, which is possible since r(z) # 0 for

x
every x € Xr. In fact, since o

r(z)

Therefore DgF is surjective and § is a submersion. O

Next lemma plays an essential role in the proof of Theorem B. In its essence it provides
a correspondence between maximizing measures for potentials on the Poincaré map and

maximizing measures for suspension flows.



Lemma 5.1.10. Let (X*); : M" — M" be a suspension flow over a continuous map
f: M — M on a compact metric space M with continuous height function r : M — R.
Let ® : M™ — R be continuous and ¢ : M — R be given by

Then the following are equivalent:
1. w is a maximizing measure for (X'); with respect to ®

2. [ is a mazimizing measure for f with respect to ¢ == p — M(®,(X")y)r. Moreover
M(p, f)=0.

Proof. First, note that by (5.1.2) we have

M(®, (X'),) = max { / Bdv| v € My (M, (Xt)t)}

dv
= max{% ve ./\/ll(M,f)}
M

and so .
M@, (x1),) = 2P
[y rdo

for all v € My (M, f). So we have

De/{/{ﬂﬁﬁ 5 /M (o — M(®, (X"),)r)dv < 0. (5.1.3)

Therefore, if u is a maximizing measure for (X?*), with respect to ®, from (5.1.2) we have

that

[ o= m@ ) dn= [ i . xy) [ v

M M

= gpdu—/ (IJd,u/ rdpu
M r M

.
/sodﬂ—fM"O“/ rdp
M fMTdM M

By (5.1.3), zero is the maximum possible value for [, (o — M(®, (X"),)r) di. Thus fi is
a maximizing measure for ¢ — M (®, (X*);)r with respect to f.

On the other hand, suppose that fi is a maximizing measure for ¢ := o — M (®, (X*),)r
with respect to f. We claim that M (g, f) = 0. In fact, suppose by contradiction that
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In this case,
Jyrdr = 7]l
since, for any 7 € My(M, f), [,; rdv < ||r]|. Consequently

<0

/M (o — M(®,(X"))r)dv < M(g, f) <0

/M pdv — M(®, (X)) /M rdv < M(3, f) < 0
Jyeds M. (X0) [y rd _ M(p.f)

erdﬁ erdD - erdD <0
/ Oy — M (D, (X)) < Aﬁfﬁ’f) <0.

Therefore there is a > 0 such that [, ®dv—M (P, (X");) < —a for all v € My(M", (X))

and taking the maximum over v we have

max / Odv — M(®, (X)) < —a <0

veMi(M7,(X):)
leading to a contradiction.
It is straightforward from the condition [, (¢ — M(®, (X"),)r)dfi = 0 and (5.1.2) that

M(®, (X'),) = % ~ [ adn

So u is a maximizing measure for ® with respect to (X*),. O

Lemma 5.1.11. Let (X'); be a suspension flow over f : M — M with a-Hélder con-
tinuous roof function r : M — R. If & : M"™ — R is a-Hélder continuous (respectively
continuous) in M". Then ¢ : M — R given by

r(z)
wwzﬂ D(X*(x)) ds

is Hélder continuous (respectively continuous).

Proof. Take x,y € M with r(z) > r(y) (the case r(z) < r(y) is analogous). Using that &

and r are Holder, we have

r(x) r(y)
wm—mm:A @u%mm—A (X (y))ds

r(y) r(z)
<[y el [ eac)

()

<supr - se(sglgy)) |D(X*(x)) — ®(X*(y))| +sup|®] - [r(x) —r(y)]

<b- sup dy((x,9),(y,s))" + sup|®|-Ldy(z,y)" (5.1.4)
s€(0,r(y))
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for some positive constant b. It follows from Proposition 3.2.4, inequality (5.1.4) and the

relation of dy;+ with the pseudo metric d, expressed in (3.2.3) that

lp(z) — @(y)| < sup|®|-Ldp(z,y)* + bedr((z, s), (y,5))*
< [sup|®| - L+ be|dp(z, ).

This yields the desired result for Holder continuous observables.

The case ® continuous is immediate by composition of continuous functions. O

Proof. (of Theorem B) By Proposition 5.1.6, there exists an open and dense set O C
C*(XR,R) such that if ¢ € O there is a unique p-maximizing measure g and it is
supported on a periodic orbit.

For k € R we define the set

Cy :={¢Y € C*(XRr,R) : M(¢),0) = k}. (5.1.5)
Note that C*(Xgr,R) = [J,cg Ck- For k =0, we define the map
o - CQ(ER,R)—>CO
pr—>o(p) = ¢ — M(p,0).

It is easy to see that if ¢ € m(O), then there is a single p-maximizing measure g and it

is supported on a periodic orbit. We claim the following

Claim 5.1.12. m(O) is open and dense in C.

Proof. Take any ¢ € m(O). We will show that ¢; is an interior point of m(O) in Cjp.
We have that there exists ¢y € O such that ¢; = ¢, — M(¢1,0). Denote k; = M (¢, 0)
and consider the set Cy,, as in (5.1.5). Since O is open in C%(Xg,R), O N C}, is open in
Ch,, so there is ¢ > 0 such that B(v¢r,e1) N Cy, € O N Cy,, where B(vy,€1) is the open
ball in C*(Xg,R) with center in ; and radius €. For any ¢y € B(¢1,€1) N Cy define
Yy := g + k1. Since M(pq,0) = 0, we have that M (i, 0) = kq, hence ¢y € C, and

|1 — o] = ||¥1 — w2 = E1|| = [Jo1 — 2| < ey,

S0 9 € B(11,€1). Therefore 1y € Ck, and ¢y € m(O). Since ¢y was taken arbitrarily,
we have that B(¢1,€1) N Cy C mo(O), which means that ¢; is an interior point of 7y(O)
in Cy. Therefore 7y(O) is an open subset of Cj.

In order to prove that m(O) is dense, take any 3 € Cp\m(O) and show that ¢3 is a
accumulation point for my(O) in Cy. Since O is dense in C%(Xg,R), there is {¢,}, C O
such that ¢, — ¢3 when n — oo. Since C*(M,R) > ¢ — M(p,0) is continuous, we
have that 7 is also continuous, so mo(¢,) — 7o(p3) = w3 when n — co. Therefore @3 is
a accumulation point for 7y(O), which means that 7,(Q) is dense in Cj.

This proves the claim. O
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Figure 5.1.2: ¢, — @3 = Wo(@bn) — ©3.

We proceed with the proof of Theorem B. For every & € C*(3§,R), defining & =
O — M(®D,(X");) we have that M(®g, (X*);) = 0. As before, we define the set

Cp = {® € C*(SjR) - M(®,(X'),) = 0},
The map §(P) = for(z) O(X*(x))ds defined in Lemma 5.1.9 satisfies
§(Cg) = Co.

Since § is a submersion, by Lemma 5.1.9, we have that the pre-image F~(Qy) is an open
and dense subset of Cj. Using Lemma 5.1.10 once more, every ® € F1(0y) has a unique
maximizing measure, and it has the desired properties.

Now we claim the following
Claim 5.1.13. The set O := {® € C*(Tx,R) : & — M (P, (X)) € F1(Op)} is an open
and dense subset of C*(Xk,R).

Proof. To show that O is open, we take any ¢ € O and show that @ is an interior point.
Let &g = & — M(®,(X");) € F1(Op). Since F1(Oy) is open in C§, there is a € > 0
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such that if T € C} and ||®y — T|| < ¢, then " € F1(Op). On the other hand, since
® — M(P,(X"),) is a continuous map, there is § > 0 such that if ||® — V|| < §, then
IM(®, (X)) — M(¥, (X"),)| < % Without loss of generality we can suppose that § < %
So taking ¥ € C*(X%,R) such that ||® — V|| < § we have

10 — Wol| = || — M(D, (X)) = W+ M(T, (X"),)]|
<@ =W+ [ M(®, (X)) — MY, (X))

€
<0+ =
+2

<€

which means that ¥y € Cj. So ¥ € O and consequently O is open.

In order to show that O is dense, we take any ¥ € C*(Xk,R)\O and show that
¥ is a accumulation point for @. Since F1(Oy) is dense in Cf, for any ¢ > 0 there
is T € §1(0) such that | ¥y — T|| < e. Taking ® = T + M (¥, (X"),), note that
M(®, (X)) = M(¥, (X"),). In fact, since M (T, (X");) =0 we have

M(®,(X"),)

M(Y + M(T, (X)), (X))
(T, (X)) + M (¥, (X))
(T, (X))

M
M

Moreover & € O, because M (P, (X)) = M (¥, (X*),) and so

Py =D — M(P, (X))
=T+ MV, (Xt)t) — MV, (Xt)t)
= T c 371(00).
We also have
W — @ = || =T — MV, (X"))]| = [T — T|| <.

Since € was arbitrary we have that U is a accumulation point for O. Therefore O is a
dense subset of C%(Xk,R). O

Note that every ® € O has a unique maximizing measure, as we can see by Lemma

5.1.10, and it is supported on a periodic orbit. O

5.1.3 Proof of Theorem C

Let A C M be hyperbolic basic set for the flow (X*);cg embedding on a suspension
flow over a subshift of finite type. This means that there is a subshift of finite type
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OR : YR — YR, a positive r € C*(Xg,R) and a Holder continuous bijection 7 : ¥ — A
so that the diagram
IAERANS 5§ (5.1.6)

d lf

commutes, where X§ is a quotient as in (3.2.1) and (Y?); : ¥ — X§ is the suspension

Xt

_

flow over og with height function r.

Since we suppose that 7 : ¥ — A is one-to-one, given an observable & € C%(A,R)
one can induce an observable ®* € C%(Xk,R) by doing ®* = ® o 7 and the map O :
C*(A,R) — C*(XR, R) defined by O(P) = ® o 7 is one-to-one.

By Theorem B there is an open and dense set R, C C*(Xg,R) of observables & :
Y% — R such that, for every ® € R,, there is a single (Y*);-maximizing measure with
respect to @, and it is supported on a periodic orbit. Then ©~!(R,) is an open and dense
set in C*(A,R) such that, for every ® € ©7!(R,), there is a single (X');-maximizing

measure, with respect to ®, and it is supported on a periodic orbit.

5.1.4 Proof of Theorem D

Morris proved in [34, Corollary 1.3] that if f : M — M satisfies Bowen’s speci-
fication property, then there is a dense Gy set (a countable intersection of open sets)
Z C C°(M,R), the set of continuous observables in M, such that every ¢ € Z has a
unique maximizing measure with full support. Let (X*); : M™ — M" be a suspension
flow over f with the continuous height function r : M — R.

Our main tool to transfer results on discrete time maps for suspension flows is Lemma
5.1.10. It does not depend on the regularity of the observables, so we can utilize the
same methods in the proof of Theorem B to transfer others results about uniqueness of
maximizing measures for discrete time to suspension flows, even if those results are made
for other classes of observables than Holder or Lipschitz. Therefore we can, for instance,
obtain Morris’ result for suspension flows, which stated in Theorem 5.1.2.

As in the proof of Theorem B, we define
Cr = {¢ € C°(M,R) : M(¢, f) = k}
and conclude that there is a dense G5 set Zy C Cj such that every ¢ € Z, has a unique

maximizing measure with full support. Using again the map §(®) = for(x) O(X*(x))ds

defined in Lemma 5.1.9, since § is a submersion, by Lemma 5.1.9, we have that the

pre-image §'(Zy) is an open and dense subset of
Cp = {® € CO(M" R) - M(®, (X*),) = 0}.
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Using Lemma 5.1.10 once more, every ® € §!(Z) has a unique maximizing measure
with full support.

Now we claim the following
Claim 5.1.14. The set Z := {® € C*(Zk,R) : & — M(®, (X)) € F(Op)} is an open
and dense subset of C°(M" R).

The proof of this is identical of the proof of Claim 5.1.13. Since is clear that every
® € Z has a unique maximizing measure with full support, this concludes the proof of
Theorem D.
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Chapter 6
Some open questions

In this section we collect some problems that arise or are related with the topics in

this thesis.

6.1 Lyapunov spectra of linear cocycles over flows

First, we consider the case of linear cocycles over flows. Some two very natural ques-
tions are as follows:

Question 1: Can Theorem A be extended to cocycles taking values on more general Lie
groups, and for non-uniformly hyperbolic flows?

A related question is whether these results can be extended to cocycles taking values on
Banach or Hilbert spaces. The methods for proving the existence of a positive Lyapunov
exponent and to prove simplicity of the Lyapunov spectrum are substantially different.
Unfortunately, there is a minor step without a proof in [11], that if completed our results
would hold for SL(d, K) cocycles for any d > 2. We pose the following:

Question 2: Let f be a Anosov diffeomorphism and O denote the space of Hélder con-
tinuous SL(d,K) fiber-bunched linear cocycles A over f such that there exists a periodic
point for f so that A has simple spectrum on p. If u has local product structure, does an

open and dense set of cocycles in O have simple Lyapunov spectrum with respect to pu?

6.2 Ergodic optimization for flows

To the best of our knowledge, apart from the construction of sub-actions for Anosov
flows [32], these are the first results concerning ergodic optimization for flows. Given the
recent interest and development of ergodic optimization, there are many questions that

can be addressed. First we consider less regular topologies. In [42, 41], Addas-Zanata
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and Tal proved that if M is a compact Riemannian manifold, and Homeo(M) denotes
the space of homeomorphisms in M then for every ¢ € C°(M,R) there exists a dense
subset D C Homeo(M) of homeomorphisms so that every f € D has a ¢-maximizing
measure supported on a periodic orbit, but that the there exists a Baire residual subset
R C Homeo(M) so that no ¢-maximizing measure is periodic. Let F°(M) denote the
space of continuous flows on M and X%!(M) denote the space of Lipschitz continuous
vector fields on M endowed with the C%-topology.

Question 3: Given ¢ € C°(M,R), does there exist a Baire residual subset R C F(M) so

that no ¢-mazimizing measure is periodic? Alternatively, the same question on X%!(M).

6.3 Hyperbolic and singular-hyperbolic flows

We now consider smooth dynamical systems with some hyperbolicity. A question that
is often considered in ergodic optimization is to characterize the support of the maximizing
measures (see e.g. [18, 23, 20] for both additive and non-additive sequence of observables).
This raises the following:

Question 4: Is there a subordination principle for hyperbolic flows?

A positive answer to the previous question would lead to a better understanding of
Aubry sets for flows and would require an extension of Atkinson’s lemma for flows. Finally
it is natural to look for extensions of Theorems C and D for the context of non-hyperbolic
flows, as the Lorenz attractors. More precisely:

Question 5: Let M be a 3-dimension compact boundless Riemannian manifold and A be
a Lorenz-like attractor for a flow (X*),: M — M. Then

1. Is there an open and dense set R C C*(M,R) of a-Hélder observables such that,
for every ® € R, there is a unique (X');-maximizing measure, with respect to @,

and it is supported on a periodic orbit?

2. Is there a C%-residual subset R C C°(M,R) such that for every ® € R there is a
unique (X*');-maximizing measure, with respect to @, it has full support and zero

entropy?
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