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como requisito parcial para obtenção do t́ıtulo
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Agradeço também a minha querida Jéssica Andrade pela força, incentivo e

companheirismo.
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Resumo

Estudamos os conjuntos de rotação para homeomorfismos homotópicos à identidade

no toro Td, d ≥ 2. No cenário conservativo, provamos que existe um subconjunto residual

de Baire do conjunto Homeo0,λ(T2) de homeomorfismos conservativos homotópicos à

identidade, de modo que o conjunto dos pontos com conjunto de rotação pontual selvagem

é um Baire subconjunto residual em T2, e que ele carrega pressão topológica completa e

dimensão média da métrica completa. Além disso, provamos que, para qualquer dimensão

d ≥ 2, o conjunto de rotação de homeomorfismos conservadores genéricos C0 em Td é

convexo. Resultados relacionados são obtidos no caso de homeomorfismos dissipativos

no toro. Os resultados anteriores baseiam-se na descrição da complexidade topológica do

conjunto de pontos com comportamento histórico selvagem e na densidade de medidas

periódicas para aplicações cont́ınuos com a propriedade de colagem de órbita (em classes

recorrentes de cadeia).

Palavras chaves: Conjunto de rotação; Homeomorfismo do toro, comportamento

histórico, entropia total, dimensão media métrica; propriedade de colagem de órbita;

Especificação.



Abstract

We study the rotation sets for homeomorphisms homotopic to the identity on the torus

Td, d ≥ 2. In the conservative setting, we prove that there exists a Baire residual subset

of the set Homeo0,λ(T2) of conservative homeomorphisms homotopic to the identity so

that the set of points with wild pointwise rotation set is a Baire residual subset in T2,

and that it carries full topological pressure and full metric mean dimension. Moreover, we

prove that, for every d ≥ 2, the rotation set of C0-generic conservative homeomorphisms

on Td is convex. Related results are obtained in the case of dissipative homeomorphisms

on tori. The previous results rely on the description of the topological complexity of the

set of points with wild historic behavior and on the denseness of periodic measures for

continuous maps with the gluing orbit property (on chain recurrent classes).

Keywords: Rotation sets; homeomorphisms on tori; historic behavior; topological

entropy; metric mean dimension; gluing orbit property; specification.
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Introduction

In this work we address and relate some fundamental concepts in topological dynamical

systems, namely topological pressure (including topological entropy), metric mean

dimension and generalized rotation sets for homeomorphisms on compact metric spaces.

Topological entropy and metric mean dimensions are two measurements of the dynamical

complexity, which are particularly important for continuous dynamical systems. While

the first is a topological invariant, it is typically infinite for a C0-Baire generic subset

of homeomorphisms on surfaces [53]. On the other hand the second one, inspired by

Gromov [21] and proposed by Lindenstrauss and Weiss, is a sort of dynamical analogue of

the topological dimension, depends on the metric it is bounded above by the dimension of

the ambient space [29]. In this way, the metric mean dimension may be used to distinguish

the topological complexity of surface homeomorphisms with infinite topological entropy.

Our main motivation is to describe rotation sets for homeomorphisms homotopic to

the identity on tori. The rotation number of a circle homeomorphism f , introduced by

Poincaré [44], is defined by

ρ(f) = lim
n→∞

F n(x)− x
n

(mod1) (0.0.1)

where x ∈ S1 and F is a lift of the circle homeomorphism to R, a lift of a map f is

a map F : S1 → S1 that satisfies f ◦ π = π ◦ F . The rotation number is independent

of F and x, and constitutes a very useful topological invariant (see e.g. [13]). The

situation changes drastically in the case of one-dimensional endomorphisms and higher-

dimensional homeomorphisms. This concept was first extended for continuous maps of

degree one in the circle in which case the limit (0.0.1) does not necessarily exist, its

accumulation points form a (possibly degenerate) interval and such a limit set defines a

rotation interval which depends on the point x ([36]). A generalization of rotation theory

to a higher dimensional setting was studied by Franks, Kucherenko, Kwapisz, Llibre,

MacKay, Misiurewicz, Wolf and Ziemian among others (see [19, 20, 31, 33, 34, 35] and

references therein) for homeomorphisms homotopic to the identity, where the notion of

rotation sets extend the concept of rotation number for circle homeomorphisms. Although
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rotation sets are not a complete invariant, their shapes can be used to describe properties

of the dynamical system, as we now illustrate. If f is a homeomorphism on the torus Td

(d ≥ 2) homotopic to the identity, π : Rd → Td = Rd/Zd is the natural projection and

F : Rd → Rd is a lift for f (cf. Appendix for more details), the rotation set of F is defined

by

ρ(F ) =
{
v ∈ Rd : ∃ zi ∈ R2, ∃ ni ↗ ∞ : lim

i→∞

F ni(zi)− zi
ni

= v
}
. (0.0.2)

and the rotation vector of a point z ∈ Rd is (if the limit exists)

ρ(F, z) := lim
n→∞

F n(z)− z
n

. (0.0.3)

Given x ∈ Td we define ρ(F, x) by (0.0.3) (note that the previous expression does not

vary in π−1(x)). The previous sets are compact and connected subsets of Rd (see e.g.

Subsection 1.2 and [30, 34] for more details). In the 2-torus, the rotation set is convex

(it may fail to be convex in higher dimensional torus, [35]) but there are compact convex

sets of the plane that are not the rotation set of any torus homeomorphisms [27, 34].

Nevertheless, for every convex polygon K ⊂ R2 there exists a homeomorphism f on T2

homotopic to the identity so that ρ(F ) = K [33].

Building over the work of Koropecki and Guihéneuf [23], and Passeggi [39], we

derive several consequences on the convergence of the rotation vectors in the case of

homeomorphisms homotopic to the identity on the torus T2.

Our starting point is a result due to Passeggi [39] which asserts that there exists a C0-

open and dense subset U of the set of homeomorphisms of the torus T2 so that for every

f ∈ U the rotation set ρ(F ) is a (eventually degenerate) polygon with rational vertices.

The rotation set of an axiom A diffeomorphisms is a rational polygon. A. Guihéneuf and

A. Koropecki [23] proved in the area-preserving setting that there exists a C0-dense set of

homeomorphisms whose rotation set is a polygon with nonempty interior. we are mainly

interested in addressing rotation theory for continuous flows on tori. We will focus mainly

in the three-dimensional setting, inspired by results for homeomorphisms on surfaces and

what one can expect from suspension flows.

The specification property, introduced by Bowen [10], corresponds to a strong

shadowing of pieces of orbits, it was very important to study the topological and ergodic

features of the dynamical system. Other similar notions have been introduced to study

specific problems where the specification property failed. In particular, the concept of

gluing orbit property, introduced by Bomfim and Varandas in [7], proved to be an useful

tool to replace the specification property e.g. in the study of multifractal formalism for

non-uniformly hyperbolic flows. The flexibility of the gluing orbit property, comparing

to specification, is the existence of jumps bounded above by a positive integer m(ε) (see
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Subsection 1.4.3). Just as an illustration it can be proved that the gluing orbit property

hold for suspension flows over a map with gluing orbit property. It follows immediately

that the gluing orbit property implies the specification property. We try to study the

relationship between gluing orbit property and rotation set, expressed in Theorems C and

D.

We will focus on the realization of convex sets as rotation sets (see Subsection 1.2

for the definition). More precisely, if f is a homeomorphism on Td, g ≥ 2, and the map

F : Rd → Rd is a lift:

1. given a compact and convex set K ⊂ ρ(F ), does there exist x ∈ Td and z ∈ π−1(x) ∈
Rd such that ρ(F, z) = K?

2. if the previous holds, what is the size of such set of points in Td?

3. how commonly (in f) is ρ(F ) convex?

Concerning the first question we note that if f is a homeomorphism isotopic to the identity

on T2 and F is a lift then: (i) for every rational vector v ∈ ρ(F ) in the interior of ρ(F )

there exists a periodic point x ∈ Td so that ρ(F, x̃) = v [19]; (ii) for any vector v in the

interior of ρ(F ) there exists a non-empty compact set Λv ⊂ T2 so that ρ(F, x̃) = v for

every x ∈ Λv [34] (iii) for any compact connected C is the interior of the convex hull of

vectors in ρ(F ) which represent periodic orbits of f there exists a point x ∈ T2 so that

ρ(F, x̃) = C [30].

It seems that much less is known as an answer to the second question. Building

over [23, 39] we prove that C0-generic conservative homeomorphisms homotopic to the

identity on T2 are so that the set of points for which the rotation vector is not well

defined (equivalently, the limit defined by (0.0.3) does not exist) form a Baire residual,

full topological pressure and full metric mean dimension subset of T2. In the case of

dissipative homeomorphisms homotopic to the identity we prove that the gluing orbit

property is typical among the chain recurrent classes in the non-wandering set and we

use this fact to prove that for “most” surface homeomorphisms of T2 homotopic to the

identity, the set of points with non-trivial (here non-trivial is equivalently to say that is

just a vector) pointwise rotation set is topologically large (Baire residual, full topological

entropy and metric mean dimension) in a positive entropy chain recurrent class.

Finally, concerning the third question, we refer that Passeggi [39] proved that an

open and dense subset set of homeomorphisms on T2 homotopic to the identity so

that the rotation set is a rational polygon. Here we prove that C0-generic conservative

homeomorphisms homotopic to the identity on the torus have a convex rotation set,
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providing an answer to this question. We also obtain related results in the dissipative

context.

The previous results fit in a more general framework, namely the description of the

topological complexity of the set of points with historic behavior (also known as irregular,

exceptional or non-typical points) from the topological viewpoint, and the density of

periodic measures. Given a continuous map f : X → X on a compact metric space (X, d)

and a continuous observable ϕ : X → Rd (d ≥ 1), the set of points with historic behavior

with respect to ϕ is

Xϕ,f :=
{
x ∈ X : lim

n→∞

1

n

n−1∑
i=0

ϕ(f i(x)) does not exist
}
.

The term historic behavior was coined after some dynamics where the phenomena

of the persistence of points with this kind of behavior occurs [46, 50]. Birkhoff’s ergodic

theorem (applied to the coordinates of ϕ) ensures that Xϕ,f is negligible from the measure

theoretic viewpoint, as it has zero measure with respect to any invariant probability

measure. It was first proved by Pesin and [41], and by Barreira and Schmelling [4], that

in the case of subshifts of finite type, conformal repellers and conformal horseshoes the

sets Xϕ,f are either empty or carry full topological entropy, and full Hausdorff dimension

[4, 41]. Several extensions of these results have been considered later on, building mainly

over the concept of specification introduced by Bowen in the early seventies and the

concept of shadowing (see e.g. [5, 11, 15, 25, 38, 51, 52] and references therein).

Here we obtain yet another mechanism to describe the topological complexity of

the set of points with historic behavior, and to pave the way to multifractal analysis.

In order to do so, we introduce the notion of relative metric mean dimension. Then,

given a continuous map with the gluing orbit property (a concept introduced in [7] in

the context of topological dynamical systems which bridges between uniform and non-

uniform hyperbolicity and extends the concept of specification) we prove that any non-

empty set of points with historic behavior has three levels of topological complexity: it

is Baire generic, it has full topological pressure and it has full metric mean dimension

(Theorems A and B). Moreover, we prove that the latter holds for typical pairs (f, ϕ)

of homeomorphisms and continuous observables (Corollary A), building over the fact, of

independent interest, that the gluing orbit property holds on the chain recurrent classes

of C0-generic homeomorphisms (Proposition 4.2.2).

This paper is organized as follows. Our main results are given in Chapter 2, where

where we make an overview in the proof. In Chapter 1 we describe the setting, some

preliminaries on the topological invariants and notions of complexity. In the Chapters

4 and 5 we prove the results on the rotation sets for homeomorphisms homotopic to

4



identity, it is, Theorems D, C and E. Chapter 3 is devoted to the proofs for the results

on the set of points with wild historic behavior for maps with the gluing orbit property,

that are Theorem A and Theorem B.

Finally, in Section 7 we make some comments and discuss futures directions of

research.
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Chapter 1

Preliminaries

1.1 The space of homeomorphisms homotopic to

identity

Let X be a compact metric space. Recall that we denote Homeo(X) as the space of

homeomorphisms on X endowed with the C0-topology given by the metric

dC0(f, g) = max

{
sup
x∈X
{d(f(x), g(x))}, sup

x∈X
{d(f−1(x), g−1(x))}

}
for every f, g ∈ Homeo(X). Two homeomorphisms f, g : X → X are homotopic if there

exists a continuous function H : [0, 1] ×X → X (homotopy between f and g) such that

H(0, x) = f(x) andH(1, x) = g(x) for every x ∈ X. If H is a homotopy between f and

g, then it defines a family of continuous functions Ht : X → X given by Ht(x) = H(t, x).

Two homeomorphisms f, g : X → X are isotopic if there exists a homotopy H between f

and g such that for every t ∈ [0, 1] the map Ht : X → X is a homeomorphism. It follows

from [18] that the previous concepts coincide for homeomorphisms on R2. More precisely:

Theorem 1.1.1. [18, Theorem 6.4] If h is a homeomorphism of R2 onto itself, homotopic

to the identity then h is isotopic to the identity.

We denote Homeo0(X) ⊂ Homeo(X) the space of homeomorphisms on X homotopic

to the identity and let Homeo0,λ(X) be the subspace of Homeo0(X) formed by the

area-preserving homeomorphism (f is area-preserving if Leb(f−1(A)) = Leb(A) for all

A ⊂ X measurable). In other words, Homeo0,λ(X) := Homeo0(X) ∩ Homeoλ(X), where

Homeoλ(X) consisting of area-preserving homeomorphisms. Theorem 1.1.1 ensures the

following

Proposition 1.1.2. Homeo0(T2) is an open set in Homeo(T2).
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Proof. Fix f ∈ Homeo0(T2). Let g C0-near to f . Given F,G : R2 → R2 lifts of f and g,

respectively. Take Ht(x) = tF (x) + (1 − t)G(x) the homotopy between F and G, with

t ∈ [0, 1]. Note that

ht(y) := π ◦Ht(x)

where y = π(x), is a homotopy between f and g and, as f is homotopic to identity, we

conclude that g is homotopic to identity. By Theorem 1.1.1, f and g are isotopic to the

identity.

As consequence of the proposition above 1.1.2, Homeo0,λ(T2) is C0-open in

Homeoλ(T2).

1.2 Rotation sets for homeomorphisms in Td

In this subsection we recall briefly some notions and properties of rotation sets (see

[34, 35] for more details and proofs).

Let f : X → X be a continuous map and ϕ : X → Rd (d ≥ 1) be a continuous

function. The rotation set of ϕ, denoted by ρ(ϕ), is the set of limits of convergent

sequences ( 1
ni

∑ni−1
i=0 ϕ(f i(xi)))

∞
i=1, where ni → ∞ and xi ∈ X. Given x ∈ X, let Vϕ(x)

denote the accumulation points of the sequence ( 1
n

∑n−1
i=0 ϕ(f i(x)))n≥1, and let

Vϕ :=
⋃
x∈X

Vϕ(x)

be the pointwise rotation set of ϕ. In the case that Vϕ(x) = {v} we say that v is the

rotation vector of x. Finally, given an f -invariant probability measure µ on X we say

that
∫
ϕdµ is the rotation vector of µ and denote it by Vϕ(µ).

In the special case that X = Td = Rd/Zd, f ∈ Homeo0(Td), π : Rd → Td is the natural

projection, F : Rd → Rd a lift for f (cf. Appendix for more details), and the displacement

function ϕF : Td → Rd is defined by ϕF (π(z)) = F (z)− z, then

1

ni

ni−1∑
i=0

ϕF (f i(π(zi))) =
1

ni

ni−1∑
i=0

(F i+1(zi)− F i(zi)) =
F ni(zi)− zi

ni

with zi ∈ Rd and ni ≥ 1. Using that ϕF is constant on π−1(x) for every x ∈ Td it induces

a continuous observable in Td, which we still denote by ϕF with some abuse of notation.

Hence, the rotation set of F , denoted by ρ(F ), defined in [35] as the limits of converging

sequences (F ni(zi)− zi
ni

)
zi∈R2, ni≥1

.
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In other words v ∈ ρ(F ), if and only if there are xi ∈ Rd and integers ni with

limi→+∞ ni =∞ such that

lim
i→+∞

F ni(xi)− xi
ni

= v.

Given x ∈ R2, let ρ(F, x) = VϕF
(x) and ρp(F ) = VϕF

denote the pointwise rotation set

of x and the pointwise rotation set of F as defined before with respect to the observable

ϕF , which fit in the previous context. It is, given x ∈ Td, we define pointwise rotation set

of x, as the limits of converging sequences(F ni(x̃)− x̃
ni

)
ni≥1

,

where x̃ ∈ π−1(x).

and pointwise rotation set of F by ρp(F ) =
⋃
x∈Rd

ρ(F, x).

The rotation set induced by the ergodic probability measures is ρerg(F ) := {
∫
ϕF dµ :

µ ∈Me(f)}, whereMe(f) denote the set of f -invariant and ergodic probability measures

(analogous for ρinv(F ) using the space Minv(f) of f -invariant probability measures).

We recall that

ρerg(F ) ⊆ ρp(F ) ⊆ ρ(F ) ⊆ ρinv(F ) (1.2.1)

and that ρinv(F ) is convex. Moreover, if f ∈ Homeo0(T2) then

ρ(F ) = Conv ρ(F ) = Conv(ρp(F )) = Conv (ρerg(F )) = ρinv(F )

where Conv(K) denotes the convex hull of K, ie, Conv(K) =
⋂
{C : C is convex and K ⊂

C}, (see [34]).

Remark 1.2.1. Given f ∈ Homeo0(Td) and two lifts F andG of f , we have that F−G ∈ Zd.
In addition, ρ(F ) = ρ(G) mod Z2.

For homeomorphism homotopic to identity on torus T2 we have the following results:

Theorem 1.2.2. [35] If f ∈ Homeo0(T2) and v ∈ ρ(F ) ∩Q2 is an extremal point, then

there exists x ∈ R2 such that ρ(F, x) = v; In particular, there exists an ergodic measure

f -invariant µ such that
∫
ϕdµ = v;

Theorem 1.2.3. [19] If f ∈ Homeo0(T2) and u ∈ int(ρ(F )) ∩ Q2, then there exists a

periodic point x ∈ T2 of f such that ρ(F, x̃) = u.

Theorem 1.2.4. [34] If f ∈ Homeo0(T2) and u ∈ int(ρ(F )) ∩ Q2, then there exists

a non-empty closed f -invariant K ⊂ T2 such that ρ(F, x) = u for every x ∈ π−1(K).

Moreover, there exists an ergodic measure f -invariant µ such that
∫
ϕFdµ = u;
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The following useful results are due the Libre and Mackay [30].

Theorem 1.2.5. [30, Theorem 1] If f ∈ Homeo0(T2) and F is a lift of f then the

following hold: (i) if ρ(F ) has nonempty interior, then f has positive topological entropy;

and (ii) if ∆ ⊂ ρ(F ) is a polygon whose vertices are given by the rotation vectors of

(finitely many) periodic points of f , then for any compact connected D ⊂ ∆ there is

x ∈ T2 and x̃ ∈ π−1(x) so that ρ(F, x̃) = D.

The rotation set can be calculated on non-wandering. More precisely:

Proposition 1.2.6. If f ∈ Homeo0(T2), then ρ(F ) = Conv(ρ(F |π−1(Ω(f)))), where Ω(f)

is the non-wandering set of f .

Proof. Clearly ρ(F ) ⊇ Conv(ρ(F |π−1(Ω(f)))). Let v an extremal point of ρ(F ), then by

item (i) of Theorem 1.2.2, there is an ergodic measure f -invariant µ such that
∫
ϕdµ = v,

consequently v ∈ ρerg(F ) ⊂ ρp(F ). Thus, we obtain x ∈ R2 such that ρp(F, x) = v, where

x ∈ π−1(Ω(f)). Since

ρp(F |π−1(Ω(f))) ⊂ ρ(F |π−1(Ω(f))) ⊂ Conv(ρ(F |π−1(Ω(f))))

and ρ(F ) is convex we get that ρ(F ) ⊂ Conv(ρ(F |π−1(Ω(f)))).

1.3 Rotation sets for continuous flows in Td

Let us now recall the definition of rotation vectors and rotation set for flows proposed

by Franks and Misiurewicz in [20].

Let M be an n-dimensional Riemaniann closed manifold with n ≥ 2. Let X0(M) the

set of continuous vector fields X : M → TM . Let X ∈ X0(Td), (Xt)t a flow generated by

X and (Yt)t lift of (Xt)t (cf. Appendix for more details about lift). The rotation set of a

continuous flows (Yt)t, denoted by ρ((Yt)t), is the set of limits of convergent sequences of{
Yti (xi)− xi

ti

}∞
i = 1

,

in other words v ∈ ρ((Yt)t) if and only if there are xi and ti with limi→+∞ ti = ∞ such

that

lim
i→+∞

Yti (xi)− xi
ti

= v.

The rotation vector of x ∈ Rd is defined by

ρ((Yt)t, x) = lim
t→+∞

Yt(x)− x
t

, (1.3.1)
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if the limit exists. The pointwise rotation set of the continuous flows (Yt)t is the set

ρ((Yt)t) =
⋃
x∈Rd

ρ((Yt)t, x).

Remark 1.3.1. Two comments are in order. The rotation set can also be defined via time-1

maps of the flows (see Proposition 1.3.2 for more details). Moreover, if the flows (Yt)t on

R3 are generated by a vector field Y , the rotation vector (1.3.1) can be the computed by

time average of then vector field along the orbit:

ρ((Yt)t, v) = lim
t→+∞

1

t

∫ t

0

Y (Ys(v))ds. (1.3.2)

Proposition 1.3.2. If (Xt)t is a flow generated by X and (Yt)t is a lift of (Xt)t, then

ρ((Yt)t) = ρ(Y1).

Proof. Let v ∈ ρ((Yt)t), then there exist ti ∈ R with ti ↗ +∞ and xi ∈ Rd such that

v = lim
i→+∞

Yti(xi)− xi
ti

,

Using Euclidean algorithm, one can write ti = ni · 1 + ri, with 0 ≤ ri < 1, to get

v = lim
i→+∞

Yti(xi)− xi
ti

= lim
i→+∞

Y
i·1+ri

(xi)− xi
ni · 1 + ri

= lim
i→+∞

Yni
(Yri(xi))− xi
ni + ri

.

By definition of ri we can rewrite the limit above as follows

v = lim
i→+∞

Yni
(Yri(x))− Yri(x)

ni
.

Taking zi = Yri(x) and F = Y1,

v = lim
i→+∞

F ni(zi)− zi
ni

This implies that v ∈ ρ(Y1).

The other inclusion is immediate. Therefore, ρ((Yt)t) = ρ(Y1).

In comparison with the case of homeomorphisms we highlight that: the rotation set

of a flows on T2 is a segment or a point [20]. Also, by Proposition 1.3.2 we have that if

(Yt)t is a continuous flows on the torus Td with d ≥ 2, then the rotation set ρ((Yt)t) is

compact and connected.
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1.4 Shadowing, irregular set, specification and gluing

orbit properties

The concept of reconstruction of orbits in topological dynamics has gained substantial

importance for its wide range of applications in ergodic theory. Among these properties

it is worth mentioning the shadowing, specification and the gluing orbit properties.

Throughout, let f : X → X be a continuous map on a compact metric space X.

First we recall the definition of the shadowing property. Given δ > 0, we say that (xk)k

is a δ-pseudo-orbit for f if d(f(xk), xk+1) < δ for every k ∈ Z. If there exists N > 0 so that

xk = xk+N for all k ∈ Z we say that (xk)k is a periodic δ-pseudo-orbit. Given x, y ∈ X,

we say that x ∼ y if for any δ > 0 there exists a δ-pseudo-orbit (xi)ni
for i = 1, ..., k such

that x1 = x and fnk(xk) = y. It is easy to check that ∼ is an equivalence relation. Each

of the equivalence classes of ∼ is called a chain recurrence class. Chain recurrence classes

are disjoint, compact and invariant subsets of X. The set of all chain recurrent points

encloses the topological complexity of the dynamics and every non-wandering point is also

chain recurrent.

Definition 1.4.1. We say that f satisfies the (periodic) shadowing property if for any ε > 0

there exists δ > 0 such that for any (periodic) δ-pseudo-orbit (xk)k there exists y ∈ X

(periodic of f) satisfying d(fk(y), xk) < ε for all k ∈ Z.

Let f : X → X be a continuous map on compact metric space (X, d). For x ∈ X and

n ∈ N, let fn(x) denotes the n−th iterate of x under f . That is, fn(x) = f(fn−1(x)) and

f 0(x) = x. Let ϕ : X → Rd be a continuous function. The Birkhoff average of ϕ, denoted

by Sn(ϕ, x), is defined by

Sn(ϕ, x) =
1

n

n−1∑
i = 0

ϕ(f i(x)). (1.4.1)

Define Cϕ(v) = {x ∈ X : lim
n→∞

Sn(ϕ, x) = v}, as the set of points for which the Birkhoff

averages converge to v, note that X =
⋃
v∈ρ(F ) Cϕ(v)∪Xϕ,f for F lift of f . Consider also

the set Lϕ = {v ∈ Rd : Xϕ(v) 6= ∅}.
There are points x ∈ X such that the limit limn→∞ Sn(ϕ, x) may not exist. The set

of those points for which the above limit does not exist is called the irregular set for ϕ

and it is denoted by Xϕ,f . That is,

Xϕ,f =
{
x ∈ X : lim

n → ∞
Sn(ϕ, x) does not exists

}
. (1.4.2)

Note that by Birkhoff ergodic theorem, the irregular set has zero measure with respect

to any invariant measure.
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The specification property, introduced by Bowen [10], roughly means that an arbitrary

number of pieces of orbits can be “glued together” to obtain a real orbit that shadows the

previous ones with a prefixed number of iterates in between. Moreover, it configures itself

as an indicator of chaotic behavior (e.g. it implies the dynamics has positive topological

entropy).

Definition 1.4.2. We say that f satisfies the specification property if for any ε > 0 there

exists an integer m = m(ε) ≥ 1 so that for any points x1, x2, . . . , xk ∈ X and for any

positive integers n1, . . . , nk and 0 ≤ p1, . . . , pk−1 with pi ≥ m(ε) there exists a point y ∈ X
such that d(f j(y), f j(x1)) ≤ ε for every 0 ≤ j ≤ n1 and

d(f j+n1+p1+ ... +ni−1+pi−1(y), f j(xi)) ≤ ε

for every 2 ≤ i ≤ k and 0 ≤ j ≤ ni.

Finally, the gluing orbit property, introduced in [7], bridges between completely

non-hyperbolic dynamics (equicontinuous and minimal dynamics [8, 49]) and uniformly

hyperbolic dynamics (see e.g. [7]). Both of these properties imply on a rich structure on

the dynamics and the space of invariant measures (see e.g. [14, 8]).

Definition 1.4.3. We say that f satisfies the gluing orbit property if for any ε > 0 there

exists an integer m = m(ε) ≥ 1 so that for any points x1, x2, . . . , xk ∈ X and any

positive integers n1, . . . , nk there are 0 ≤ p1, . . . , pk−1 ≤ m(ε) and a point y ∈ X so that

d(f j(y), f j(x1)) ≤ ε for every 0 ≤ j ≤ n1 and

d(f j+n1+p1+···+ni−1+pi−1(y), f j(xi)) ≤ ε

for every 2 ≤ i ≤ k and 0 ≤ j ≤ ni. If, in addition, y ∈ X can be chosen periodic with

period
∑k

i=1(ni + pi) for some 0 ≤ pk ≤ m(ε) then we say that f satisfies the periodic

gluing orbit property.

We say that f satisfies 2-gluing orbit property if f satisfies the gluing orbit property

for k = 2 in the definition above.

It is not hard to check that irrational rotations satisfies the gluing orbit property [8],

but fail to satisfy the shadowing or specification properties. Partially hyperbolic examples

exhibiting the same kind of behavior have been constructed in [9]. Also notice that the

gluing orbit property is clearly a topological invariant.

Remark 1.4.4. It is clear from the definitions that the specification property implies the

gluing orbit property, which implies transitivity. For continuous dynamics on the interval

gluing orbit property and transitivity are equivalent, cf. dissertation [1]. It will be useful to

consider the (periodic) gluing orbit property on compact invariant subsets Γ, in which case
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Figure 1.4.1: An illustration of the gluing orbit property.

we demand only Definition 1.4.3 to hold for every small ε but we require the shadowing

point z to belong to Γ.

Proposition 1.4.5. Let f : X → X a continuous function with shadowing property. f

satisfies 2-gluing orbit property if and only if f has the gluing orbit property.

Proof. Suppose that f satisfies 2-gluing orbit property, we will show that f satisfies gluing

orbit property. Let ε > 0, let x1, x2, . . . , xk ∈ X and positive integers n1, n2, . . . , nk. Let

ε, m(δ) where δ is of the shadowing property associated to ε
2
, x1, x2, n1 and n2 by 2-gluing

orbit property there exists y1,2 so that

dn1
(y1,2, x1) ≤ ε

2
and dn2

(fn1+p1(y1,2), x2) ≤ ε

2
.

Analogous for x2, x3, n2 and n3 there exists y2,3 so that

dn2
(y2,3, x2) ≤ ε

2
and dn3

(fn2+p2(y2,3), x3) ≤ ε

2
.

In this way until integer k.

Note that dn2
(fn1+p1(y1,2), y2,3) < ε. We can consider the following δ-pseudo orbit (δ

of the shadowing property):

y1,2, f(y1,2), . . . , fn1(y1,2), fn1+1(y1,2), . . . , fn1+p1−1(y1,2),

y2,3, f(y2,3), . . . , fn2(y2,3), fn2+1(y2,3), . . . , fn2+p2−1(y2,3),

. . . ,

yk−1,k, f(yk−1,k), . . . , f
nk−1(yk−1,k), f

nk+1(yk−1,k), . . . , f
nk−1+p2(yk−1,k),

fnk−1+p2+1(yk−1,k), . . . , f
nk−1+p2+nk−1(yk−1,k).

By property of the shadowing there exist a point y ∈ X satisfying d(fk(y), xk) < ε.

Take p1, . . . , pk and y as above we have the desired.
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1.5 Reparametrization gluing orbit properties for

continuous flow

In this Section we define a notion of gluing orbit property for continuous flows

and reparametrized gluing orbit property for continuous flows, wich is weaker than

specification. The notion of reparametrized gluing orbit property was introduced in [6].

First we define gluing orbit property for continuous flow.

Definition 1.5.1. Let X ∈ X0(M), (Xt)t a continuous flow generated by X we say that

(Xt)t satisfies gluing orbit property if for any ε > 0 there exists K = K(ε) ∈ R+ such that

for any points x1, x2, . . . , xk in M and times t1, . . . , tk ≥ 0 there are p1, . . . , pk−1 ≤ K(ε)

and a point y ∈M so that

d(Xt(y), Xt(x1)) < ε, ∀ t ∈ [0, t1]

and

d(Xt+
∑i−1

j=0 tj+pj
(y), Xt(x1)) < ε, ∀ t ∈ [0, ti]

for every 2 ≤ i ≤ k.

Denote byRep the set of all increasing homeomorphisms τ : R→ R satisfying τ(0) = 0.

τ is called reparametrization. Fixing ε > 0, we define the set

Rep(ε) = {τ ∈ Rep :| τ(s)− τ(t)

s− t
− 1 |< ε, s, t ∈ R}

of the reparametrizations ε-close to the identity. It is, the reparametrization τ belongs to

Rep(ε) whenever the slopes formed by any two points in its graph belong to the interval

(1− ε, 1 + ε).

Now we define the reparametrized gluing orbit property for flow.

Let X ∈ X(M), (Xt)t a continuous flow generated by X. We say that (Xt)t satisfies

reparametrized gluing orbit property if for any ε > 0 there exists K = K(ε) ∈ R+ such

that for any points x1, . . . , xk in M and times t1, . . . , tk ≥ 0, there are p1, . . . , pk−1 ≤ K(ε),

a reparametrization τ ∈ Rep(ε) and a point y ∈M so that

d(Xτ(t)(y), Xt(x1)) < ε, ∀ t ∈ [0, t1]

and

d(Xτ(t+
∑i−1

j=0 tj+pj)(y), Xt(x1)) < ε, ∀ t ∈ [0, ti]

for every 2 ≤ i ≤ k.

This notion is an extension of the original notion of gluing introduced by Bomfim and

Varandas in [7].

Note that if τ ∈ Rep(ε) and p1 is as above on the definition of gluing orbit property,

then τ(t+ p1)− τ(t) ≤ (1 + ε)p1 ≤ (1 + ε)K(ε).

14



1.6 Pressure, entropy and mean dimensions

In this section we recall two important measurements of topological complexity, namely

the concepts of topological entropy and metric mean dimension, and introduce a relative

notion of the later. Our interest in the second notion is that, while a dense set of

homeomorphisms on a compact Riemannian manifold have positive and finite topological

entropy (by denseness of C1-diffeomorphisms) it is known that typical homeomorphisms

may have infinite topological entropy. In opposition, metric mean dimension is always

bounded by the dimension of the compact manifold and can be seen as a smoothened

measurement of topological complexity as we now detail.

Topological pressure

Let (X, d) be a compact metric space and ψ ∈ C0(X,R). Given ε > 0 and n ∈ N,

we say that E ⊂ X is (n, ε)-separated if for every x 6= y ∈ E it holds that dn(x, y) > ε,

where dn(x, y) = max{d(f j(x), f j(y)); j = 0, . . . , n− 1} is the Bowen’s distance. Bowen’s

dynamical balls are the sets Bn(x, ε) = {y ∈ X : dn(x, y) < ε}. The topological pressure

of f with respect to ψ is defined by

Ptop(f, ψ) = lim
ε→0

lim sup
n→∞

1

n
log

(
sup
E

∑
x∈E

eSnψ(x)

)
,

where Snψ(x) =
∑n−1

j=0 ψ(f j(x)) and the supremum is taken over every (n, ε)-separated

sets E contained in X. In the case that ψ ≡ 0, if s(n, ε) denotes the maximal cardinality

of a (n, ε)-separated subset of X, then the topological entropy is defined by

htop(f) = lim
ε→0

lim sup
n→∞

1

n
log s(n, ε).

The previous notion does not depend on the metric d and is a topological invariant.

Moreover, by the classical variational principle for the pressure, it holds that Ptop(f, ψ) =

sup{hµ(f) +
∫
ψdµ : µ ∈ M(f)}. However, the topological entropy of C0-generic

homeomorphisms on a closed manifold of dimension at least two is infinite [53] (the

same holds for the topological pressure as a consequence of the variational principle), in

which case neither the topological preassure nor topological entropy can distinguish such

dynamics.

Topological and metric mean dimension

Gromov [21] proposed an invariant for dynamical systems called mean dimension, that

was further studied by Lindenstrauss and Weiss [29]. The upper and lower metric mean
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dimension, which may depend on the metric, are defined in [28, 29] by

mdim(f) = lim
ε→0

limn→∞
1
n

log s(n, ε)

− log ε

and

mdim(f) = lim
ε→0

limn→∞
1
n

log s(n, ε)

− log ε
,

respectively. If the supremum and infimum limits agree, we denote the common value by

mdim(f). Observe that the latter quantitities are only meaningful whenever f has infinite

topological entropy. In the case that the metric space satisfies a tame growth of covering

numbers, the metric mean dimension satisfies a variational principle involving a concept

of measure theoretical mean dimension (cf. [28]).

Relative metric mean dimension

Since we aim to describe the topological complexity of (not necessarily compact) f -

invariant subsets we now introduce a concept of relative metric mean dimension using

a Carathéodory structure. Let Z ⊂ X be a f -invariant Borel set. Given s ∈ R and

ψ ∈ C0(X,R) define

Q(Z, ψ, s,Γ) =
∑

Bni
(xi,ε)∈Γ

e−s ni +Sniψ(Bni
(xi,ε)) and M(Z, ψ, s, ε,N)=inf

Γ
{Q(Z, ψ, s,Γ)} ,

where Sni
ψ(Bni

(xi, ε)) := supx∈Bni
(xi,ε)

∑ni−1

k=0 ψ(fk(x))) and the infimum is taken

over all countable collections Γ = {Bni
(xi, ε)}i that cover Z and so that ni ≥ N .

Since the function M(Z, ψ, s, ε,N) is non-decreasing in N the limit m(Z, ψ, s, ε) =

lim
N→∞

M(Z, ψ, s, ε,N) does exist. Then let

PZ(f, ψ, ε) = inf{s ∈ R : m(Z, ψ, s, ε) = 0} = sup{s ∈ R : m(Z, ψ, s, ε) =∞}.

The existence of PZ(f, ψ, ε) follows by the Carathéodory structure [40]. The (relative)

topological pressure of f on Z with respect to ψ is defined by

PZ(f, ψ) = lim
ε→0

PZ(f, ψ, ε).

We set hZ(f, ε) = PZ(f, 0, ε) for every ε > 0 and define the relative entropy of f on Z by

hZ(f) = PZ(f, 0) (which corresponds to the potential ψ ≡ 0).

The upper and lower relative metric mean dimension of Z are given by

mdimZ(f) = limε→0
hZ(f, ε)

− log ε
and mdimZ(f) = limε→0

hZ(f, ε)

− log ε

respectively. If the previous limits coincide, we represent simply by mdimZ(f) and refer

to this as the relative metric mean dimension of Z.
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Definition 1.6.1. We say that the f -invariant subset Z ⊂ X has full topological entropy

if hZ(f) = htop(f). We say that the f -invariant subset Z ⊂ X has full metric mean

dimension if mdimZ(f) = mdim(f) and mdimZ(f) = mdim(f).

Remark 1.6.2. If f : X → X is a continuous map on a compact metric space and ψ ∈
C0(X,R) then Ptop(f, ψ) = PX(f, ψ). Moreover, if the limits exist and coincide then

mdimX(f) = mdim (f). This follows from the fact that hX(f, ε) = htop(f, ε) for any

ε > 0, which can be read from the proof of [41, Proposition 4 ] (actually in [41] the

authors use the definition of entropy using coverings and prove that hX(f,U) = htop(f,U)

for every open cover U).

Remark 1.6.3. The notion of Hausdorff dimension also involves a Carathéodory structure,

associated to the function Q(Z, s,Γ) =
∑

Bni (xi,ε)∈Γ diam(Bni
(xi, ε))

s (see [40, Section 6]).

Inspired by [4] we expect that for continuous and transitive maps on the interval (these

satisfy the gluing orbit property, [1]) the set of points with historic behavior is either

empty or has Hausdorff dimension equal to one. We neither claim nor prove this fact

here.

We use the following generalization of Katok’s formula for pressure:

Proposition 1.6.4. [52, Proposition 2.5] Let (X, d) be a compact metric space, f be

a continuous map on X and µ be an f -invariant, ergodic probability. Given ε > 0,

γ ∈ (0, 1) and ψ ∈ C0(X,R) set Nµ(ψ, γ, ε, n) = infE
∑

x∈E exp
{∑n−1

i=0 ψ(f i(x))
}
, where

the infimum is taken over all sets E that (n, ε)-span a set Z with µ(Z) ≥ 1− γ. Then

hµ(f) +

∫
ψdµ = lim

ε→0
lim inf
n→∞

1

n
logNµ(ψ, γ, ε, n).

Remark 1.6.5. Given ε > 0 and ϕ ∈ C0(X,Rd), the variation in balls of radius ε is

var(ϕ, ε) = sup{| ϕ(x)− ϕ(y) |: d(x, y) < ε}.

Since X is compact then var(ϕ, ε)→ 0 as ε→ 0. As ϕ : X → Rd is continuous (hence

uniformly continuous) and f is continuous then for every ε > 0 there exists δ > 0 such

that ‖ 1
n

∑n−1
i=0 ϕ(f i(x))− 1

n

∑n−1
i=0 ϕ(f i(y))‖ < ε whenever dn(x, y) < δ.
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Chapter 2

Statement of the main results

In this chapter we expose our results. Before, recall that we denote by Homeo0(X) the

space of homeomorphisms on X homotopic to the identity and Homeo0,λ(X) the space of

homeomorphisms on X homotopic to the identity that area-preserving.

2.0.1 Points with historic behavior for maps with gluing orbit

property

The results in this section, despite their own interest, will be key technical ingredients

in the characterization of rotation sets for homeomorphisms on tori. These applications

motivate to describe the set of points with historic behavior for observables taking values

on Rd, d ≥ 1, and dynamical systems with the gluing orbit property (see Subsection 1.4

for the definition).

Let X denote a compact metric space, f : X → X be a continuous map, d ≥ 1 be

an integer and ϕ : X → Rd be a continuous observable. Given x ∈ X, let us denote

by Vϕ(x) the (connected) set obtained as accumulation points of ( 1
n

∑n−1
j=0 ϕ(f j(x)))n≥1.

In the higher dimensional setting context, (d > 1) the set Vϕ =
⋃
x∈X Vϕ(x) ⊂ Rd of

all vectors obtained as pointwise limits of Birkhoff averages does not need connected or

convex.

A point x ∈ X has historic behavior for ϕ (also known as exceptional, irregular or

non-typical behavior) if the limit limn→∞
1
n

∑n−1
j=0 ϕ(f j(x)) does not exist. Moreover, we

say that x ∈ X has wild historic behavior if Vϕ(x) and Vϕ(x) = Vϕ and we denote

Xwild
ϕ,f := {x ∈ X : Vϕ(x) = Vϕ}. In rough terms, a point has wild historic behavior if the

Birkhoff averages have the largest oscillation in Vϕ. We say that B ⊂ X is Baire residual

if it contains a countable intersection of open and dense subsets of X. Our first result

asserts that, if non-empty, the set of points with wild historic behavior is large from the
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category point of view.

Theorem A. Let X be a compact metric space, let f : X → X be a continuous map with

the gluing orbit property and let ϕ : X → Rd be continuous. Then:

1. either there is v ∈ Rd so that limn→∞
1
n

∑n−1
j=0 ϕ(f j(x)) = v for all x ∈ X,

2. or the set of points x ∈ X so that the sequence ( 1
n

∑n−1
j=0 ϕ(f j(x)))n≥1 accumulates

in a non-trivial connected subset of Rd is Baire residual on X.

Moreover, if Xϕ,f 6= ∅ then Vϕ is connected and the set of points with wild historic behavior

is a Baire residual subset of X.

The next result establishes that the set of points with historic behavior has also large

complexity, now measured in terms of topological entropy and metric mean dimension.

We refer the reader to Subsection 1.6 for the notions of full topological pressure and full

metric mean dimension.

Theorem B. Let f : X → X be a continuous map with the gluing orbit property on

compact metric space X and let ϕ : X → Rd be a continuous observable. Assume that

Xϕ,f 6= ∅. Then Xϕ,f carries full topological pressure and full metric mean dimension.

Under the previous assumptions, the set of points with historic behavior for ϕ is empty

if and only if there exists v ∈ Rd so that
∫
ϕdµ = v for every f -invariant probability

measure (cf. Lemma 3.2.1). We also prove the following:

Corollary A. Let X be a compact Riemannian manifold. There exists a C0-Baire residual

subset R ⊂ Homeo(X)×C0(X,Rd) so that either htop(f) = 0 or Xϕ,f has full topological

entropy for any pair (f, ϕ) ∈ R.

2.0.2 Pointwise rotation sets of homeomorphisms on the torus

T2

In this section we address the questions concerning the pointwise rotation sets of torus

homeomorphisms homotopic to the identity (check Section 1.2 for more details about

rotation set). We note that the pointwise rotation set may fail to be connected and all

(see e.g. [30, Example 1]). Our first results ensure that there is a large set of points with

non-trivial pointwise rotation set of x. First we consider in the case of volume preserving

homeomorphisms.

Theorem C. There exists a Baire residual subset R1 ⊂ Homeo0,λ(T2) so that, for every

f ∈ R1 and every lift F : R2 → R2 of f :
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1. the pointwise rotation set ρp(F ) is connected;

2. the set of points x ∈ T2 such that ρ(F, x̃) is non-trivial (ie, ρ(F, x) 6= {v} for some v)

which coincide with ρp(F ) is a Baire residual subset of T2, it carries full topological

pressure and full metric mean dimension in T2.

Now we describe the counterpart of Theorem C on the space Homeo0(T2) of

homeomorphisms homotopic to the identity. Consider the set

A =
{
f ∈ Homeo0(T2) : int(ρ(F )) 6= ∅

}
.

All homeomorphisms in A have positive topological entropy [30]. Let Ω(f) denote

as usual the non-wandering set of f and consider the finite decomposition of Ω(f) in its

chain recurrent classes. We prove the following:

Theorem D. There exists a Baire residual subset R2 ⊂ A so that, for every f ∈ R2 there

exists a positive entropy chain recurrent class Γ ⊂ Ω(f) such that the set of points x ∈ Γ

for which ρ(F, x̃) is non-trivial is a Baire residual subset of Γ that carries full topological

entropy and full metric mean dimension in Γ.

We observe that the Theorem C is due to specification, but in case dissipative, the

Theorem D, specification is not sufficient, thus we need of the concept of gluing orbit

property.

2.0.3 On the rotation set of homeomorphisms on the torus Td

(d ≥ 2)

The shape of the different rotation sets for an homeomorphism f homotopic to

identity on the torus Td have drawn the attention since these have been introduced (see

Subsection 1.2 for definitions). Focusing first on connectedness, the rotation set ρ(F )

(and each pointwise rotation set of x, denoted by ρ(F, x̃), where x̃ ∈ π−1(x)) is a compact

and connected set in Rd [30, 35]. However, the pointwise rotation set ρp(F ) may fail to

be connected even when d = 2 [30]. As for convexity, ρ(F ) is convex when d = 2, but

there are higher dimensional examples where it fails to be convex [35]. Our next result

ensures that rotation sets of torus homeomorphisms are typically convex.

Theorem E. For every d ≥ 2:

1. there exists a Baire residual subset R3 ⊂ Homeo0,λ(Td) so that ρ(F ) is convex, for

every lift F of a homeomorphism f ∈ R3; and
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2. there exists a Baire residual subset R4 ⊂ Homeo0(Td) so that ρ(F |π−1(Γ)) is convex,

for every chain recurrent class Γ ⊂ Ω(f) and every lift F of f ∈ R4.

While the rotation set is always connected, in the case of dissipative homeomorphisms

Homeo0(Td) (e.g. Morse-Smale diffeomorphisms on the torus) the pointwise rotation set

need not to be connected. If the pointwise rotation set is connected then one can hope

that the “local” convexity statement in item (2) can be used to prove the convexity of

the rotation set.

2.0.4 Points with historic behavior for a flows with

reparametrized gluing orbit property

Our next results describe the set of points with historic behavior for continuous flows

with the reparametrized gluing orbit property. Before some definitions.

Let M be an n-dimensional Riemaniann closed manifold with n ≥ 2. Let L > 0,

denote X0(M) the set of continuous vector fields X : M → TM and X0,1
L (M) the set of

Lipschitz continuous vector fields X : M → TM with Lipschitz constant ≤ L. We endow

X0(M) and X0,1
L (M) with the C0-topology, ie, given X, Y ∈ X0,1

L (M), X is ε-close Y if

maxx∈M ‖X(x)−X(y)‖ < ε. We denote by (Xt)t the flow associated to X ∈ X0,1
L (M).

Let M a compact metric space, X ∈ X0(M), (Xt)t a flow generated by X and ϕ :

M → Rd continuous. Define the irregular set for (Xt)t by

Iϕ =
{
x ∈M : lim

t→∞

1

t

∫ t

0

ϕ ◦Xs(x) ds does not exist
}
. (2.0.1)

Recall that A ⊂ M is (Xt)t-invariant if Xt(A) = A, for all t ∈ R and that a finite

measure µ on M is (Xt)t-invariant if µ(Xt(A) = A, for every measurable A ⊂ M and

t ∈ R. Also note that Iϕ has zero measure with respect to any Φ-invariant measure.

A point x ∈ M has historic behavior for ϕ (on the flow) if the limit limt→∞
1
t

∫ t
0
ϕ ◦

Xs(x)ds does not exist.

For d ≥ 2, define

Lϕ = {~v ∈ Rd : Aϕ(~v) 6= ∅}

where

Aϕ(~v) := {x ∈M : lim
t→∞

1

t

∫ t

0

ϕ ◦Xs(x) ds = ~v}.

We prove, for continuous flow with reparametrized gluing orbit property (check

Subsection 1.5 for definition) that:

Theorem F. Let Y ∈ X0(M). If (Yt)t is a flow generated by Y with the reparametrized

gluing orbit property on ∆ compact and invariant and ϕ : M → Rd is continuous, then
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the irregular set of ϕ either trivial or Baire residual subset on ∆. In other word, if the

irregular set of ϕ is non-trivial, then the set of points with historic behavior is a Baire

residual subset of ∆.

As consequence we have the following:

Corollary B. Let X ∈ X0(M). If (Xt)t is a flow generated by X with the reparametrized

gluing orbit property on Γ where Γ is a chain recurrent class on Ω((Xt)t) and ϕ : M → Rd

is continuous, then the irregular set of ϕ either trivial or Baire residual subset on Γ.

In [6] is proved that: If M be a compact manifold there exists a C0-residual subset

of vector fields X in X0(M) so that every such vector field X has reparametrized gluing

orbit property in chain recurrent class Γ ⊂ Ω((Xt)t). This ensure the following.

Corollary C. Let M be a compact manifold. There exists a C0-residual subset of vector

fields X in X0(T2) so that if (Xt)t is a generated flows by X, ϕ : M → Rd continuous and

Γ ⊂ Ω((Xt)t) is a chain recurrent class, then the irregular set Iϕ is either trivial or Baire

residual subset of Γ.

2.0.5 Points with historic behavior for a suspension flow and

rotation set

Let M be a measurable space and f : M → M a measurable map and a measurable

roof function r : Σ −→ [0,∞). We can define the suspension flows (Xt)t over f by

Xt(x, s) = (x, s+ t),

whenever the expression is well defined, acting on

Mr = {(x, t) ∈ X × R+ : 0 ≤ t ≤ r(x)}/ ∼

where ∼ is the equivalence relation given by (x, r(x)) ∼ (f(x), 0) for all x ∈ Σ. Note

that the coordinates of (Xt)t coincides with the flow along the vertical direction. More

precisely,

Xt(x, s) =
(
fk(x), s+ t−

k−1∑
j=0

r(f j(x))
)
,

where k = k(x, s, t) is determined by
∑k−1

j=0 r(f
j(x)) ≤ s+ t <

∑k
j=0 r(f

j(x)).

Our next results describe the set of points with historic behavior for suspension flows

over a map with gluing orbit property. First, consider the following number:
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Cξ = sup
n≥1

sup
y∈B(x,n,ξ)

‖SnR(x)− SnR(y)‖ <∞, satisfy lim
ξ→0

Cξ = 0, (2.0.2)

The condition under Cξ is a bounded distortion property for the roof function. It is

not hard to check it holds e.g. for Hölder continuous observables and uniformly expanding

dynamics. So, we have:

Theorem G. Let M be an n-dimensional Riemaniann closed manifold, f ∈ Homeo(M)

with gluing orbit property and ϕ : Mr → Rd continuous. Suppose that (Xt)t is a suspension

flow over f satisfying condition (2.0.2). Then, the irregular set of ϕ either trivial or Baire

residual subset on M . In other word, if Iϕ is non-trivial, then the set of points with historic

behavior is a Baire residual.

Now, consider the suspension flows when f ∈ Homeo0(T2). Since that f admits a lift

F we can then define a suspension flow (Yt)t over F so that (Yt)t is a lift of (Xt)t. The

roof function in (Yt)t is R : R2 −→ (0,∞), defined by R(v) = r(π(v)). In this context, we

define the suspension flow to (Yt)t acting on

(x, t) ∈ M̃r := {(x, t) ∈ R2 × R+ : 0 ≤ t ≤ R(x)}/ ∼,

where R : R2 −→ (0,∞) is the roof function and ∼ is the equivalence relation given by

(x,R(x)) ∼ (F (x), 0).

Passeggi in [39] proved that there exists an open and dense set D ⊂ Homeo0(T2) such

that for every f ∈ D the rotation set ρ(F ) is a polygon with finite rational vertices. So,

we have the following:

Theorem H. Let f ∈ Homeo(T2). Suppose that f ∈ D, that (Xt)t is a suspension flow

over f and the roof function r is coboundary, then the rotation set ρ((Yt)t) is a polygon

rational, (where (Yt)t is a lift of (Xt)t). Moreover, if r is cohomologous to a rational

number, then the polygon has rational vertices.

2.0.6 Overview of the proof

Theorems A and B provide three distinct measurements of the topological complexity

of the set of points with historic behavior. Their proofs use the construction of points with

non-convergent Birkhoff averages by exploring the oscillatory behavior in the Birkhoff

averages of points that shadow pieces of orbits that are typical for invariant measures

with different space averages. The existence of such points is granted by the gluing orbit

property.
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If, on the one hand, the proof of Theorems A and B are inspired by [4, 25, 52], the

arguments in the proof of Theorem B is much more challenging and presents novelties on

how to construct a ‘large amount’ of points whose finite pieces of orbits up to time n have

a controlled behavior and that are separated by the dynamics. This is crucial to estimate

topological pressure and metric mean dimension. While the construction of points with

non-convergent behavior can be obtained as a consequence of the gluing orbit property,

it is natural to inquire on the control on the number of such distinct orbits (measured

in terms of (n, ε)-separability). We overcome this issue by selecting of a large amount of

orbits that are glued the same (bounded) time. Since this bound depends on ε, so does

the estimates on the number of (n, ε)-separated points with controlled recurrence. This

requires shadowing times to be chosen large in order to compensate the latter. In [15] the

authors obtain similar flavored results using shadowing. Although both occur properties

hold C0-generically there are several examples that satisfy the gluing orbit property and

fail to satisfy shadowing, which justifies our approach.

The first ingredient in the proof of Theorems C and D relies on the fact that each chain

recurrent class of C0-generic homeomorphisms satisfy the gluing orbit property. This will

ensure that any connected subset of the rotation set can be realized by the rotation set

along the orbit of a point relies on any vectors. Such a reconstruction of rotation vectors

as the orbit of a single point is formalized in Theorems A and B. In comparison with the

former, extra difficulties arise from the fact that the dynamics and the observables are

not decoupled and the fact that, in the case of dissipative homeomorphisms, the chain

recurrent classe(s) that concentrate topological pressure vary as the potential changes.

One could ask whether the Baire generic conclusion of Theorem D could extend to a

generic set of points in the whole chain-recurrent set (or the non-wandering set). For

instance, it is easy to construct an Axiom A diffeomorphism f on S2 so that Ω(f) =

{p1}∪Λ∪{p2}, where p1 is a repelling fixed point, p2 is an attracting fixed point and Λ is

an horseshoe. Recall that f is an Axiom A diffeomorphism if the set of periodic points is

dense in the non-wandering set Ω(f) and Ω(f) is hyperbolic (we refer, for instance, to [47]

for the construction of such examples). The existence of a filtration for homeomorphisms

C0-close to f imply that the Baire generic subset in the statement of Theorem D can only

be contained in a neighborhood of the basic piece Λ for all C0-close homeomorphisms.

Moreover, the assertion concerning positive entropy seems optimal. Indeed, it may occur

that there exists a unique chain recurrent class of largest positive topological entropy and

whose (restricted) rotation set have empty interior or even reduce to a point, in the case

of pseudo-rotations. Related constructions include [17, 45].

Theorems E relies on the fact that under the specification, or the gluing orbit property,
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the space of periodic measures is dense in the space of all invariant measures. Under any

of these assumptions, the generalized rotation set coincides with the rotation set obtained

by means of invariant measures, thus it is convex.

The Theorem F and G are an attempt to generalize from Theorem A, the strategy to

proof of the F is also similar. Finally, the Theorem H is a relationship between suspension

flow and rotation set.
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Chapter 3

The set of points with historic

behavior

The main goal of this chapter is to prove Theorems A and B, which claim that the

set of points with historic behavior for continuous maps with the gluing orbit property is

topologically large. Actually, this is established by means of three different measurements

of topological complexity: Baire genericity, full topological entropy and full metric mean

dimension. The arguments involved in the proofs of Theorems A and B are substantially

different and their proofs occupy Sections 3.1 and 3.2, respectively.

3.1 Baire genericity of historic behavior and proof of

the Theorem A

This section is devoted to the proof of Theorem A, whose strategy is strongly inspired

by [2, 25]. The differences lie on the fact that, due to the higher dimensional features of

observables, we need to restrict to connected subsets in the set of all accumulation vectors,

and that we have transition time functions instead of a determined time to shadow pieces

of orbits (see Remark 3.1.3 below).

Let f : X → X be a continuous map with the gluing orbit property on a compact

metric space X and let ϕ : X → Rd be a continuous function so that Vϕ is non-trivial.

Let ∆ ⊂ Vϕ a non-trivial connected set, define

X∆ :=
{
x ∈ X : ∆ ⊂ Vϕ(x)

}
. (3.1.1)

Note that for all ∆ ⊂ Vϕ hold that X∆ ⊂ Xϕ,f . Theorem A will be a consequence of the

following:
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Proposition 3.1.1. Let X be a compact metric space, f ∈ Homeo(X) satisfy the gluing

orbit property, ϕ : X → Rd be continuous such that Vϕ is non-trivial. If ∆ ⊂ Vϕ is a

non-trivial connected set, then X∆ is Baire residual in X.

Remark 3.1.2. The set Vϕ corresponds to the pointwise rotation set of ϕ, which needs not

be connected in general. Since Baire residual subsets are preserved by finite intersection, a

simple argument by contradiction ensures that under the assumptions of Proposition 3.1.1

the set Vϕ is connected. In particular, since Vϕ(x) ⊂ Vϕ, the latter ensures that Xwild
ϕ,f :=

{x ∈ X : Vϕ(x) = Vϕ}. is Baire residual.

[Proof of the Proposition 3.1.1]: The remaining of the section is devoted to the proof of

Proposition 3.1.1. Let D ⊂ X be countable and dense. Let ε > 0 be arbitrary and fixed

and let m(ε) be given by the gluing orbit property (cf. Section 1.4). As Vϕ is non-trivial,

then Vϕ is not a singleton. Let ∆ ⊂ Vϕ be a non-trivial connected set and, for any k ≥ 1

let (vk,i)1≤i≤ak be a 1
k
-dense set of vectors in ∆ so that

‖vk,i+1 − vk,i‖ <
1

k
for 1 ≤ i ≤ ak and ‖vk,ak − vk+1,1‖ <

1

k
. (3.1.2)

For w ∈ Vϕ, δ > 0, n ∈ N let

P (w, δ, n) =
{
x ∈ X :

∥∥ 1

n

n−1∑
i=0

ϕ(f i(x))− w
∥∥ < δ

}
.

Given k ≥ 1 and 1 ≤ i ≤ ak, let {δk,i}k≥1,1≤i≤ak be a sequence of positive real and

{nk,i}k≥1,1≤i≤ak be a sequence of integers tending to zero and infinity, respectively, so that

δ1,1 > δ1,2 > · · · > δ1,a1
> δ2,1 > δ2,2 > · · · > δ2,a2

> . . . ,

n1,1 < n1,2 < · · · < n1,a1
< n2,1 < n2,2 < · · · < n2,a2 < . . .

that nk,i � mk, meaning here limk→∞
mk

nk,i
= 0, for all 1 ≤ i ≤ ak, where mk := m(ε/2bk),

with b0 = 0 and bk =
∑

1≤i≤k ai, and P (vk,i, δk,i, nk,i) 6= ∅, for all k ≥ 1 and 1 ≤ i ≤ ak.

Note that bk →∞ as k →∞.

Given q ∈ D, k ≥ 1 and 1 ≤ i ≤ ak, let Wk,i(q) be a maximal (nk,i, 8ε)-separated

subset of P (vk,i, δk,i, nk,i). We index the elements of Wk,i(q) by xk,ij , for 1 ≤ j ≤ #Wk,i(q).
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Choose also a strictly increasing sequence of integers {N q
k,i}k≥1,1≤i≤ak so that

lim
k→ ∞

nk,i+1 +mk

N q
k,i

= 0, for every 1 ≤ i ≤ ak − 1

lim
k→ ∞

nk+1,1 +mk+1

N q
k,ak

= 0, for k ≥ 1 (3.1.3)

lim
k→ ∞

N q
1,1(n1,1 +m1) + · · ·+N q

k,i(nk,i +mk)

N q
k,i+1

= 0 for every , 1 ≤ i ≤ ak − 1, and

lim
k→ ∞

N q
1,1(n1,1 +m1) + · · ·+N q

k,ak
(nk,ak +mk)

N q
k+1,i

= 0 for every , k ≥ 1

We shall omit the dependence of Wk,i(q) and N q
k,i on q when no confusion is possible. The

idea is to construct points that shadow finite pieces of orbits associated with the vectors

vk,i repeatedly.

We need the following auxiliary construction. The gluing orbit property ensures that

for every xk,i := (xk,i1 , . . . , xk,iNk,i
) ∈ (Wk,i)

Nk,i there exists a point y = y(xk,i) ∈ X and

transition time functions

pjk,i : W
Nk,i

k,i × R+ → N, j = 1, 2, . . . , Nk,i − 1

bounded above by m( ε

2bk−1+i ) ≤ mk so that

dnk,i
(f ej(y), xk,ij ) <

ε

2bk−1+i
, for every j = 1, 2, . . . , Nk,i − 1, (3.1.4)

where

ej =

0 if j = 1

(j − 1)nk,i +
∑j−1

r=1 p
r
k,i if j = 2, . . . , Nk,i.

(3.1.5)

Remark 3.1.3. For k and j as above we have that pjk,i = pjk,i(x
k,i
1 , xk,i2 , . . . , xk,iNk,i

, ε) is a

function that describes the time lag that the orbit of y = y(xk,i) takes to jump from a ε
2k

-

neighborhood of fnk,i(xk,ij ) to a ε
2k

-neighborhood of xk,ij+1, and it is bounded above by mk.

In contrast with the case when f has the specification property, the previous functions

need not be constant and, consequently, the collection of points of the form y = y(xk,i)

need not be 3ε-separated by a suitable iterate of the dynamics. For that reason, not

only an argument to select a ‘large set’ of distinguishable orbits would require to compare

points with the same transition times, which strongly differs from [2, 25].

We order the family {Wk,i}k≥1,1≤i≤ak lexicographically: Wk,i ≺ Ws,j if and only if k ≤ s

and i ≤ j whenever k = s. We proceed to make a recursive construction of points in a

neighborhood of q that shadow points Nk,i in the family Wk,i successively with bounded

time lags in between. More precisely, we construct a family {Lk,i(q)}k≥0,1≤i≤ak of sets
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(guaranteed by the gluing orbit property) contained in a neighborhood of q and a family

of positive integers {lk,i}k≥0,1≤i≤ak (also depending on q) corresponding to the time during

the shadowing process. Set:

• L0,i(q) = {q} and l0,i = N0,in0,i = 0;

• L1,1(q) = {z = z(q, y(x1,1)) ∈ X : x1,1 ∈ W
N1,1

1,1 } and l1,1 = p0
1,1 + t1,1 with

t1,1 = N1,1n1,1 +
∑N1,1−1

r=1 pr1,1, where z = z(q, y(x1,1)) satisfies d(z, q) < ε
2

and

dt1,1(f
p01,1(z), y(x1,1)) < ε

2
, and y(x1,1) is defined by (3.1.4) and 0 ≤ p0

1,1 ≤ m( ε
22

) is

given by the gluing orbit property;

• if i = 1

Lk,1(q) = {z = z(z0, y(xk,1)) ∈ X : xk,1 ∈ W
Nk,1

k,1 and z0 ∈ Lk−1,ak−1
}, and lk,1 =

lk−1,ak−1
+ p0

k,1 + tk,1, with tk,1 = Nk,1nk,1 +
∑Nk,1−1

r=1 prk,1, where the shadowing point

z satisfies

dlk−1,ak−1
(z, z0) <

ε

2bk−1+1
and dtk,1(f

lk−1,ak−1
+p0k,1(z), y(xk,1)) <

ε

2bk−1+1
.

• if i 6= 1

Lk,i(q) = {z = z(z0, y(xk,i)) ∈ X : xk,i ∈ W
Nk,i

k,i and z0 ∈ Lk,i−1}, and lk,i = lk,i−1 +

p0
k,i + tk,i, with tk,i = Nk,ink,i +

∑Nk,i−1
r=1 prk,i, where the shadowing point z satisfies

dlk,i−1
(z, z0) <

ε

2bk−1+i
and dtk,i(f

lk,i−1+p0k,i(z), y(xk,i)) <
ε

2bk−1+i
.

Figure 3.1.1: Construction of L1,1(q) and L1,2(q).
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The previous points y = y(xk,i) are defined as in (3.1.4). By construction, for every

k ≥ 1 and 1 ≤ i ≤ ak − 1,

lk,i =
k∑
r=1

ar∑
s=1

Nr,snr,s +
k∑
r=1

ar−1∑
s=1

Nr,s−1∑
t=0

ptr,s. (3.1.6)

Remark 3.1.4. Note that lk,i and tk,i are functions (as these depend on pjk,i) and, by

definition of Nk,i cf. (3.1.3), one has that
‖lk,i‖
Nk,i+1

≤
∑k

r=1

∑ar
s=1Nr,s(nr,s+mr)

Nk,i+1
tends to zero as

k →∞.

For every k ≥ 0, 1 ≤ i ≤ ak, q ∈ D and ε > 0 define

Rk(q, ε, i) =
⋃

z∈Lk,i(q)

B̃lk,i

(
z,

ε

2bk−1+i

)
and R(q, ε) =

∞⋂
k=0

ak⋂
i=1

Rk(q, ε, i),

where B̃lk,i(x, δ) is the set of points y ∈ X so that d(fα(x), fα(y)) < δ for all iterates

0 ≤α≤ lk,i−1 − 1 and d(fβ(x), fβ(y)) ≤ δ for every lk,i−1 ≤ β ≤ lk,i − 1.

Consider also the sets

R̃ =
∞⋃
j=1

⋃
q∈D

R(q,
1

j
) =

∞⋃
j=1

⋃
q∈D

∞⋂
k=0

ak⋂
i=1

⋃
z∈Lk,i(q)

B̃lk,i

(
z,

1

j2bk−1+i

)
, (3.1.7)

and finally

R =
∞⋂
k=0

∞⋃
j=1

⋃
q∈D

ak⋂
i=1

⋃
z∈Lk,i(q)

B̃lk,i

(
z,

1

j2bk−1+i

)
. (3.1.8)

It is clear from the construction that R(q, ε) ⊂ B(q, ε) for every q ∈ D and ε > 0, and

that R̃ ⊂ R. The following lemma, identical to Propositions 2.2 and 2.3 in [25], ensures

that R is a Baire generic subset of X.

Lemma 3.1.5. R is a Gδ-set and it is dense in X.

Proof. First we prove denseness. Since R̃ ⊂ R, it is enough to show that R̃∩B(x, r) 6= ∅
for every x ∈ X and r > 0. In fact, given x ∈ X and r > 0, there exists j ∈ N and

q ∈ D such that d(x, q) < 1/j < r/2. Given y ∈ R(q, 1
j
) it holds that d(q, y) < 1

j
because

R(q, 1
j
) ⊂ B(q, 1

j
). Therefore, d(x, y) ≤ d(x, q) + d(q, y) < 2/j < r. This ensures that

R̃ ∩B(x, r) 6= ∅.
Now we prove that R is a Gδ-set. Fix j ∈ N and q ∈ D. For any k ≥ 1 and 1 ≤ i ≤ ak,

consider the open set

Gk(q, ε, i) :=
⋃

z∈Lk,i(q)

Blk,i

(
z,

ε

2bk−1+i

)
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and note that Gk(q, ε, i) ⊂ Rk(q, ε, i) for any k ≥ 1 and 1 ≤ i ≤ ak. We claim that

Rk(q, ε, i + 1) ⊂ Gk(q, ε, i) and Rk+1(q, ε, 1) ⊂ Gk(q, ε, ak), for any k ≥ 1 and 1 ≤ i ≤
ak − 1. The claim implies that

∞⋃
j=1

⋃
q∈D

ak⋂
i=1

Rk(q, ε, i) =
∞⋃
j=1

⋃
q∈D

ak⋂
i=1

Gk(q, ε, i),

and guarantees that R is a Gδ-set.

Now we proceed to prove the claim. We prove that Rk(q, ε, i + 1) ⊂ Gk(q, ε, i) for

any k ≥ 1 and 1 ≤ i ≤ ak − 1 (the proof of the Rk+1(q, ε, i) ⊂ Gk(q, ε, ak) is analogous).

Given y ∈ Rk(q, ε, i + 1), there exists z ∈ Lk,i+1(q) such that y ∈ B̃lk,i+1
(z, 1

j2bk−1+(i+1) ).

By definition of Lk,i+1(q), there exists z0 such that dlk,i(z, z0) < 1

j2bk−1+(i+1) . Therefore,

dlk,i(y, z0) ≤ dlk,i(y, z) + dlk,i(z, z0) <
1

j2bk−1+(i+1)
+

1

j2bk−1+(i+1)
=

1

j2bk−1+i

and consequently y ∈ Gk(q, ε, i). This proves the claim and completes the proof of the

lemma.

We must show that R ⊂ X∆, that is ∆ ⊆ Vϕ(x) for every x ∈ R. The proof

follows some ideas from [25, Proposition 2.1]. We provide a sketch of the argument for

completeness. Given x ∈ R fixed, for any k > 1, there exist integers j ∈ N, q ∈ D and

z ∈ Lk,i+1(q) such that

dlk,i+1
(z, x) <

1

j2bk−1
for every 1 ≤ i ≤ ak. (3.1.9)

We prove that ∆ ⊆ Vϕ(x). If v ∈ ∆, then for any k ≥ 1 there exists 1 ≤ ik ≤ ak such

that v ∈ B(vk,ik ,
1
k
). We need the following:

Lemma 3.1.6. Take k ≥ 1 and 1 ≤ ik ≤ ak. If

Rq
k,i := max

z∈Lk,i(q)

∥∥∥ lk,i−1∑
r=0

ϕ(f r(z))− lk,i vk,i
∥∥∥,

then
Rq

k,i

lk,i
→ 0, as k →∞.

Proof. Let k and i be as above, let xk,i ∈ (Wk,i)
Nk,i and y = y(xk,i). Recall

that ‖
∑n−1

i=0 ϕ(f i(x)) −
∑n−1

i=0 ϕ(f i(y))‖ ≤ n var(ϕ, c) if dn(x, y) < c. Then, using

dnk,i
(xk,it , f

et(y)) < 1

j2bk−1
where et is defined in (3.1.5) with t ∈ {1, . . . , Nk,i} we conclude

that ∥∥∥ nk,i−1∑
r=0

ϕ(f r(xk,it ))−
nk,i−1∑
r=0

ϕ(f et+r(y))
∥∥∥ ≤ nk,i var(ϕ,

1

j2bk−1
).
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Since xk,it ∈ Wk,i, we have that∥∥∥ nk,i−1∑
r=0

ϕ(f et+r(y))− nk,i vk,i
∥∥∥ ≤ nk,i(var(ϕ,

1

j2bk−1
) + δk,i). (3.1.10)

We decompose the time interval [0, tk,i − 1] as follows:

Nk,i⋃
t = 1

[et, et + nk,i − 1] ∪
Nk,i−1⋃
t = 1

[et + nk,i, et + nk,i + ptk,i − 1].

On the intervals [et, et + nk,i − 1] we will use the estimate (3.1.10), while in the time

intervals [et + nk,i, et + nk,i + ptk,i − 1] we use

∥∥∥ ptk,i−1∑
r=0

ϕ(f et+nk,i+r(y))− ptk,i vk,i
∥∥∥ ≤ mk(‖ϕ‖∞ + ‖vk,i‖) ≤ 2mk‖ϕ‖∞.

Therefore,∥∥∥ tk,i−1∑
r=0

ϕ(f r(y))− tk,i vk,i
∥∥∥ ≤ Nk,i nk,i(var(ϕ,

1

j2bk−1
) + δk,i) + 2(Nk,i − 1)mk‖ϕ‖∞.(3.1.11)

On the other hand, by definition of Lk,i(q) that for every z ∈ Lk,i(q) there exist z0 ∈
Lk,i−1(q) and y = y(xk,i) ∈ X such that

dlk,i−1
(x, z) <

1

j2bk−1
, dtk,i(y, f

lk,i−1+p0k,i(z)) <
1

j2bk−1
. (3.1.12)

By triangular inequality,∥∥∥ lk,i−1∑
r=0

ϕ(f r(z))− lk,i vk,i
∥∥∥ ≤ ∥∥∥ lk,i−1−1∑

r=0

ϕ(f r(z))− lk,i−1 vk,i

∥∥∥
+

∥∥∥ lk,i−1+p0k,i−1∑
r=p0k,i

ϕ(f r(z))− p0
k,i vk,i

∥∥∥
+

∥∥∥ tk,i−1∑
r=lk,i−1+p0k,i

ϕ(f r(z))− tk,i vk,i
∥∥∥,

where the first and second terms are bounded by 2lk,i−1‖ϕ‖∞ and 2mk‖ϕ‖∞, respectively.

Inequalities (3.1.11)-(3.1.12) imply∥∥∥ tk,i−1∑
r=tk,i−1+p0k,i

ϕ(f r(z))− tk,i vk,i
∥∥∥

≤
∥∥∥ tk,i−1∑

r=0

ϕ(f lk,i−1+p0k,i+r(z))−
tk,i−1∑
r=0

ϕ(f r(y))
∥∥∥+

∥∥∥ tk,i−1∑
r=0

ϕ(f r(y))− tk,i vk,i
∥∥∥

≤ tk,i var(ϕ,
1

j2bk−1
) +Nk,ink,i var(ϕ,

1

j2bk−1
+ δk,i) + 2(Nk,i − 1)mk‖ϕ‖∞
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and, consequently,

Rq
k,i ≤ 2(lk,i−1 +Nk,imk)‖ϕ‖∞ + (tk,i +Nk,ink,i) var(ϕ,

1

j2bk−1
) +Nk,ink,iδk,i.

By definition of Nk,i in (3.1.3) we obtain that Rq
k,i/lk,i → 0 as k → ∞, which proves the

lemma.

Given z = z(z0, y(xk,i)) ∈ Lk,i+1(q) satisfying (3.1.9) with z0 ∈ Lk,i(q), by triangular

inequality we have dlk,i(z0, x) < 1

j2bk−1−1 . Thus,

∥∥∥ lk,ik−1∑
r=0

ϕ(f r(x))− lk,ik vk,ik
∥∥∥ (3.1.13)

≤
∥∥∥ lk,ik−1∑

r=0

ϕ(f r(x))−
lk,i

k
−1∑

r=0

ϕ(f r(z0))
∥∥∥+

∥∥∥ lk,ik−1∑
r=0

ϕ(f r(z0))− lk,ik vk,ik
∥∥∥

≤ lk,ik var(ϕ,
1

j2bk−1−1
) +Rq

k,ik
.

Lemma 3.1.6 and the uniform continuity of ϕ ensures that∥∥∥ 1

lk,i

lk,i−1∑
r=0

ϕ(f r(x))− v
∥∥∥ ≤ ∥∥∥ 1

lk,i

lk,i−1∑
r=0

ϕ(f r(x))− vk,ik
∥∥∥+ ‖vk,ik − v‖ → 0 (3.1.14)

as k →∞ and, consequently, v ∈ Vϕ(x). This proves that ∆ ⊆ Vϕ(x).

Altogether we conclude that X∆ is a Baire residual subset of X, and finish the proof

of Proposition 3.1.1 and Theorem A.

3.2 Full topological pressure and metric mean

dimension

In this section we prove Theorem B. Assume that f is a continuous map with the

gluing orbit property on a compact metric space X, ϕ : X → Rd is continuous and

Xϕ,f 6= ∅. We will prove that mdimXϕ,f
(f) = mdim(f), that mdimXϕ,f

(f) = mdim(f)

and htop(f) = hXϕ,f
(f).

Actually we will prove that hXϕ,f
(f, ε) = htop(f, ε) every ε > 0, which is a sufficient

condition. Fix ε > 0 and let m(ε) be given by the gluing orbit property.

3.2.1 Measures with large entropy and distinct rotation vectors

The proof explores the construction of an exponentially large (with exponential rate

close to topological entropy) number of points that oscillate between distinct vectors in Rd.
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We use some auxiliary results. We say that a observable ϕ : X → Rd is cohomologous to a

vector if there exists v ∈ Rd and a continuous function χ : X → Rd so that ϕ = v+χ−χ◦f ,

and denote by Cob the set of all such observables and by Cob its closure in the C0-topology.

Lemma 3.2.1. Assume that f has the gluing orbit property. The following are equivalent:

(i) Xϕ,f 6= ∅,

(ii) infµ∈Me(f)

∫
ϕdµ < supµ∈Me(f)

∫
ϕdµ, and

(iii) there exist periodic points p1, p2 of period k1, k2 respectively such that

1

k1

k1−1∑
j=0

ϕ(f j(p1)) 6= 1

k2

k2−1∑
j=0

ϕ(f j(p2)).

(iv) ϕ /∈ Cob.

(v) 1
n

∑n−1
j=0 ϕ ◦ f j does not converge uniformly to a constant.

Proof. Although this is similar to [52, Lemma 1.9] we include it for completeness.

(iii) ⇒ (iv): If ϕ ∈ Cob, then there is {ϕk} in Cob such that ϕ = limk→∞ ϕk. In

particular there exists vk ∈ Rd and χk so that

1

n

n−1∑
j=0

ϕk(f
j(x)) =

χk ◦ fn(x)

n
− χk(x)

n
+ vk (3.2.1)

for every x ∈ X. By Birkhoff’s ergodic theorem and dominated convergence theorem

Me(f) 3 µ 7→
∫
ϕdµ is constant, which contradicts (iii).

(iv)⇒ (v): If ϕ 6∈ Cob, then the sequence 1
n

∑n−1
j=0 ϕ ◦ f j is not uniformly convergent

to a vector v. Indeed, otherwise the sequence of continuous function (hn)n given by

hn = 1
n

∑n−1
i=0 (n− i)ϕ ◦ f i−1 satisfy the cohomological equation

hn(x)− hn(f(x)) = ϕ(x)− 1

n

n−1∑
j=0

ϕ(f j(x)), ∀ x ∈ X

and so ϕ(x) = limn→∞[hn(x) − hn(f(x)) + 1
n

∑n−1
j=0 ϕ(f j(x))] ∈ Cob, leading to a

contradiction.

(v)⇒ (ii):

Let µ be an f -invariant probability measure and suppose that 1
n

∑n−1
j=0 ϕ(f j(x)) does

not converge uniformly to
∫
ϕdµ. There exists ε > 0 so that for every k ≥ 1 there

are nk ≥ k and xk ∈ X for which ‖ 1
nk

∑nk−1
j=0 ϕ(f j(xk)) −

∫
ϕdµ‖ ≥ ε. Consider νk :=
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1
nk

∑nk−1
j=0 δfj(xk) and let ν be a weak∗ accumulation point of the sequence (νk)k. Note that

ν is f -invariant. Choose k such that ‖ 1
nk

∑nk−1
j=0 ϕ(f j(xk))−

∫
ϕdν‖ ≤ ε/2, so

∥∥∫ ϕdµ−
∫
ϕdν

∥∥ ≥ ∥∥∫ ϕdµ− 1

nk

nk−1∑
j=0

ϕ(f j(xk))
∥∥

−
∥∥ 1

nk

nk−1∑
j=0

ϕ(f j(xk))−
∫
ϕdν

∥∥ ≥ ε/2.

The conclusion follows from the ergodic decomposition theorem.

(ii) ⇒ (i): The construction in the proof of Theorem A ensures that if there exist

f -invariant measures µ1, µ2 so that
∫
ϕ dµ1 6=

∫
ϕ dµ2, then Xϕ,f 6= ∅.

(i)⇒ (iii): If the limit limn→∞
1
n

∑n−1
j=0 ϕ(f j(x)) does not exist for some x ∈ X, then

the empirical measures ( 1
n

∑n−1
j=0 δfj(x))n≥1 accumulate on f -invariant probability measures

µ1, µ2 so that
∫
ϕdµ1 6=

∫
ϕdµ2. Now, the result follows as a simple consequence of the

weak∗ convergence and the fact that periodic measures are dense in the space of f -invariant

probability measures ([48, p102-104] proves the latter for maps with specification, but it

is straightforward to see that this holds for maps with the gluing orbit property, to see

5.0.4).

Lemma 3.2.2. Given ψ ∈ C0(X,R)and γ > 0 there are µ1, µ2 ∈ M1(f) so that µ1 is

ergodic,
∫
ϕdµ1 6=

∫
ϕdµ2 and hµi(f) +

∫
ψdµi > Ptop(f, ψ)− γ, for i = 1, 2.

Proof. By the variational principle there exists an ergodic µ1 ∈ M1(f) so that hµ1(f) +∫
ψdµ1 > Ptop(f, ψ) − γ. As Xϕ,f 6= ∅ there is ν ∈ M1(f) satisfying

∫
ϕdµ1 6=

∫
ϕdν

(recall Lemma 3.2.1). Consider the family of measures

µt2 = tµ1 + (1− t)ν, t ∈ (0, 1) (3.2.2)

and observe that, by convexity, h
µt2

(f) +
∫
ψdµt2 > Ptop(f, ψ) − γ, provided that t is

sufficiently close to one. the probability measure µ2 := µt2 satisfies the requirements of

the lemma.

Although the previously defined measures µ1, µ2 depend on the potential ψ ∈ C0(X,R)

we shall omit its dependence for notational simplicity.

3.2.2 Exponential growth of points with averages close to∫
ϕdµi, i = 1, 2

Take the probability measures µ1, ν and µ2 given by Lemma 3.2.2, consider the

sequence {ζk}k of real numbers

ζk = max
{‖ ∫ ϕdµ1 −

∫
ϕdν‖

2k
, var(ϕ,

ε

2k
)
}
, (3.2.3)
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which tend to zero as k → ∞, and take mk = m( ε
2k

). Given γ ∈ (0, 1), by Birkhoff’s

ergodic theorem one can choose n1
k � mk so that

mk/n
1
k → 0 as k →∞ (3.2.4)

such that µ1(Yk,1) ≥ 1− γ, where

Yk,1 =
{
x ∈ X :

∥∥∥ 1

n

n−1∑
j=0

ϕ(f j(x))−
∫
ϕdµ1

∥∥∥ < ζk for every n ≥ n1
k

}
. (3.2.5)

The following lemma will be instrumental.

Lemma 3.2.3. There exists ε0 > 0 so that for any 0 < ε < ε0, there is a

collection {S1
k}k so that every S1

k is a (n1
k, 6ε) separated subset of Yk,1 and M1

k :=∑
x∈S1

k
exp(

∑n1
k−1
i=0 ψ(f i(x))) satisfies M1

k ≥ exp (n1
k(Ptop(f, ψ, ε)− 4γ)).

Proof. The proof is a standard consequence of Proposition 1.6.4.

For any k ≥ 1, we now construct large sets of points S2
k with averages close to

∫
ϕdµ2

at large instants n2
k ≥ 1 (to be defined below). First, as ν is ergodic, there exists x̃k ∈ X

and ñk ≥ 1 so that
∥∥ 1
ñk

∑ñk−1
j=0 ϕ(f j(x̃k)) −

∫
ϕdν

∥∥ < ζk. Let t of the proof of Lemma

3.2.2, there are rk, sk ≥ 1 be integers satisfying

rkn
1
k

skñk
→ t

1− t
as k →∞. (3.2.6)

For any fixed k ≥ 1, any string (xk1, . . . , x
k
rk

) ∈ (S1
k)
rk and sk copies of the point x̃k, by

the gluing orbit property there exists y = y(xk1, . . . , x
k
rk

) ∈ X satisfying

dn1
k
(fai(y), xki ) < ε, and dñk

(f bj(y), x̃k) < ε

for every i = 1, 2, . . . , rk and j = 1, 2, . . . , sk, where

ai =

0 if i = 1

(i− 1)n1
k +

∑i−1
r=1 pk,r if i = 2, . . . , rk

and

bj =

ark + pk,rk if j = 1

(j − 1)ñk +
∑j−1

r=0 pk,rk+r + ark if j = 2, . . . , sk

where 0 ≤ pk,r ≤ m(ε) are the transition time functions defined similarly as in the proof of

Theorem A. We define the auxiliary set Ŝ2
k as the set of points y obtained by the previous

process.
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Remark 3.2.4. For every point x ∈ Ŝ2
k we associate the size

n2
k(·) := rkn

1
k + skñk +

rk+sk−1∑
r=1

pk,r(·),

of the finite piece of orbit, which is a function of (xk1, . . . , x
k
rk
, x̃k, sk). In strong contrast

with the case when f satisfies the specification property, at this moment we can not claim

that the cardinality of Ŝ2
k is large. Indeed, since n2

k varies with the elements in Ŝ2
k then

the (n1
k, 4ε)-separability of the points in S1

k is not sufficient to ensure the shadowing point

map (S1
k)
rk × {x̃k}sk → X to be injective. This issue is solved by Lemma 3.2.5.

Now, for any j = (j1, j2, . . . , jrk+sk−1) ∈ Zrk+sk−1
+ so that 0 ≤ ji ≤ m(ε) + 1 define

the set S2
k(j) := {x ∈ Ŝ2

k : pk,1 = j1, pk,2 = j2, . . . , pk,rk+sk−1 = jrk+sk−1}. The size of

the finite orbit of all points in S2
k(j) is constant and, by some abuse of notation, we will

denote it by

n2
k(j) := rkn

1
k + skñk +

rk+sk−1∑
r=1

jr. (3.2.7)

It is not hard to check that (3.2.6) implies

rkn
1
k

rkn
1
k + skñk

→ t and, consequently,
rkn

1
k

n2
k(j)

→ t (3.2.8)

as k →∞. Moreover,

rk + sk
n2
k

≤ 1

n1
k

+
1

ñk
→ 0 as k →∞. (3.2.9)

The next lemma says that one can choose a large set S2
k of points whose n2

k-time average

is close to the one determined by µ2. More precisely:

Lemma 3.2.5. For every large k ≥ 1 there exists jk = (jk1 , . . . , j
k
rkk+sk−1

) so that if S2
k :=

S2
k(jk) and n2

k = n2
k(jk), then the following hold:

1. S2
k is (n2

k, 4ε)-separated,

2. if M2
k :=

∑
x∈S2

k
exp{

∑n2
k−1
i=0 ψ(f i(x))}, then

M2
k ≥ exp (n2

k[tPtop(f, ψ, ε)− var(ψ, ε)− 6γ]),

3. there exists a sequence (ak)k≥1 converging to zero so that

∥∥ 1

n2
k

n2
k−1∑
j=0

ϕ(f j(y))−
∫
ϕdµ2

∥∥ ≤ var(ϕ, ε) + ak‖ϕ‖∞,

for every k ≥ 1 and every y ∈ S2
k.
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Proof. In order to prove item (1), let j = (j1, j2, . . . , jrk+sk−1) ∈ Zrk+sk−1
+ be arbitrary

so that 0 ≤ ji ≤ m(ε) + 1. Let y1 6= y2 ∈ S2
k(j) shadow the orbits of points in the

strings (xk1, . . . , x
k
rk

) 6= (zk1 , . . . , z
k
rk

) ∈ (S1
k)
rk and also sk times the finite piece of orbit

of x̃k, respectively. There exists 1 ≤ i ≤ rk such that xi 6= zi and, using that S1
k is

(n1
k, 6ε)-separated,

dn2
k(j)(y1, y2) ≥ dn1

k
(xki , z

k
i )− dn1

k
(y1, x

k
i )− dn1

k
(zki , y2) ≥ 4ε.

Therefore, S2
k(j) is (n2

k(j), 4ε)-separated for every j. This implies (1).

Now we prove (3). Take jk0 = 0 and write the Birkhoff sum
∑n2

k−1
j=0 ϕ(f j(x)) by

n2
k−1∑
j=0

ϕ(f j(x)) =

rk∑
l=1

n1
k−1∑
j=0

ϕ(f j+(l−1)n1
k+

∑
t≤l−1 jkt (x))

+

sk∑
l=1

ñk−1∑
j=0

ϕ(f
j+(l−1)ñk+rkn

1
k+

∑
t≤r

k
+l−1 jkt (x))

+

rk+sk−1∑
i=1

jki −1∑
j=0

ϕ(f j+χi+
∑

t≤i−1 j
k
t (x)), (3.2.10)

where

χi =

{
in1
k if 1 ≤ i ≤ rk

rkn
1
k + (i− rk)ñk if rk < i ≤ rk + sk − 1.

The third expression in the right hand-side of (3.2.10) satisfies∥∥∥ rk+sk−1∑
i=1

ji−1∑
j=0

ϕ(f j+χi+
∑

t≤i−1 jt(x))
∥∥∥ ≤ (rk + sk − 1)(m(ε) + 1)‖ϕ‖∞.

Using (3.2.9) one can estimate the Birkhoff sums in terms of the periods of shadowing

and the remainder terms as follows:∥∥∥ n2
k−1∑
j=0

ϕ(f j(x))− n2
k

∫
ϕdµ2

∥∥∥ ≤ (rkn
1
k + skñk) var(ϕ, ε)

+
∥∥∥ rk∑
l=1

( n1
k−1∑
j=0

ϕ(f j+(l−1)n1
k+

∑
t≤l−1 jt(xkl ))− n1

k

∫
ϕdµ1

)∥∥∥
+
∥∥∥ sk∑
l=1

( ñk−1∑
j=0

ϕ(f j+rkn
1
k+

∑
t≤l−1 jrk+t+(l−1)ñk (x̃k))− ñk

∫
ϕdν

)∥∥∥
+
∥∥∥n2

k

∫
ϕdµ2 − rkn1

k

∫
ϕdµ1 − skñk

∫
ϕdν

∥∥∥
+ (rk + sk − 1)(m(ε) + 1)‖ϕ‖∞
≤ n2

k (var(ϕ, ε) + ζk) + |tn2
k − rkn1

k|‖ϕ‖∞ + |(1− t)n2
k − skñk|‖ϕ‖∞

+ (rk + sk − 1)(m(ε) + 1)‖ϕ‖∞.
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Dividing all terms in the previous estimate by n2
k and using (3.2.8) - (3.2.9) we conclude

that item (3) holds.

We are now left to prove item (2). First, computations similar to (3.2.10) for the

potential ψ ∈ C0(X,R) yield

∑
x∈Ŝ2

k

exp{
n2
k−1∑
i=0

ψ(f i(x))} ≥
[∑
z∈S1

k

exp{
n1
k−1∑
i=0

ψ(f i(z))}
]rk

× e
−n2

k

[
var(ψ,ε)+

skñk
n2
k

|ψ|∞+
rk+sk−1

n2
k

|ψ|∞
]

≥ exp (n2
k[tPtop(f, ψ, ε)− var(ψ, ε)− 5γ]) (3.2.11)

for every large k ≥ 1. Here we used equations (3.2.9), (3.2.8) and Lemma 3.2.3. Recall

the definition of Ŝ2
k and consider the shadowing point map

S : {0, 1, . . . ,m(ε)}rk+sk−1 × (S1
k)
rk × {x̃k}sk → Ŝ2

k ⊂ X

(j, x, (x̃k, . . . , x̃k)) 7→ y(j, x, x̃k, sk).

Observe that

Ŝ2
k =

⊔
j

S2
k(j) =

⊔
j

Image(S(j, ·))

where the union is over all possible j ∈ {0, 1, . . . ,m(ε)}rk . Now, equations (3.2.9) and

(3.2.11), the separability condition proved in item (1) and the pigeonhole principle ensure

that there exists a string jk = (jk1 , . . . , j
k
rk+sk−1) such that

∑
x∈S2

k(j
k
)

exp{
n2
k−1∑
i=0

ψ(f i(x))} ≥ 1

(m(ε) + 1)rk+sk−1

∑
x∈Ŝ2

k

exp{
n2
k−1∑
i=0

ψ(f i(x))}

≥ exp (n2
k[tPtop(f, ψ, ε)− var(ψ, ε)− 6γ])

for every large k ≥ 1. The set S2
k = S2

k(jk) satisfies the requirements of item (2). This

proves the lemma.

3.2.3 Construction of sets of points with oscillatory behavior

Consider the sequences {Sk}k and {nk}k given by

Sk =

{
S1
k , if k is odd

S2
k , if k is even,

and nk =

{
n1
k , if k is odd

n2
k , if k is even.

Lemmas 3.2.3 and 3.2.5 ensure that

Mk :=
∑
x∈Sk

exp{
nk−1∑
i=0

ψ(f i(x))} ≥ exp (nk[tPtop(f, ψ, ε)− var(ψ, ε)− 6γ]) (3.2.12)
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for every large k ≥ 1. Since we will construct sets of points that interpolate between

those in the sets Sk within a ε
2k

-distance (in the Bowen metric) we need the transition

times mk = m( ε
2k

) to be negligible in comparison with the total size of the orbits. For

that, choose a strictly increasing sequence of integers {Nk}k≥0 so that N0 = 1,

lim
k→ ∞

nk+1 +mk

Nk

= 0, and

lim
k→ ∞

1 +N1(n1 +mk) + · · ·+Nk(nk +mk)

Nk+1

= 0. (3.2.13)

For any fixed k ≥ 1 and any string x = (xk1, x
k
2, . . . , x

k
Nk

) ∈ SNk
k there exists a point

y = y(x) ∈ X which satisfies

dnk
(faj(y), xkij) <

ε

2k
, ∀ j = 1, 2, . . . , Nk

where

aj =

0 , if j = 1

(j − 1)nk +
∑j−1

r=1 pk,r , if j = 2, . . . , Nk

and pk,r are the transition time functions, bounded by mk.

Define

Ck =
{
y(x) ∈ X : x = (xk1, x

k
2, . . . , x

k
Nk

) ∈ SNk
k

}
and ck = Nknk +

∑Nk−1
r=1 pk,r (it is a function on Ck). Proceeding as before, it

is not hard to check that for any fixed s = (s1, . . . , sNk−1) (with all coordinates

bounded by mk) the subset Ck(s) ⊂ Ck with these prescribed transition times is a

(3ε,Nknk +
∑Nk−1

i=1 si)-separated set. Using (3.2.12) and the pigeonhole principle, there

exists sk = (sk1, . . . , s
k
Nk−1) so that the set

Ck(sk) =
{
y(x) ∈ Ck : x ∈ SNk

k and pk,1 = sk1, . . . , pk,Nk−1 = skNk−1

}
satisfies

∑
x∈Ck(sk)

exp{
ck−1∑
i=0

ψ(f i(x))} ≥ 1

(mk + 1)Nk

∑
x∈Ck

exp{
ck−1∑
i=0

ψ(f i(x))}

≥ exp (nkNk[tPtop(f, ψ, ε)− var(ψ, ε)− 6γ])

× e−ck
[

var(ψ, ε

2k
)+

Nk−1

ck
|ψ|∞+

Nk logmk
ck

]
≥ exp (ck[tPtop(f, ψ, ε)− var(ψ, ε)− 7γ]) (3.2.14)

for every large k ≥ 1, where ck = nkNk +
∑Nk−1

i=1 ski is constant for all points of the set

Ck(sk). We used that logmk/nk → 0 (cf. (3.2.7)) and (nkNk)/ck → 1 as k → ∞. As

before we will denote Ck(sk) simply by Ck.
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We now construct points whose averages oscillate between
∫
ϕdµ1 and

∫
ϕdµ2. Define

T1 = C1 and t1 = c1, and we define the families (Tk)k≥1 and (tk)k recursively. If x ∈ Tk
and y ∈ Ck+1 there exists a point z := z(x, y) ∈ X and 0 ≤ pk+1 ≤ mk+1 such that

dtk(x, z) <
ε

2k+1
and dck+1

(f tk+pk+1(z), y) <
ε

2k+1
.

Define the set

Tk+1 = {z = z(x, y) ∈ X : x ∈ Tk, y ∈ Ck+1}

and tk+1 = tk + pk+1 + ck+1 (it is a function on Tk). Using the previous argument once

more as above we conclude that there exists 0 ≤ p
k+1
≤ mk+1 such that Tk+1(p

k+1
) ⊂ Tk+1

is a (2ε, tk + p
k+1

+ ck+1)-separated set. We will keep denoting Tk+1(p
k+1

) by Tk+1 for

notational simplicity. In particular, if z = z(x, y) ∈ Tk+1, then

dtk(x, z) <
ε

2k+1
and dck+1

(
f tk+p

k+1(z), y
)
<

ε

2k+1
.

3.2.4 Construction of a fractal set with large topological

pressure

Define

Fk =
⋃
z∈Tk

Btk

(
z,
ε

2k
)

and F =
⋂
k≥1

Fk.

The previous set F depends on ε, but we shall omit its dependence for notational

simplicity. As Fk+1 ⊂ Fk for all k ≥ 1 follows that F is the (non-empty) intersection of

a sequence of compact and nested subsets. In the present subsection we will prove the

following:

PF (f, ψ, ε) ≥ tPtop(f, ψ, ε)− var(ψ, ε)− 9γ. (3.2.15)

Remark 3.2.6. Every point x ∈ F can be uniquely represented by an itinerary x =

(x1, x2, x3, . . . ) where each xi = (xi1, . . . , x
i
Nk

) ∈ SNi
i . We will keep denoting by y(xi) ∈ Ci

the point in Ci determined by the sequence xi with a sequence si = (si1, . . . , s
i
Ni−1) of

transition times, and by zi(x) = z(zi−1(x), y(xi)) ∈ Ti the element constructed using the

points zi−1(x) ∈ Ti−1 and y(xi) ∈ Ci, and with transition time p
i
.

We will use the following pressure distribution principle:

Proposition 3.2.7. [52, Proposition 2.4] Let f : X → X a continuous map on a compact

metric space X and let Z ⊂ X be a Borel set. Suppose there are ε > 0, s ∈ R, K > 0

and a sequence of probability measures (µk)k satisfying:
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(i) µk → µ and µ(Z) > 0, and

(ii) lim supk→∞ µk(Bn(x, ε)) ≤ K exp{−ns+
∑n−1

i=0 ψ(f i(x)} for every large n and every

ball Bn(x, ε) such that Bn(x, ε) ∩ Z 6= ∅.

Then, PZ(ψ, ε) ≥ s.

Assume first that htop(f) < ∞ (hence Ptop(f, ψ) < ∞, by the variational principle).

We use the previous proposition to estimate PF (f, ψ, ε). Consider a sequence (µk)k of

measures on F as follows: take νk =
∑

z∈Tk Ψ(z) δz and its normalization

µk =
1

Zk
νk where Zk =

∑
z∈Tk

Ψ(z),

and for every z = z(x1, . . . , xk) ∈ Tk and xi = (xi1, . . . , x
i
Ni

) ∈ SNi
i we set

Ψ(z) =
k∏
i=1

Ni∏
l=1

expSni
ψ(xil).

We will prove that (µk)k satisfies the hypothesis of Proposition 3.2.7. Given n ≥ 1, let

B = Bn(q, ε/2) be a dynamical ball that intersects F , let k ≥ 1 be such that tk ≤ n < tk+1,

and let 0 ≤ j ≤ Nk+1 − 1 be so that

tk + jnk+1 +
∑

1≤i≤j

sk+1
i ≤ n < tk + (j + 1)nk+1 +

∑
1≤i≤j+1

sk+1
i . (3.2.16)

Lemma 3.2.8. If µk+1(B) > 0, then

νk+1(B) ≤ eSnψ(q)+n var(ψ,ε)+(
∑k

i=1Nimi+j mk+1)|ψ|∞M
Nk+1−j
k+1 .

Proof. If µk+1(B) > 0, then Tk+1 ∩ B 6= ∅. Let z = z(x, y) ∈ Tk+1 ∩ B determined by

x ∈ Tk and y = y(x1, . . . , xNk+1
) ∈ Ck+1 and let p

k+1
be so that

dtk(z, x) <
ε

2k+1
and dck+1

(f tk+p
k+1(z), y) <

ε

2k+1
.

Since z ∈ Bn(q, ε/2) and n ≥ tk, then dtk(x, q) ≤ dtk(x, z) + dtk(z, q) < ε. Using the

definition of n and the fact that dn(z, q) < ε
2

we have that

dnk+1
(f tk+(l−1)nk+1+

∑
0≤i≤l−1 s

k+1
i (z), f tk+(l−1)nk+1+

∑
0≤i≤l−1 s

k+1
i (q)) <

ε

2

for all l = 1, . . . , j. Moreover, by construction dck+1
(f tk+p

k+1(z), y) < ε
2k+1 . This implies

on the following estimates for blocks of size nk+1:

dnk+1
(f tk+p

k+1
+(l−1) nk+1+

∑
0≤i≤l−1 s

k
i (z), f (l−1) nk+1+

∑
0≤i≤l−1 s

k
i (y)) <

ε

2k+1
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for all l = 1, . . . , Nk+1. Using that y = y(x1, . . . , xNk+1
) ∈ Ck+1 we also have

dnk+1
(f (l−1) nk+1+

∑
0≤i≤l−1 s

k
i (y), xk+1

l ) <
ε

2k+1

for all l = 1, . . . , j. Altogether the previous estimates imply

dnk+1
(f tk+p

k+1
+(l−1) nk+1+

∑
0≤i≤l−1 s

k
i (z), xk+1

l ) < 2 ε (3.2.17)

for all l = 1, . . . , j.

We remark that if ẑ = z(x̂, ŷ) ∈ Tk+1 ∩ B then dtk(x̂, q) < ε and, consequently,

dtk(x̂, x) < 2ε. Since Tk is (tk, 2ε) separated and n ≥ tk, then x = x̂. Moreover, the

previous estimates also ensure (cf. (3.2.17)) that dnk+1
(xk+1

l , x̂k+1
l ) < 4 ε for all l =

1, . . . , j. However, as xk+1
i and x̂k+1

i belong to Sk+1, which is a (nk+1, 4ε)-separated set,

then xk+1
i = x̂k+1

i for every i = 1, . . . , j.

The previous argument implies that all elements z = z(x, y) ∈ Tk+1 ∩ B with x ∈ Tk
and y = (x1, . . . , xNk+1

) ∈ Ck+1 may only differ in the last Nk+1 − j elements of Sk+1.

Therefore, by the choice of k and j in (3.2.16),

νk+1(B) =
∑

z∈Tk+1∩B

Ψ(z)

≤ Ψ(x)
[ j∏
l=1

expSnk+1
ψ(xk+1

l )
] Nk+1∑
l=j+1

exp(Snk+1
ψ(xk+1

l ))

= Ψ(x)
[ j∏
l=1

expSnk+1
ψ(xk+1

l )
] Nk+1∏
l=j+1

∑
x̃∈Sk+1

exp(Snk+1
ψ(x̃))

= Ψ(x)
[ j∏
l=1

expSnk+1
ψ(xk+1

l )
]
M

Nk+1−j
k+1

≤ eSnψ(q)+n var(ψ,ε)+(
∑k

i=1Nimi+j mk+1)|ψ|∞M
Nk+1−j
k+1

which proves the lemma.

Lemma 3.2.9. Zk (Mk+1)j ≥ exp(n(t Ptop(f, ψ, ε)− var(ψ, ε)− 8γ)) for all k � 1.

Proof. By the variational principle and the fact that ψ is bounded away from zero and

infinity assumption (i) is equivalent to Ptop(f, ψ) <∞. A simple computation shows that

Zk = Mk
Nk for every k ≥ 1. Moreover, using

n < tk + (j + 1)(nk+1 +mk+1)

=
k∑
i=1

niNi +
k∑
i=1

(
p
i
+

Ni−1∑
l=1

sil
)

+ (j + 1)(nk+1 +mk+1)

≤
k∑
i=1

[(ni +mi)Ni +mi] + (j + 1)(nk+1 +mk+1)
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equation (3.2.12), and that mi � ni � Ni for every 1 ≤ i ≤ k we get

ZkM
j
k+1 = MN1

1 . . .MNk
k M j

k+1

≥ exp
(

(
k∑
i=1

Nini + jnk+1)[tPtop(f, ψ, ε)− var(ψ, ε)− 6γ]
)

≥ exp(t(
k∑
i=1

Ni(ni +mi) + j(nk+1 +mk+1))[tPtop(f, ψ, ε)− var(ψ, ε)− 7γ])

≥ exp(n[t Ptop(f, ψ, ε)− var(ψ, ε)− 8γ])

for all large k, proving the lemma.

Corollary 3.2.10. The following holds:

lim sup
k→∞

µk(Bn(q, ε/2)) ≤ exp(−n(t Ptop(f, ψ, ε)− var(ψ, ε)− 9γ) + Snψ(q)).

Proof. By Lemmas 3.2.8 and 3.2.9 we get

µk+1(B) ≤ 1

ZkM
Nk+1

k+1

eSnψ(q)+n var(ψ,ε)+(
∑k

i=1Nimi+j mk+1)|ψ|∞M
Nk+1−j
k+1

=
1

ZkM
j
k+1

eSnψ(q)+n var(ψ,ε)+(
∑k

i=1Nimi+j mk+1)|ψ|∞

≤ exp(−n(t Ptop(f, ψ, ε)− var(ψ, ε)− 9γ) + Snψ(q))

for all large k, proving the corollary.

Now, an argument similar e.g. to [11, p.1200] ensures that any accumulation point

µ of µk satisfies µ(F ) = 1. Since the hypothesis of Proposition 3.2.7 are satisfied we

conclude that PF (f, ψ, ε) ≥ t Ptop(f, ψ, ε)− var(ψ, ε)− 9γ proving equation (3.2.15).

Finally, by the variational principle for the topological entropy, in the case that

supµ∈M1(f) hµ(f) = htop(f) = +∞ (hence Ptop(f, ψ) = +∞) the argument follows with

minor modifications. Indeed, one can repeat the previous arguments and prove that for

any K > 0 and t ∈ (0, 1) there exist invariant probability measures µ1, µ2 so that µ1 is

ergodic, hµ1(f) +
∫
ψ dµ1 > K, hµ2(f) +

∫
ψ dµ2 > tK and

∫
ϕdµ1 6=

∫
ϕdµ2. The same

argument as before shows that for any given ε, γ > 0 there exists a fractal set F ⊂ Xϕ,f

such that

PXϕ,f
(f, ψ, ε) ≥ PF (f, ψ, ε) ≥ tK − var(ψ, ε)− 9γ,

leading to the conclusion that PXϕ,f
(f, ψ) ≥ K. Since K > 0 is arbitrary and ψ is bounded

above and below, then

PXϕ,f
(f, ψ) = Ptop(f, ψ) = hXϕ,f

(f) = htop(f) = +∞

as claimed.
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3.2.5 The set F is formed by points with historic behavior

In order to complete the proof of Theorem B it suffices to prove that F ⊂ Xϕ,f .

Proposition 3.2.11. F ⊂ Xϕ,f .

Proof. Let x ∈ F , and set χ(k) = 1 if k odd, and χ(k) = 2 otherwise. By Remark 3.2.6

let yk := y(xk) ∈ Ck and zk = zk(x) ∈ Tk. First we prove that points in Ck have time

averages close to
∫
ϕdµχ(k). More precisely, we claim that

∥∥∥ 1

ck

ck−1∑
j=0

ϕ(f j(yk))−
∫
ϕdµχ(k)

∥∥∥ → 0 as k →∞. (3.2.18)

Recalling that ck = Nknk +
∑Nk−1

i=1 ski and 0 ≤ ski ≤ mk for every i, one can write

∥∥∥ ck−1∑
j=0

ϕ(f j(yk))− ck
∫
ϕdµχ(k)

∥∥∥
≤
∥∥∥ Nk∑
j=1

nk−1∑
i=0

ϕ(f i+(j−1)nk+
∑j−1

i=1 s
k
i (yk))− nkNk

∫
ϕdµχ(k)

∥∥∥
+ 2mk(Nk − 1)‖ϕ‖∞

≤
Nk∑
j=1

nk−1∑
i=0

‖ϕ(f i+(j−1)nk+
∑j−1

i=1 s
k
i (yk))− ϕ(f i(xkj ))‖

+
∥∥∥ Nk∑
j=1

[ nk−1∑
j=0

ϕ(f i(xkj ))− nk
∫
ϕdµχ(k)

]∥∥∥
+ 2mk(Nk − 1)‖ϕ‖∞

≤ Nknk

(
var(ϕ,

ε

2k
) + ζk

)
+ 2mk(Nk − 1)‖ϕ‖∞.

Using that limk→∞
nkNk

ck
= 1 and limk→∞

mkNk

ck
= 0 we conclude that

∥∥∥ 1

ck

ck−1∑
j=0

ϕ(f j(yk))−
∫
ϕdµχ(k)

∥∥∥ ≤ Nknk
ck

(
var(ϕ,

ε

2k
) + ζk

)
+

2mk(Nk − 1)

ck
‖ϕ‖∞

tends to zero as k →∞, which proves the claim.

Now, take any point x ∈ F . By definition for every k ≥ 1 there exists zk =

z(zk−1, yk) ∈ Tk so that dtk(x, zk) ≤ ε
2k

. Using that tk = ck + p
k

+ tk−1 and triangular

inequality we get

dck(f tk−ck(x), yk) ≤ dtk(f tk−ck(x), f tk−ck(zk)) + dck(f tk−ck(zk), yk) <
ε

2k−1
.
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In particular, ∥∥∥ 1

ck

ck−1∑
j=0

ϕ(f tk−ck+j(p))−
∫
ϕdµχ(k)

∥∥∥
≤ var

(
ϕ,

ε

2k−1

)
+
∥∥∥ 1

ck

ck−1∑
j=0

ϕ(f j(yk))−
∫
ϕdµχ(k)

∥∥∥
tends to zero as k → ∞. Using that limk→∞

ck
tk

= 1 and dividing the tk-time average in

their first tk − ck summands and the second ck summands, a simple computation shows∥∥∥ 1

tk

tk−1∑
j=0

ϕ(f j(x))− 1

ck

ck−1∑
j=0

ϕ(f j+tk−ck(x))
∥∥∥ ≤ 2

tk − ck
tk
‖ϕ‖∞ → 0

as k → ∞. Altogether we get that limk→∞
∥∥ 1
tk

∑tk−1
j=0 ϕ(f j(p)) −

∫
ϕdµχ(k)

∥∥ = 0, which

proves the proposition.

3.2.6 Proof of Theorem B

We will consider the case of topological entropy and metric mean dimension, as the

argument that proves that the historic set carries full topological pressure is completely

analogous. We note that

0 ≤ mdim(f) ≤ mdim(f) ≤ htop(f) ≤ +∞

and that mdim(f) = 0 whenever htop(f) < +∞. For that reason we distinguish the

following cases:

Case 1: 0 = mdim(f) < htop(f) < +∞.

It is immediate that mdimXϕ,f
(f) = mdim(f) = 0. It remains to prove that hXϕ,f

(f) =

htop(f). Given ε, γ, t > 0 as before, Corollary 3.2.10 ensures that (µk)k satisfies the

hypothesis of Proposition 3.2.7 with s = t htop(f, ε) − 8γ and K = 1. Since F ⊂ Xϕ,f ,

then hXϕ,f
(f, ε) ≥ hF (f, ε) ≥ t htop(f, ε)− 8γ and so hXϕ,f

(f) ≥ t htop(f)− 8γ. As γ > 0

and t ∈ (0, 1) were chosen arbitrary we conclude that hXϕ,f
(f) = htop(f).

Case 2: 0 = mdim(f) < htop(f) = +∞.

The argument that hXϕ,f
(f) = +∞ is explained at the end of Subsection 3.2.4.

Case 3: 0 < mdim(f) < htop(f) = +∞.

As the proof that hXϕ,f
(f) = +∞ was discussed in Case 2, we are left to prove that

mdimXϕ,f
(f) = mdim(f) and mdimXϕ,f

(f) = mdim(f). If mdim(f) = 0 it is immediate.

Otherwise, given ε, γ, t > 0 as before, Corollary 3.2.10 implies

hXϕ,f
(f, ε)

− log ε
≥ hF (f, ε)

− log ε
≥
t (htop(f, ε)− 7γ)

− log ε
.
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and, consequently, mdimXϕ,f
(f) ≥ t mdim(f). Since that t ∈ (0, 1) is arbitrary, then

mdimXϕ,f
(f) = mdim(f). The proof that mdimXϕ,f

(f) = mdim(f) is identical. This

proves the theorem.

3.3 Proof of Corollary A

The proof of the corollary relies on the genericity of the gluing orbit property on chain

recurrent classes of the non-wandering set, obtained in Proposition 4.2.2.

Let R̃0 be as in the proof of Proposition 4.2.2. Fix an arbitrary f ∈ R̃0 and let

Ω(f) =
⋃k
i=1 Γi be the decomposition of the non-wandering set of f in chain recurrent

classes. If htop(f) = 0 then we have nothing to prove, and we take Rf = C0(X,Rd).

Otherwise, by assumption there exists 1 ≤ j ≤ k so that htop(f) = htop(f |Γj
) > 0 and

f |Γj
has the periodic gluing orbit property.

We claim that there exists a Baire generic subsetRf ⊂ C0(X,Rd) so that Γj∩Xϕ,f 6= ∅
for every ϕ ∈ Rf . Observe that the latter implies on the corollary because

R :=
⋃
f∈R̃0

{f} ×Rf ⊂ Homeo(X)× C0(X,Rd)

becomes a C0-Baire generic subset and, by Theorem B, the set Γj ∩ Xϕ,f 6= ∅ is a full

topological entropy subset of Γj.

Hence, it remains to prove the claim. As htop(f |Γj
) > 0 and f |Γj

satisfies the periodic

gluing orbit property then there are countably many distinct periodic points in Γj. By

Lemma 3.2.1, Γj ∩ Xϕ,f 6= ∅ if and only if there exists a pair of periodic points in Γj

with different Birkhoff averages with respect to ϕ. Since periodic points are generically

permanent (recall the proof of Proposition 4.2.2) it is clear that the latter defines a C0-

open and dense subset Rf ⊂ C0(X,Rd). This proves the claim and finishes the proof of

the corollary.
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Chapter 4

The set of points with non-trivial

pointwise rotation set

The main goal of this chapter is to prove Theorems C and D, concerning on the set

of points in T2 with non-trivial pointwise rotation set for typical homeomorphisms.

4.1 Volume preserving homeomorphisms

Our starting point for the proof of Theorem C is that specification is generic among

volume preserving homeomorphisms. More precisely, for any compact Riemannian

manifold M of dimension at least 2, there exists a residual subset R2 ⊂ Homeoλ(M)

such that every homeomorphism in R2 satisfies the specification property [22]. Together

with the fact that Homeo0,λ(Td) is open in Homeoλ(Td) this ensures:

Corollary 4.1.1. There is a residual R3 ⊂ Homeo0,λ(Td) such that every f ∈ R3 satisfies

the specification property (hence the gluing orbit property).

Theorem 4.1.2. [23, Theorem 1] The set of all homeomorphisms with a stable rotation

set is open and dense set O ⊂ Homeo0(T2). Moreover, the rotation set of every such

homeomorphism is a convex polygon with rational vertices, and in the area-preserving

setting this polygon has nonempty interior.

Given f ∈ Homeo0(T2) recall that ρ(f) is called stable if there exists δ > 0 so that

ρ(g) = ρ(f) for every g ∈ Homeo0(T2) so that dC0(f, g) < δ. By [23] and [39] we obtain

the following

Theorem 4.1.3. The set of all homeomorphisms with a stable rotation set is open and

dense in D ⊂ Homeo0(T2) and for every f ∈ D the rotation set of ρ(F ) is a convex polygon
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with rational vertices. Moreover, there exists an open and dense O ⊂ Homeo0,λ(T2) so

that for every f ∈ D the rotation set ρ(F ) is a convex polygon with rational vertices and

nonempty interior.

We are now in a position to prove Theorem C.

4.1.1 Proof of Theorem C

Let F : R2 → R2 be a lift of f and consider the observable (displacement function)

ϕF : T2 → R2 given by ϕF (x) = F (x̃)− x̃, where x̃ ∈ π−1(x). Since

1

n

n−1∑
j=0

ϕF (f j(x)) =
F n(x̃)− x̃

n

we have that ρ(F, x̃) coincides with the accumulation points of ( 1
n

∑n−1
j=0 ϕF (f j(x)))n≥1.

Thus, the non-trivial pointwise rotation sets of x can be represented by

Ff := {x ∈ T2 : ρ(F, x̃) is not trivial, where π(x̃) = x}.

Take the residual subset

R1 := R3 ∩ O ⊂ Homeo0,λ(T2).

We claim that Ff is residual in T2 for every f ∈ R1. Indeed, any f ∈ R1, f satisfies

the gluing orbit property and, if F is a lift of f , int(ρ(F )) 6= ∅. The latter ensures that

ϕF 6∈ Cob (recall Lemma 3.2.1) and XϕF ,f
6= ∅. Theorem C is now a consequence of

Theorems A and B.

Moreover, since that ρ(F, x̃) ⊂ ρ(F ), for all x ∈ T2, we are done.

4.2 Dissipative homeomorphisms

In this section is to prove the Theorem D. Before, we introduce an useful concept.

4.2.1 Continuous maps with the gluing orbit property

Here we prove the genericity of the gluing orbit property on chain recurrent classes

of the non-wandering set, a result of independent interest inspired by [6]. The following

lemma is an easy consequence of compactness.
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Lemma 4.2.1. Let f be a continuous map on a compact metric space X such that

Per(f) = Ω(f), and let Γ ⊂ Ω(f) be a chain recurrent class. For any δ > 0 there

exists m = m(δ) ≥ 1 and a set of periodic orbits L = {θ1, θ2, . . . , θm} ⊂ Γ ∩ Per(f) such

that for any points x, y ∈ Γ there exists n < m and a δ-pseudo orbit (xi)i=1,...,n so that

x0 = x, xn = y and xi ∈ L for every 0 < i < n.

Proof. Let δ > 0. Using that every chain recurrent class is compact, there are points

z1, z2, . . . , zl ∈ Γ such that Γ ⊂ B(z1, δ/4) ∪ B(z2, δ/4) ∪ · · · ∪ B(zl, δ/4). If B(zi, δ/4) ∩
B(zj, δ/4) 6= ∅ (i < j) by denseness of periodic points we can choose a point zji ∈
Per(f)∩B(zi, δ/4)∩B(zj, δ/4). Since chain recurrence classes are compact and isolated,

reducing δ if necessary we may assume such periodic points belong to Γ. As Per(f) is

dense in Γ, then every periodic orbit for the flow is not isolated, meaning each of these

are accumulated by distinct periodic orbits. Consider the collection of periodic points zji

chosen above and denote this by L0 = {θ0
1, θ

0
2, . . . , θ

0
m0
}.

By construction, for any two points x, y ∈ Γ there exist 1 ≤ n ≤ m0 and a sequence

(xi)i=1,...,n−1 of periodic points in L0 in such a way that

d(f(x), x1) <
δ

2
, d(xn−1, f

−1(y)) <
δ

2
and d(xi, xi+1) <

δ

2
, for all 1 ≤ i ≤ n− 2.

We will build a finite set L ⊂ L0 so that every two points in Γ can be connected by a

δ-pseudo-orbit formed by points in L. Let pi denote the period of θi for every 1 ≤ i ≤ m0.

So, consider the set

L =
{
f j(θ0

i ) : θ0
i ∈ L0 and 0 ≤ j ≤ pi − 1

}
and write it, for simplicity, as L = {θ1, θ2, . . . , θm} where m = m0 +

∑m0

i=1 pi.

Now consider the δ-pseudo-orbit {(xi)} connecting x0 = x to xn = y defined by:

{(xi)i} = {x, x1, f(x1), . . . , f p1−1(x1), x2, . . . , f
p2−1(x2), . . . , xl−1, . . . , f

pl−1−1(xl−1), f−1(y), y}

and times

{(ti)i} = {1, 1, . . . , 1︸ ︷︷ ︸
p1

, . . . , 1, . . . , 1︸ ︷︷ ︸
pl−1

, 1, 1}.

The condition n < m stated in the lemma is given by n = 2 +
∑l−1

i=1 pi. By construction

n < m.

The latter implies on the following consequence:
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Proposition 4.2.2. Let X be a compact Riemannian manifold of dimension at least 2.

There exists a Baire residual subset R0 ⊂ Homeo0(X) so that if f ∈ R0 and Γ ⊂ Ω(f)

is a chain recurrent class, then the restriction f |Γ satisfies the (periodic) gluing orbit

property.

Proof. It follows from [12, 43] that there exists a residual subset R̃0 ⊂ Homeo(X) such

that every f ∈ R̃0 has the periodic shadowing property and Per(f) = Ω(f).

We claim that for any f ∈ R̃0 and any chain recurrent class Γ ⊂ Ω(f) we have that

f |Γ has the periodic gluing orbit property. Let (Γi)i denote the chain recurrent classes of

f . Let 0 < ε < mini 6=j d(Γi,Γj)/2 and let δ = δ(ε) > 0 by given by the periodic shadowing

property. Let L = {θ1, θ2, . . . , θm} (depending on δ = δ(ε)) be given by Lemma 4.2.1 and

set K = K(δ) =
∑

1≤i≤m πi, where πi ≥ 1 is the prime period of θi. Now, consider

arbitrary points x1, x2, . . . , xk ∈ Γ and integers n1, . . . , nk ≥ 0. By Lemma 4.2.1, for every

1 ≤ s ≤ k there exists a δ-pseudo orbit (ysi )i=0,...,ls connecting the point fns−1(xs−1) and

xs and a δ-pseudo orbit (yk+1
i )i=0,...,lk+1

connecting the point fnk(xk) and x1, all formed

by at most m periodic points in L. Finally, consider the δ-pseudo-orbit (xi)i connecting

x1 and fnk(xk) defined by:{
x1, f(x1), . . . , fn1−1(x1), y1

0, y
1
1, . . . , y

1
l1−1, x2, f(x2), . . . , fn2−1(x2),

y2
0, y

2
1, . . . , y

2
l2−1, . . . , xk, f(xk), . . . , f

nk(xk), y
k+1
0 , yk+1

1 , . . . yk+1
lk+1

, x1

}
Using the periodic shadowing property for f there exists a periodic point z ∈ X so that

d(f j(z), f j(x1)) < ε for every 0 ≤ j ≤ n1 and

d(f j+p1+n1+···+pi−1+nk(z), f j(xi)) < ε, ∀ i ∈ {2, . . . , k}, ∀ j ∈ {0, 1, . . . , ni}

where each ps is bounded above by K. Since 0 < ε < mini 6=j d(Γi,Γj)/2 we conclude that

z ∈ Γ. This proves f |Γ satisfies the periodic gluing orbit property. Since Homeo0(X) is

open in Homeo(X) it is sufficient consider R0 := R̃0 ∩ Homeo0(X).

In order to prove Theorem D consider the set A := {f ∈ Homeo0(T2) : int(ρ(F )) 6= ∅},
which does not depend on the lift F . Misiurewicz and Ziemian proved that A is open in

Homeo0(T2) [34, Theorem B].

The Theorem 1.2.5 and 4.1.3 is enough to prove the following:

Lemma 4.2.3. Take f ∈ A and let F be a lift of f . There exists a Γ ⊂ Ω(f) chain

recurrent class such that ρ(F |π−1(Γ)) is non-trivial. Moreover, htop(f |Γ) > 0.
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Proof. Suppose, by contradiction, that int(ρ(F )) 6= ∅ and that ρ(F |π−1(Γ)) is trivial for

every chain recurrent class Γ ⊂ Ω(f). Since rational points in the int(ρ(F )) are realizable

by periodic point of f , due Theorem 1.2.3, given a small disk D ⊂ int(ρ(F )) 6= ∅, there

is x ∈ T2 and x̃ ∈ π−1(x) such that ρ(F, x̃) = D (by Theorem 1.2.5). In consequence

D ⊂ ρ(F |π−1(Γ)) where Γ denotes the chain recurrent class of f containing the point x,

leading to a contradiction. The previous argument shows that there is a chain recurrent

class Γ ⊂ Ω(f) such that ρ(F |π−1(Γ)) has non-empty interior. By Theorem 1.2.5, this

implies the conclusion of the lemma.

4.2.2 Proof of Theorem D

Let R0 be given by Proposition 4.2.2 and take the residual subset R2 = R0 ∩ A ∩ D.

Given f ∈ R2, the variational principle for topological entropy together with the Poincaré

recurrence theorem imply that the topological entropy is supported on the non-wandering

set and htop(f) = max{htop(f |Γ)}, where the maximum is taken among the set of chain

recurrent classes Γ in Ω(f).

We claim that there is a chain recurrent class Γ such that XϕF ,f ∩ Γ is Baire residual

in Γ. Indeed, as int(ρ(F )) 6= ∅, Lemma 4.2.3 implies that there is a chain recurrent class

Γ such that int(ρ(F |Γ)) 6= ∅. In particular htop(f |Γ) > 0, by Theorem 1.2.5. Since

int(ρ(F |Γ)) 6= ∅, the restriction of the displacement function ϕF = F − Id on π−1(Γ) is

not cohomologous to constant consequently XϕF ,f ∩ Γ 6= ∅.
Theorems A and B imply that XϕF ,f

∩ Γ is Baire residual and has full topological

entropy and full metric mean dimension in the chain recurrence class Γ. This proves the

theorem.
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Chapter 5

Rotation sets on Td are generically

convex

The main goal of this chapter is to prove Theorem E. If p ∈ Td is a periodic point

of prime period k ≥ 1 (with respect to f) we denote by µp := 1
k

∑k−1
j=0 δfj(p) the periodic

measure associated to p. We will use the following:

Lemma 5.0.4. Assume that Λ ⊂ Td is a compact f -invariant set. If f |Λ satisfies the

periodic gluing orbit property then periodic measures are dense in M1(f |Λ) (in the weak∗

topology).

Proof. The proof is a simple modification of the arguments in [48] (where it is considered

the case where f satisfies the specification property). We will include a brief sketch for

completeness.

Let (ψn)n≥1 be countable and dense in C0(Λ,R) and consider the metric d∗ onM(Λ)

given by d∗(ν, µ) =
∑

n≥1
1

2n

∣∣ ∫ ψndν − ∫ ψndµ∣∣. This metric is compatible with the

weak∗ topology in M(Λ). The compactness of M1(f |Λ) and the ergodic decomposition

theorem, ensures that for any η ∈ M1(f |Λ) and ζ > 0 there exists a probability vector

(αi)1≤i≤k and ergodic measures (ηi)1≤i≤k so that d∗(η, η̂) < ζ/2, where η̂ =
∑k

i=1 αiηi.

It is enough to construct a periodic point p ∈ Λ such that d∗(µp, η̂) < ζ/2. By

definition of weak∗ topology, one can choose ε > 0 so that if dn(x, y) < ε, then

d∗(
1
n

∑n−1
j=0 δfj(x),

1
n

∑n−1
j=0 δfj(y)) < ζ/10. Let m(ε) > 0 be given by the gluing orbit

property. Choose N ≥ 1 large and for any 1 ≤ i ≤ k:

• pick xi ∈ Λ so that d∗(
1
n

∑n−1
j=0 δfn(xi), ηi) < ζ/10 for every n ≥ N ,

• let ni ≥ N be so that
∣∣ ni∑k

j=1 nj
− αi

∣∣ < ζ
10k

and (k+1)m(ε)∑k
j=1 nj

≤ ζ
10
.
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By the periodic gluing orbit property there are positive integers 0 ≤ mi ≤ m(ε) and a

periodic point p ∈ Λ of period κ(p) =
∑k

i=1(ni +mi) satisfying

dni
(f

∑
j<i(nj+mj)(p), xi) < ε for every 1 ≤ i ≤ k.

Then, by triangular inequality, it is not hard to check that

d∗(µp, η̂) ≤ d∗

( 1

κ(p)

κ(p)∑
i=1

δf i(p),
1

κ(p)

k∑
i=1

ni−1∑
j=0

δfj(xi)

)
+ d∗

( 1

κ(p)

k∑
i=1

ni−1∑
j=0

δfj(xi),
1∑k
j=1 nj

k∑
i=1

ni−1∑
j=0

δfj(xi)

)
+ d∗

( 1∑k
j=1 nj

k∑
i=1

ni−1∑
j=0

δfj(xi),

k∑
i=1

αi
ni

ni−1∑
j=0

δfj(xi)

)
+ d∗

( k∑
i=1

αi
ni

ni−1∑
j=0

δfj(xi),
k∑
i=1

αiηi

)
≤ 2 km(ε)

κ(p)
+

3ζ

10
≤ ζ

2
,

which proves the lemma.

5.0.3 Proof of Theorem E

Let d ≥ 2 be an integer and let R3 := R3 be the C0-residual subset in Homeo0,λ(Td)
formed by homeomorphisms with the specification property (cf. Corollary 4.1.1). Given

f ∈ R3 and a lift F recall that

ρerg(F ) ⊆ ρp(F ) ⊆ ρ(F ) ⊆ ρinv(F ),

where ρinv(F ) is convex.

We claim that ρ(F ) ⊇ ρinv(F ) for every lift F of a homeomorphism f ∈ R3. Given

an arbitrary v ∈ ρinv(F ) and η ∈ Minv(f) so that v =
∫
ϕF dη. By Lemma 5.0.4 there

exists a sequence (pn)n of periodic points so that µpn → η as n→∞. In particular, since

ϕF is continuous, if κ(pn) ≥ 1 denotes the prime period of pn and p̃n ∈ π−1(pn), then

F κ(pn)(p̃n)− p̃n
κ(pn)

=
1

κ(pn)

κ(pn)−1∑
j=0

ϕF (f j(pn))→
∫
ϕF dη = v as n→∞.

This ensures that v ∈ ρ(F ). Therefore, ρ(F ) = ρinv(F ) is convex and proves item (1) in

the theorem. The proof of item (2) is completely analogous, using the rotation set on each

chain recurrent class instead of the generalized rotation set, Proposition 4.2.2 instead of

Corollary 4.1.1 and taking R4 := R0.
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Chapter 6

Flows with reparametrized gluing

orbit property, suspension flows and

rotation set

In this chapter we are interested in proves the Theorems F, G and H.

6.1 Proof of the Theorem F

In this section we prove the Theorem F, it is a generalization of the Theorem A, since

that reparametrized gluing orbit property implies gluing orbit property. This Theorem

implies the Corollary B. The proof follows a strategy of Li and Wu in [25]. Let (Xt)t :

M →M be a continuous flow with the reparametrized gluing orbit property on a compact

Ψ-invariant ∆ ⊂ X and let ϕ : M → Rd be a continuous function. If Iϕ is trivial we are

done. Thus, suppose that Iϕ is non-trivial.

Let D ⊂ ∆ be a countable and dense set. Given ε > 0 fixed let K(ε) be given by the

gluing orbit property on ∆.

For w ∈ Lϕ, δ > 0 and n ∈ N set

P (w, δ, t) =

{
x ∈ ∆ :

∥∥∥∥1

t

∫ t

0

ϕ(Xr(x)) d r − w
∥∥∥∥ < δ

}
.

Clearly, for w ∈ Lϕ and any δ > 0 the set P (w, δ, t) is not empty for sufficiently large t.

By property of gluing, since that Iϕ 6= ∅ we have that there exists u, v ∈ Lϕ distinct,

let {δk}k≥1 ↘ 0 be a sequence of positive real numbers and {tk}k≥1 ↗ ∞ be a sequence

of integers with tk � Kk, meaning here limk→∞
Kk

tk
= 0, where Kk := K(ε/2k), so that

P (u, δ2j−1, t2j−1) 6= ∅ and P (v, δ2j, t2j) 6= ∅, for all j ≥ 1. Given q ∈ D and k ≥ 1, let W0 =

{q}. For j ≥ 1 let W2j−1 be a maximal (t2j−1, 8ε)-separated subset of P (u, δ2j−1, t2j−1) 6= ∅
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and W2j be a maximal (t2j, 8ε)-separated subset of P (v, δ2j, t2j) 6= ∅. Choose a sequence

of integers {Nk}k≥1 so that

limk→ ∞
tk+Kk

Nk
= 0, and

limk→ ∞
N1(t1+K1)+···+Nk(tk+Kk)

Nk
= 0. (6.1.1)

We need the following auxiliary construction. The reparametrized gluing orbit

property ensures that for every xk := (xk1, . . . , x
k
Nk

) ∈ (Wk)
Nk there exists a point

y = y(xk) ∈ X, a reparametrization τ ∈ Rep(ε) and transition time functions

pkj : WNk
k × R+ → N, j = 1, 2, . . . , Nk − 1

bounded by Kk so that

d(Xτ(aj+t)(y), Xt(x
k
j )) <

ε

2k
, for every t ∈ [0, tk] and j = 1, 2, . . . , Nk − 1, (6.1.2)

where

aj =

0 if j = 1

(j − 1) tk +
∑j−1

r=1 p
k
r if j = 2, . . . , Nk

. (6.1.3)

For k ≥ 1 and j ∈ {1, 2, . . . , Nk − 2} we have that pkj = pkj (x
k
1, x

k
2, . . . , x

k
Nk
, ε) is a

function that describes the time lag that the orbit of y = y(xk) takes to jump from a
ε

2k
-neighborhood of Xtk

(xkj ) to a ε
2k

-neighborhood of xkj+1, and it is bounded above by Kk.

We order the family {Wk}k≥1 lexicographically: Wk ≺ Ws if and only if k ≤ s.

We proceed to make a recursive construction of points in a neighborhood of q that

shadow points Nk in the family Wk successively with bounded time lags in between.

More precisely, we construct a family {Lk(q)}k≥0 of sets (guaranteed by the gluing orbit

property) contained in a neighborhood of q and a family of positive integers {lk}k≥0 (also

depending on q) corresponding to the time during the shadowing process. Let:

• L0(q) = {q} and l0 = N0t0 = 0;

• L1(q) = {z = z(q, y(x1)) ∈ X : x1 ∈ WN1
1 } and l1 = p1

0 + s1 with

s1 = N1n1 +
∑N1−1

r=1 pr1, where z = z(q, y(x1)) satisfies d(z, q) < ε
2

and

d(Xτ(p10+t)(z), Xτ(t)(y(x1))) < ε
2
, for every t ∈ [0, s1] and y(x1) is defined by (6.1.2),

τ ∈ Rep( ε
2
) and 0 ≤ p1

0 ≤ K( ε
22

) is given by the gluing orbit property;

• Lk(q) = {z = z(z0, y(xk)) ∈ X : xk ∈ WNk
k and z0 ∈ Lk−1}, and lk = lk−1 + pk0 + sk,
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with sk = Nknk +
∑Nk−1

r=1 pk0, where the shadowing point z satisfies

d(Xτ(t)(z), Xτ(t)(z0)) <
ε

2k
, ∀ t ∈ [0, lk−1]

and

d(Xτ(lk−1+pk0+t)(z), Xτ(t)(y(xk))) <
ε

2k
, ∀ t ∈ [0, sk].

for τ ∈ Rep( ε
2k

).

Note that since τ ∈ Rep( ε
2k

) ⊂ Rep(ε), then τ(tk + pkj )− τ(tk) ≤ (1 + ε)Kk.

The previous points y = y(xk) are defined as in (6.1.2). By construction, for every

k ≥ 1

lk =
k∑
r=1

Nrnr +
k∑
r=1

Nr−1∑
t=0

pkt . (6.1.4)

Remark 6.1.1. Note that lk and sk are functions (as these depend on pkj ) and, by definition

of Nk cf. (6.1.1), one has that
‖lk‖
Nk
≤

∑k
r=1(nr+mr)

Nk
tends to zero as k →∞.

For every k ≥ 0, q ∈ D and ε > 0 define

Rk(q, ε) =
⋃

z∈Lk(q)

B̃τ
lk

(
z,
ε

2k

)
and R(q, ε) =

∞⋂
k=0

Rk(q, ε),

where B̃τ
lk

(x, δ) is the set of points y∈X so that d(Xτ(α)(x), Xα(y)) < δ for all 0 ≤α≤
lk − 1. Note that τ depend of point z chosen, but we will omit it.

Consider also the sets

R =
∞⋃
j=1

⋃
q∈D

R(q,
1

j
) =

∞⋃
j=1

⋃
q∈D

∞⋂
k=0

⋃
z∈Lk(q)

B̃τ
lk

(
z,

1

j2k

)
. (6.1.5)

The following lemma, identical to Propositions 2.2 and 2.3 in [25], ensures that R is

a Baire generic subset of X.

Lemma 6.1.2. R is a Gδ-set and it is dense in X.

Proof. First we prove denseness. It is enough to show that R ∩ B(x, r) 6= ∅ for every

x ∈ X and r > 0. In fact, given x ∈ X and r > 0, there exists j ∈ N with 2/j < r

and q ∈ D such that d(x, q) < 1/j. Given y ∈ R(q, 1
j
) it holds that d(q, y) < 1

j
because

R(q, 1
j
) ⊂ B(q, 1

j
). Therefore, d(x, y) ≤ d(x, q) + d(q, y) < 2/j < r. This ensures that

R∩B(x, r) 6= ∅.
Now we prove that R is a Gδ-set. Fix j ∈ N and q ∈ D. For any k ≥ 1, consider the

open set

Gk(q, ε) :=
⋃

z∈Lk(q)

Bτ
lk

(
z,
ε

2k

)
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where Bτ
lk

(x, δ) is the set of points y∈X so that d(Xτ(α)(x), Xα(y)) < δ for all 0 ≤α≤
lk−1−1. Note that Gk(q, ε) ⊂ Rk(q, ε) for any k ≥ 1. We claim that Rk+1(q, ε) ⊂ Gk(q, ε)

for any k ≥ 1. The claim implies that

R(q, ε) :=
∞⋂
k=0

Rk(q, ε) =
∞⋂
k=0

Gk(q, ε)

and guarantees that R is a Gδ-set.

Now we proceed to prove the claim. We prove thatRk+1(q, ε) ⊂ Gk(q, ε) for any k ≥ 1.

Given y ∈ Rk+1(q, ε), there exists z ∈ Lk+1(q) such that y ∈ B̃τ
lk+1

(z, ε
2k+1 ). By definition

of Lk+1(q), there exists z0 ∈ Lk(q) and τ ∈ Rep( ε
2k

) such that d(Xτ(t)(z), Xτ(t)(z0)) < ε
2k+1

for all t ∈ [0, lk]. Thus,

d(Xt(y), Xτ(t)(z0)) ≤ d(Xt((y), Xτ(t)(z)) + d(Xτ(t)(z), Xτ(t)(z0))

<
ε

2k+1
+

ε

2k+1
=

ε

2k

for all t ∈ [0, lk]. Therefore, y ∈ Gk(q, ε). This proves the claim and completes the proof

of the lemma.

We must show that R ⊂ Iϕ. It sufficient to prove that R(ε, q) ⊂ Iϕ for any ε and any

q ∈ D. For any η > 0 put var(ϕ, η) := sup{| ϕ(x)− ϕ(y) |: d(x; y) < η} By compactness,

var(ϕ, η)→ 0 as η → 0. We need the follows lemmas whose the proof are quite similar to

Lemmas 2.1 and 2.2 in [25].:

Lemma 6.1.3. For every k ≥ 1, the following hold:

(i) if k is odd and y = y(xk), then∥∥∥∫ sk

0

ϕ(Xτ(r)(y)) d r − sku
∥∥∥ ≤ Nktk

(
var(ϕ,

ε

2k
) + δk

)
+ 2(Nk − 1)Kk‖ϕ‖∞;

(ii) if k is even, then∥∥∥∫ sk

0

ϕ(Xτ(r)(y)) d r − skv
∥∥∥ ≤ Nktk

(
var(ϕ,

ε

2k
) + δk

)
+ 2(Nk − 1)Kk‖ϕ‖∞.

Proof. Let k ≥ 1 be fixed and assume that it is odd (the case it is even is completely

analogous). By construction of Wk and relation (6.1.2) there exists (xk1, . . . , x
k
Nk

) ∈ WNk
k

so that

d(Xτ(aj+t)(y), Xt(x
k
j )) <

ε

2k
,

and ∥∥∥∫ tk

0

ϕ(Xτ(aj+r)(y)) d r − tku
∥∥∥ ≤ ∥∥∥ ∫ tk0

ϕ(Xτ(aj+r)(y)) d r −
∫ tk

0
ϕ(Xr(x

k
j )) d r

∥∥∥
+
∥∥∥ ∫ tk0

ϕ(Xr(x
k
j )) d r − tku

∥∥∥ (6.1.6)

≤ tk

(
var(ϕ, ε

2k
) + δk

)
,
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for every j = 1, 2, . . . , Nk − 1.

On the other hand, as ‖u‖ ≤ ‖ϕ‖∞, we also have that

∥∥∥∫ pkj

0

ϕ(Xτ(aj+tk+r)(y))− pkju
∥∥∥ ≤ Kk(‖ϕ‖+ ‖u‖) ≤ 2Kk‖ϕ‖∞. (6.1.7)

for every j = 1, 2, . . . , Nk − 1.

Moreover, decomposing the time interval [0, sk − 1] according to shadowing times and

transition times

[0, sk − 1] =

Nk⋃
j=1

[bj, bj + tk − 1] ∪
Nk−1⋃
j=1

[bj + tk, bj + tk + pkj − 1].

For times on the intervals [bj, bj + tk−1] and [bj + tk, bj + tk +pkj −1] and using (6.1.6)

and (6.1.7), respectively, we get

∥∥∥∫ sk

0

ϕ(Xτ(r)(y)) d r − sk u
∥∥∥ ≤ Nktk

(
var
(
ϕ,

ε

2k

)
+ δk

)
+ (Nk − 1)2Kk‖ϕ‖∞

as desired.

The next lemma is a step in the proof that Birkhoff averages of points in R oscillate

between the vectors u and v.

Lemma 6.1.4. For every k ≥ 1 the following hold:

(i) if k is odd and z ∈ Lk(q), then 1
lk

∥∥ ∫ lk
0
ϕ(Xτ(r)(z)) d r − u

∥∥→ 0 as k →∞; and

(ii) if k is even and z ∈ Lk(q), then 1
lk

∥∥ ∫ lk
0
ϕ(Xτ(r)(z)) d r − v

∥∥→ 0 as k →∞.

Proof. (i) Fix k ≥ 0 odd. Let z = z(z0, y(xk)) ∈ Lk(q), y = y(xk) and lk = lk−1 + pk0 + sk

be given as on the definition of Lk(q). Then,

d(Xτ(lk−1+pk0+t)(z), Xτ(t)(y)) ≤ ε

2k−1
,

for every t ∈ [0, sk].

Hence,∥∥∥∫ lk

0

ϕ(Xτ(r)(z))− lk u
∥∥∥ ≤ ∥∥∥∫ sk

0

ϕ(Xτ(lk−1+pk0+r)(z)) d r − sk u
∥∥∥

+ 2(lk−1 + pk0)‖ϕ‖∞

≤
∥∥∥∫ sk

0

ϕ(Xτ(lk−1+pk0+r)(z)) d r −
∫ sk

0

ϕ(Xτ(r)(y)) d r
∥∥∥

+
∥∥∥∫ sk

0

ϕ(Xτ(r)(y))− sk u
∥∥∥

+ 2(lk−1 + pk0)‖ϕ‖∞.
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Dividing the previous expression by lk and appealing the Lemma 6.1.3 we obtain that

1

lk

∥∥∥∫ lk

0

ϕ(Xτ(r)(z))− u
∥∥∥ ≤ sk var

(
ϕ,

ε

2k

)
+

2(lk−1 + pk0)‖ϕ‖∞
lk

+
Nksk

(
var(ϕ, ε

2k
) + δk

)
+ 2(Nk − 1)Kk‖ϕ‖∞

lk

which goes to zero as k →∞, because
tk
lk
≤ 1,

Nknk

lk
≤ 1 and

lk + pk0
lk

≤
N0 t0 +

∑k
j=1Nj(tj +Kj) +Kk

lk
→ 0

when k →∞.

The proof of item (ii) is analogous.

We are now able to prove that R(q, ε) ⊂ Iϕ. If x ∈ R(q, ε), then x ∈ B̃τ
l2k

(z, ε/22k)

for some z ∈ L2k(q). Note that z = z(z0, y(x2k)) satisfies d(Xt(x), Xτ(t)(z)) < ε
22k

for all

t ∈ [0, l2k−1 − 1] and d(Xt(x), Xτ(t)(z)) ≤ ε
22k

for all t ∈ [l2k−1, l2k − 1].

On the other hand, there exists z0 ∈ L2k−1 so that d(Xτ(t)(z), Xτ(t)(z0)) < ε
22k

for all

t ∈ [0, l2k−1 − 1]. Consequently, d(Xt(x), Xτ(t)(z0)) < ε
2k−1 , for all t ∈ [0, l2k−1 − 1].

Therefore,∥∥∥∫ l2k−1

0

ϕ(Xr(x)) d r − l2k−1u
∥∥∥ ≤∥∥∥∫ l2k−1

0

ϕ(Xr(x)) d r −
∫ l2k−1

0

ϕ(Xτ(r)(z0)) d r
∥∥∥+

∥∥∥∫ l2k−1

0

ϕ(Xτ(r)(z0)) d r − l2k−1u
∥∥∥

≤ l2k−1 var
(
ϕ,

ε

22k−1

)
+
∥∥∥∫ l2k−1

0

ϕ(Xτ(r)(z0)) d r − l2k−1u
∥∥∥.

By Lemma 6.1.4 we have that
∥∥∥ 1
l2k−1

∫ l2k−1

0 ϕ(Xr(x)) d r − u
∥∥∥→ 0 as k →∞.

In the similar way we can proves that
∥∥∥ 1
l2k

∫ l2k
0

ϕ(Xr(x)) d r − v
∥∥∥→ 0 as k →∞.

This proves that x ∈ Iϕ and therefore R(q, ε) ⊂ Iϕ. The proof that R ⊂ Iϕ is now

complete.

6.2 Points with historic behavior for suspension flows

In this section we are interested to proves the Theorem G. For this, we need of the

following Theorem.
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Theorem 6.2.1. [7, Theorem F] Let M be a metric space and let f : M → M with

gluing orbit property. Assume the roof function R : M → R+ is bounded from above and

below, is uniformly continuous and the constants

Cξ = sup
n≥1

sup
y∈B(x,n,ξ)

| SnR(x)− SnR(y) |<∞, satisfy lim
ξ→0

Cξ = 0,

where SnR =
∑n−1

j=0 R ◦ f j. Then the suspension flow (Yt)t over f has the gluing orbit

property.

Consider the set

Îϕ :=

{
x ∈M : lim

n→∞

∑n−1
i=0 ψ1 ◦ f s(x)∑n−1
i=0 ψ2 ◦ f s(x)

does not exists

}
Inspired in [3], we can prove the following Theorem, using the techniques similar to

Theorem A. Essentially the difference is that Hopf Theorem must be used for quotients

of Birkhoff average instead of Birkhoff Theorem.

Theorem 6.2.2. Let (Xt)t a suspension flow over f : M → M where f satisfies gluing

orbit property, ψ1 : M → Rd and ψ2 : M → Rd continuous with inf ψ2 > 0. Then Îϕ is

either empty or Baire residual.

We are able to prove the Theorem G

Proof. Let (Xt)t a suspension flow over f : M → M and ϕ : M → Rd continuous. Given

v ∈M and t > 1, write t = Rn(v) + q with n ∈ N and 0 ≤ q < R(v), where R : M → R+

is a measurable roof function given by Rn(v) =
∑n−1

j=0 R ◦ f j(v). Thus,

lim
t→+∞

1

t

∫ t

0

ϕ ◦Xr(v, s) dr = lim
n→+∞

1

Rn(v) + q

∫ Rn(v)+q

0

ϕ ◦Xr(v, s) dr

= lim
n→+∞

1

Rn(v)

∫ Rn(v)

0

ϕ ◦Xr(v, s) dr

= lim
n→+∞

1

Rn(v)

n−1∑
j=0

∫ R(fj(v))

0

ϕ ◦Xr(f
j(v), s) dr

= lim
n→+∞

Zn(v)

Rn(v)
,

where Z(v) =
∫ R(v)

0
ϕ ◦Xr(f

n(x), s) dr and Zn(v) =
∑n−1

j=0

∫ R(fj(v))

0
ϕ ◦Xr(f

j(v)) dr.

Therefore, we can write the irregular set as follows

Iϕ =
{

(v, s) ∈Mr : lim
n→+∞

Zn(v)

Rn(v)
does not exists

}
.
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Using the Theorems 6.2.1 we have that (Xt)t satisfies the gluing orbit property. Thus,

we can use the Theorem 6.2.2 with ψ1 =
∫ R(·)

0
ϕ◦Xr(·) dr and ψ2 = R, note that inf R > 0.

Therefore, Iϕ is either empty or residual.

6.3 Suspension flows and rotation set

In this section we are interested to prove the Theorem H.

Proof. Suppose that roof function r : Σ → (0,∞) is coboundary, in particular R is

coboundary. Let t ≥ 1 and n = n(x, s) such that Rn(x) ≤ t < Rn+1(x).

As Rn(x) ≤ t < Rn+1(x) ≤ Rn(x) + ‖R‖∞, we have that

1 ≤ t

Rn(x)
≤ 1 +

‖R‖∞
Rn(x)

and consequently,

lim
t→∞

t

Rn(x)
= 1.

Let (x, s) ∈ M̃r so that ρ(F, x) is a rational vertices of ρ(F ) and suppose (from the

previous paragraph) that t ' Rn(x), then

Yt(x, s)− (x, s)

t
' 1

Rn(x)
(F n(x)− x,Rn(x)) =

(
F n(x)− x

n

n

Rn(x)
, 1

)
.

The term n
Rn(x)

can be written by 1
1
n

∑n−1
j=0 R(fj(x))

. Since R is coboundary there are

c ∈ R and χ bounded such that R = c+ χ− χ ◦ f , thus

1

n

n−1∑
j=0

R(f j(x)) =
1

n
(n c+ χ− χ ◦ fn) .

In particular,

1

n

n−1∑
j=0

R(f j(x)) −→ c, as n→∞.

Therefore, n
Rn(x)

−→ 1
c
, as n→∞.

So,

ρ((Yt)t, (x, s)) = lim
t→∞

Yt(x, s)− (x, s)

t

= lim
n→∞

(
F n(x)− x

n

n

Rn(x)
, 1

)
=

(
ρ(F, x)

1

c
, 1

)
.
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Note that such limit exists, because n
Rn(x)

−→ 1
c
, as n→∞ and x was chosen so that

ρ(F, x) exists.

So, doing this for every vertex of ρ(F ) and knowing that ρ((Yt)t) is connected, we

get that ρ((Yt)t) =
(
ρ(F )
c
, 1
)

(is possible that ρ((Yt)t) is a class). This is, ρ((Yt)t) is a

polygon.
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Chapter 7

Some comments and further

questions

To finish we will make some comments on related concepts and future perspectives.

First, the general concept of multifractal analysis is to decompose the phase space in

subsets of points which have a similar dynamical behavior and to describe the size of

each of such subsets from the geometrical or topological viewpoint. We refer the reader

to the introduction of [37] and references therein for a historical overview. The study of

the topological pressure or Hausdorff dimension of the level and the irregular sets can

be traced back to Besicovitch. Such a multifractal analysis program has been carried

out successfully to deal with self-similar measures and Birkhoff averages [37, 38, 42, 54],

among other applications. We expect that our methods can be applied in other related

problems as the multifractal analysis of level sets for Birkhoff averages.

A different question that can be endorsed concerns the concept of localized entropy.

In [32], studied the directional H(v) entropy (in the direction of a rotation vector v)

introduced in [26] (we refer the reader to [26, 32] for the definition). They prove that,

if the localized entropy satisfies some mild continuity assumptions, the localized entropy

associated to locally maximal invariant set of C1+α-diffeomorphisms is entirely determined

by the exponential growth rate of periodic orbits whose rotation vectors are sufficiently

close to v (cf. [32, Theorem 5] for the precise statement). While it is not hard to check

that any fixed rotation vector v there exist points whose pointwise rotation set coincides

with v in the case of maps with the gluing orbit property, we expect that the inequality

H(v) ≤ limε→0 lim supn→∞
1
n

log #Per(v, n, ε) holds.

One different question concerns the Hopf ratio ergodic theorem. More precisely,

although we did not pursue this here, it is most likely that our results can describe the

set of points with historic behavior for quotients of Birkhoff sums in the spirit of [2, 52],
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with possible applications to the case of suspension flows over continuous maps with the

gluing orbit property, considered in [7].

Finally, the convexity of the rotation set played a key role on the rotation theory

for homeomorphisms on the 2-torus. Hence, we expect Theorem E to contribute for

the development of the rotation theory for generic conservative homeomorphisms on

tori. In particular, taking into account [39], an interesting open question is whether

the rotation set of a C0-generic homeomorphisms on Td homotopic to the identity is a

rational polyhedron.

We work in the case of flows trying to generalize the theorems done here in the discrete

case. We are most interested in the study of flows for the rotation set. In the case of the

Theorem H, the reciprocal we believe to be true. Working on it.
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Appendix: Lifts for continuous flows

on Td

Let d ∈ N \ {0}. The map π : Td → Rd given by x 7→ x( mod Zd) is called the

natural projection. A lift of a map f : Td → Td is a map F : Rd → Rd that satisfies

f ◦ π = π ◦ F . The own of this section is to show how construct a lift for homotopic to

identity continuous map on Td, with d ≥ 1 and for continuous flows on T3.

Let X be a topological space. A covering space of X is a topological space C together

with a continuous surjective map p : C → X such that for every x ∈ X, there exists

an open neighborhood U of x, such that p−1(U) is a countable union of disjoint open

sets C1, . . . , Ck subset in C, so that p | Ci : Ci → U is a homeomorphism for every

i ∈ {1, . . . , k}, i.e., each of which is mapped homeomorphically onto U by p. The map p

is called the covering map and the space X is called the base space of the covering, and

the space C is called the total space of the covering. A covering space is the universal

covering space if it is simply connected.

A exemple of covering map is the natural projection π : Rd −→ Td, with d ∈ N and

the covering space of Td is Rd.

Consider f : Td → Td a continuous map, we will show how to get a lift F : Rd → Rd

from f . For this, we use the following auxiliar Proposition 6.7 page 135 due Elon L. Lima,

[16].

Lemma 7.0.1. Let X a space metric compact and γ : [0, 1] −→ X a continuous curve.

Given x0 ∈ π−1(γ(0)) there exists a unique γ̂ : [0, 1] −→ X̂, where X̂ is universal covering

of X, such that π(γ̂(t)) = γ(t), ∀ t ∈ [0, 1] and γ̂(0) = x0.

Let d ≥ 1, x ∈ Td and y := f(x). Let α : [0, 1] −→ Td a curve such that α(0) = x

and α(1) = y, by Lemma 7.0.1 there exist a curve α̃ : [0, 1] −→ Rd, lift, which is a copy

of α on Rd such that α̃(0) = x̃ and α̃(1) = ỹ. Since π is continuous and onto, follows that

π(α̃) = α. Therefore, we will define a function F : Rd −→ Rd that satisfies F (x̃) = ỹ.
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Note that under these circumstances

π(F (x̃)) = y = f(x) = f(π(x̃)).

Let U0 a open neighborhood of x. For every point z0 ∈ U0 ∩Td we can repeat the idea

of the previous paragraph to define α connecting x to z0. Thus we obtain a function F

defined in the whole set U0 such that if x ∈ U0 and y := f(x), then F (x̃) = ỹ.

Since Td is compact we can define F in the whole Td. Finally, since Rd is a universal

covering of Td we can repeat construction above using Lemma 7.0.1 and getting F :

Rd −→ Rd (lift of f), given by F (x̃) = ỹ.

Remark 7.0.2. Hold that f ◦ π(y) = π ◦ F (y). In fact, let y ∈ Rd and π(y) =: x ∈ Td.
Then there exist a curve α̃ such that α̃(0) = y and α̃(1) = F (y) and a curve α = π(α̃)

such that α(0) = x and α(1) = f(x). Therefore,

f(π(y)) = f(π(α̃(0))) = f(α(0)) = α(1) = π(α̃(1)) = π(F (y)).

Let a continuous flow (Xt)t on T3 we will construct o lift (Yt)t on R3: Let x ∈ T3,

t ∈ R and y := Xt(x). So, we can consider α : [0, 1] −→ T3 a curve such that α(0) = x

and α(1) = y, by Lemma 7.0.1 there exist a curve α̃ : [0, 1] −→ R3, which is a copy of α on

R3 such that α̃(0) = x and α̃(1) = y. Since π : R3 −→ T3 is continuous and onto, follows

that π(α̃) = α. Fixed t we can define a function Yt : R3 −→ R3 by Yt(α̃(0)) = α̃(1). Note

that hold

π(Yt(x)) = Xt(π(x)), for all x ∈ R3

and

Yt(x+ v) = Yt(x) + v, for all x ∈ R3 and v ∈ Z3.
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[22] P.-A. Guihéneuf and T. Lefeuvre, On the genericity of the shadowing property for

conservative homeomorphisms, Proc. Amer. Math. Soc. 146 (2018) 4225–4237.
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