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doutorado me proporcionou experiências que jamais passou em minha cabeça vivenciar
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quais tenho contato até hoje. A vida me reservou muitas surpresas. Quando voltei a

Brest pela segunda vez, conheci meu amor. Agradeço a Jérôme mais uma vez por ter me
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mon sujet de recherche par mails m’ont encouragé à poursuivre dans ce chemin pénible.
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Abstract

This work provides some original contributions to the study of large deviation for

return times and the asymptotic behavior of the shortest distance between observed orbits.

In the first part, we prove a large deviation result for return time of the orbits of a

dynamical system in a r-neighbourhood of an initial point x. Our first result may be

seen as a differentiable version of the work by Jain and Bansal, who considered the

return time of a stationary and ergodic process defined in the space of infinite sequences.

We obtain large deviation estimates for dynamical systems in general and in the case of

conformal repellers we compute the rate functions in terms of HP-spectrum for dimensions

of multifractal analysis.

In the second part of this work, we investigate the shortest distance between two

observed orbits and its asymptotic behavior. The main result is a strong law of large

numbers for a re-scaled version of this quantity, which presents an explicit relation with

the correlation dimension of the pushforward measure. We apply this result to study the

shortest distance between orbits of a random dynamical system. In the symbolic case, this

problem corresponds to the longest common substring problem for encoded sequences and

its limiting relationship with the Rényi entropy. We apply this results to the zero-inflated

contamination model and to the stochastic scrabble.

Keywords: Poincaré recurrence, exponential rate, conformal repeller, large devia-

tion, string-matching, coding theory, Rényi entropy.



Resumo

Este trabalho fornece algumas contribuições originais para o estudo de grandes desvios

para tempo de retorno e comportamento assintótico da menor distância entre duas órbitas

transformadas. Na primeira parte, provamos um resultado de grandes desvios para o

tempo de retorno de uma órbita de um sistema dinâmico numa r-vizinhança de seu

ponto inicial x. Nosso primeiro resultado pode ser visto como uma versão diferenciável

do trabalho de Jain e Bansal, que consideraram o tempo de retorno de um processo

estacionário e ergódico definido no espaço das sequências finitas. Obtemos estimativas de

grandes desvios para sistemas dinâmicos gerais, e no caso de repulsor conforme calculamos

as funções taxas em termos do HP-espectro para dimensão da análise multifractal.

Na segunda parte deste trabalho, investigamos a menor distância entre duas órbitas

transformadas e seu comportamento assintótico. O principal resultado é uma lei forte dos

grandes números para uma versão reescalonada desta quantidade. A quantidade limite

apresenta uma relação expĺıcita com a dimensão de correlação da medida pushforward.

Aplicamos este resultado ao estudo da menor distância entre órbitas para um sistema

dinâmico aleatório. No caso simbólico, este problema corresponde ao problema da maior

subsequência comum entre sequências codificadas, e o seu limitante está relacionado com

a entropia de Rényi do processo. Aplicamos este resultado aos modelos de contaminação

inflada por zeros, e sequências de caracteres com pesos.

Palavras-chave: Recorrência de Poincaré, taxa exponencial, repulsor conforme,

grandes desvios, correspondência de sequências, teoria de códigos, entropia de Rényi.



Contents

Introduction 1

1 Preliminary results 8

1.1 Ergodic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Markov partition and repeller . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Probability results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 The large deviation principle . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Basic definitions and properties . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Gartner-Ellis theorem . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Large deviation estimates for return times 29

2.1 Large deviation estimates for return times in a general setting . . . . . . . 29

2.1.1 Definitions and statements . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2 Proof of the general result . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Large deviation estimates for return times for conformal repeller . . . . . . 35

3 Shortest distance between observed orbits and matching strings in en-

coded sequences 45

3.1 Shortest distance between observed orbits . . . . . . . . . . . . . . . . . . 45

3.2 Shortest distance between orbits for random dynamical systems . . . . . . 55

3.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Matching strings in encoded sequences . . . . . . . . . . . . . . . . . . . . 59
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Introduction

Consider a dynamical system (M,A, g, µ) where M is a compact metric space, A is a

σ-algebra on M , g : M →M is a measurable map and µ an invariant probability measure

on (M,A). An essential result in ergodic theory is Poincaré’s recurrence theorem. It

states that any probability measure preserving map has almost everywhere recurrence.

It is natural to ask for more quantitative results of recurrence. In [35], Kac has proven

that, when the system is ergodic, the mean of the return time in a measurable set is

equal to the inverse of the measure of this set. This subject has been further studied by

many authors. In particular, Boshernitzan [19] established a link between the Hausdorff

dimension of M and the time needed by an orbit to approach its initial point. To review

results on quantitative recurrence see, for example [29, 52]. In the present work we are

interested in large deviation for return times for a class of systems with exact dimensional

measures.

Moreover, finding patterns on symbolic strings has been a widely studied subject

matter on Genetics, Probability and Information Theory over the years. The investiga-

tions about how many information a n-string have on the whole realization of the process

are naturally linked with the concept of redundancy and compression algorithms. On

the other hand, the overlap between (some proportion of) two different strings can give

us some knowledge about the similarity of the sources that generate those processes. In

addition, repetition and similarity are two well-exploited concepts in the study of DNA

sequences. In this direction, we will focus on the longest common substring problem and

its dynamical correspondent, the shortest distance between observed orbits.

The remainder of this introduction will be devoted to discuss about these individual

topics.

Results on large deviation theory

Several works already addressed large deviations for return time. Abadi and Vaienti

in [6] proved large deviation properties of τ(Cn)/n, where τ(Cn) is the first return of a

n-cylinder to itself. More precisely, if the system is ψ-mixing, if ψ(0) < 1 and the Rényi

2
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entropies exist for all integers β, then for δ ∈ (0, 1], the limit

lim
n→∞

1

n
log µ {x : τ(Cn) ≤ [δn]} := M(δ)

exists. In addition, they provide an explicit expression for M(δ). Generalizations were

later shown in [2, 31].

A large deviation result for the n-th return times τnA(x) into a fixed set A was also

considered by Chazottes and Leplaideur [21] (see also [37]). Birkhoff’s theorem gives that

for µ-almost every point x

lim
n→∞

τnA(x)

n
=

1

µ(A)
.

For Axiom A diffeomorphisms and equilibrium states µ, they proved the existence of a

rate function ΦA, such that for every u ≥ 1
µ(A)

,

lim
n→∞

1

n
log µ

{
τnA
n
≥ u

}
= ΦA(u),

with the appropriate change in the definition when 0 ≤ u ≤ 1
µ(A)

.

Our first result concerns a different notion of large deviation for return time, and may

be seen as a differentiable version of a recent work by Jain and Bansal [33]. They studied

a large deviation property for repetition times under φ-mixing conditions. Let H denote

the entropy rate of a finite-valued process X = (Xn) and x a particular realization of X.

Define the first return time of xn1 as

Rn(x) = min
{
j ≥ 1 : xn1 = x−j+n−j+1

}
.

We say that X has exponential rates for entropy if for every ε > 0, we have

P
({
xn1 : 2−n(H+ε) ≤ P(xn1 ) ≤ 2−n(H−ε)}) ≤ 1− r(n, ε),

where r(ε, n) = e−k(ε)n, with k(ε) a real valued positive function of ε. They proved that

for an exponentially φ-mixing process with exponential rates for entropy,

P

(∣∣∣∣ logRn(X)

n
−H

∣∣∣∣ > ε

)
≤ 2e−I(ε)n for any n sufficiently large,

where I(ε) is a real positive valued function for all ε > 0 and I(0) = 0.

Here, we will study the return time τr(x) of a point x ∈ M under the map g in its

r-neighborhood, defined as follows:

τr(x) = τB(x,r)(x) = min{n ≥ 1 : d(gnx, x) < r}.

It was proved by Barreira and Saussol [17] that

R(x) ≤ dµ(x) and R(x) ≤ dµ(x),
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for µ-almost every x ∈ M, where R(x), R(x), dµ(x) and dµ(x) are the lower and upper

recurrence rates and the lower and upper pointwise dimensions of the measure µ at the

point x ∈ M, respectively. If the system has a super-polynomial decay of correlations,

Saussol in [51] showed that equalities will hold for the expressions above.

In the first part of this work, for a measure µ exact dimensional, we are interested in

studying the limiting behavior as r goes to zero of µ
(
τr ≥ r−dµ−ε

)
and µ

(
τr ≤ r−dµ+ε

)
.

This characterization is made via asymptotic exponential bound. We consider the limits

lim
r→0

1

log r
log µ

(
τr ≥ r−dµ−ε

)
and lim

r→0

1

log r
log µ

(
τr ≤ r−dµ+ε

)
.

The choice of the normalization log r is suggested by the discrete case [33]. Moreover,

this choice is strengthen by the large deviation principle for the pointwise dimension

(see Corollary 2.2.7) where the normalization factor comes directly form Gartner-Ellis

Theorem.

We apply our first result to conformal repellers. More precisely, given J ⊂ M an

invariant and compact set, if (J, g) is a conformal repeller and µ is an equilibrium state

for a Hölder potential, we estimate large deviation rate functions which are related to

HP -spectrum for dimensions.

Large deviations results are often related to multifractal analysis [47]. It turns out

that in the case of conformal repellers, the multifractal spectra is degenerated [53, 27],

that is

dimH

{
x ∈M : lim

r→0

log τr(x)

− log r
= α

}
= dimHM

for any 0 ≤ α ≤ ∞. It is not clear if this fact does influence large deviations for return

time.

String matching problem

Along the second part of this work we will adopt the following terminology about

searching and finding patterns. When the search occurs on the same string, we are talking

about repetition. Otherwise we treat this as a coincidence. In what follows we present a

brief discussion about this concepts and present some previous results in the literature.

Let Y = Y ∞0 be a stochastic process taking values on Ω = χN, where χ is an alphabet.

Consider a string xn1 ∈ χn and a realization y = y∞1 . In view of repetition, one of the

earliest studied quantities is the (Ornstein-Weiss) return time, defined in the previous

subsection. Let Rn(y) be the first return of a realization y to its own n-cylinder (or to its

first n-string), that is, the first time that the string yn1 recurs in the past of y. In [42], it

was stated that logRn(y)
n

−→ hµ for µ-almost every realization y, where hµ is the entropy

of the measure µ.
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An interesting and intuitive link between return times and the notion of data com-

pression schemes can be found in [60]. In that paper the author present a quantity that

essentially measures the smallest string on the process that did not appear in the n-sized

past database of the realization. Formally

Ln(x) = inf
{
j ≥ 1 : xj1 6= x−m+j

−m+1 , for some 1 ≤ m ≤ n
}
.

The authors then have used the duality Rn > m ⇐⇒ Lm < n to prove that logn
Ln
−→ hµ

for µ-almost realization of the process. In the sequel, an entropy statistical estimator

based on Ln and the proofs for its consitence were provided in [36].

The notion of coincidence has been exploited on the context waiting times (or string

matching) concept (see [25, 59, 60]). Let x and y two realizations of the independent

stochastic processes X and Y . The waiting time between x and y, defined as the first

time that the string yn1 appears in x is given by

Wn(x, y) = inf
{
j ≥ 1 : xj+n−1

j = yn1
}
.

In [59], an exponential limiting distribution was proved for the waiting time (properly

re-scaled), in the case that the measure is ψ-mixing with exponential decay of correlations.

Since most of the above mentioned quantities are typically exponentially large in

the size of the cylinders, it becomes necessary to investigate some smaller-order quantity

that gives an information about the process. In that sense, we get the first-return (or

short-return) function of a cylinder, defined as

Tn(x) = inf
z:zn1 =xn1

τxn1 (z),

where τxn1 (z) is a hitting time to a string xn1 of a realization z of the process that starts

with the initial condition: zn1 = xn1 .

In [8] and [55], the authors used different techniques to state that Tn/n → 1 almost

surely when n diverges, which provides a linear feature of Tn as a function of n. The rate

for this convergence was also investigated, and large deviation principles for Tn (and its

relationship with the Rényi entropy) were presented in [1, 6, 31]. A weak convergence

theorem for the fluctuations of Tn was presented on [3, 4].

In view of coincidence, a two-dimensional version of the short-return function was

presented on [5]. It is the shortest path between two observables, and is given as follows:

for two realizations x and y

T (2)
n (x, y) = inf

z:zn1 =yn1
Wn(x, z).

For independent sources, the authors proved a linear increasing of T 2
n with respect to n, a

large deviation principle for T
(2)
n and a weak convergence for a re-scalled version of T

(2)
n .
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The string matching problem is essentially motivated by biomolecular sequence com-

parison. The alignments of DNA and protein sequences, for example, consists of iden-

tifying common subsequences to understand evolutionary relationships. On the scenario

of Erdös-Rényi laws, a remarkable matching quantity has been studied in [10]: Mn(x, y),

the length of the longest matching consecutive subsequence (or longest common substring)

between two sequences. More precisely, if x and y are two realizations of the stochastic

processes (Xn)n∈N and (Yn)n∈N,

Mn(x, y) = max
{
k : xi+k−1

i = yj+k−1
j for some 0 ≤ i, j ≤ n− k

}
,

where xi+k−1
i (respectively yj+k−1

j ) denotes the substring xixi+1 · · ·xi+k−1 (respectively

yjyj+1 · · · yj+k−1).

If the two processes are independent and identically distributed, and generated by the

same source P, the authors proved that Mn/(log1/p n) −→ 2 for almost every realization

(x, y), where p = P(X0 = Y0) [10]. Furthermore, if P defines a Markov chain, p is the

largest eigenvalue of the matrix [(pij)
2], where [pij] is its matrix. This result was recently

generalized in [18] for ψ-mixing processes with polynomial decay of correlations. For

another works related to matching sequences, see for example [24, 41].

Following the direction of the pattern investigation between strings, one can ask if

the above mentioned results hold if we put a perturbation on the orbits. In other words:

what happens if we consider encoded sequences as our interest objects of investigation?

In view of this, we study a version of the longest matching substring problem when the

orbits are encoded by a measurable function (which we call code or observation, depending

on the context). We call it the longest common substring between encoded strings. More

precisely, let χ (respectively χ̃) be an alphabet, Ω = χN (respectively Ω̃ = χ̃N) the space

of all sequences with symbols in χ (respectively χ̃) and let f : Ω → Ω̃ be a code. Given

two sequences x, y ∈ Ω, we define the n-length of the longest common substring for the

encoded pair (f(x), f(y)) by

M f
n (x, y) = max

{
k : f(x)i+k−1

i = f(y)j+k−1
j for some 0 ≤ i, j ≤ n− k

}
,

where f (x)i+k−1
i and f (y)j+k−1

j denotes the substrings (of the encoded sequences f(x)

and f(y)) of length k beginning in f(x)i and f(x)j respectively.

Our theorem generalizes the results from the stochastic scrabble given by [9], from a

Markov chain to a general α-mixing process with exponential decay. Another application

deals with the zero-inflated contamination model defined in [22, 30]. In dynamical system,

the correspondent of the longest common substring for the encoded pair is the shortest

distance between observed orbits. If we consider a dynamical system (M,A, g, µ) and an
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observation f : M → Y, we investigate the asymptotic behavior of

mf
n(x, y) = min

i,j=0,...,n−1

(
d(f(gix), f(gjy))

)
,

proving that its limiting behavior is related to the correlation dimension of the pushfoward

measure f∗µ. An application of this result is given for the shortest distance between

random orbits.

Structure of the work

In the first part of this work we are interested in studying the asymptotic behavior of

return times in dynamical systems. In view of this, in Chapter 1 we recall basic concepts in

ergodic theory and thermodynamic formalism. We also present a construction of Markov

partitions for repellers and a few useful inequalities from probability theory. Some classic

results of multifractal analysis theory will also appear. We try to make the reader familiar

with some concepts in large deviation theory and also present fundamental results such as

Gartner-Ellis Theorem. These results will be used in Chapter 2 to obtain large deviations

estimates for return times. Section 2.1 has essential definitions of rate functions in order

to give a precise statement of Theorem 2.1.3 whose proof is presented in the sequel. An

application for conformal repellers is given in Section 2.2: the rate functions are related

with the HP-spectrum for dimensions of multifractal analysis.

In Chapter 3, for general dynamical systems, we study the shortest distance between

two observed orbits (see Definition 3.1.1), that is, the orbits are encoded by a measurable

function. For this case, we states a strong law of large numbers in which the limiting rate

is given by the correlation dimension of the pushforward measure f∗µ (see Section 3.1).

We also investigate this distance in the case of random dynamical systems, in Section

3.2, proving a similar result. In Section 3.3, we study the longest matching substring

problem for encoded orbits. Under suitable mixing conditions on the source we prove a

strong convergence for this quantity, and concludes that it grows logarithmically fast in

n. This is in fact a law of large numbers which has Rényi’s entropy as limiting-rate in

the symbolic case. The rest of the chapter is dedicate to present particular examples: the

zero-inflated contamination and the matching string with scores models.

Finally, in Chapter 4, we discuss about future perspectives for further scientific in-

vestigations of this subject on the context of Dynamical System and Stochastic Process.



Chapter 1

Preliminary results

In this chapter we recall some notions from ergodic theory, Markov partitions, repeller

and large deviation. We also present some useful results that will be used in the proofs

of our theorems.

We recall that a triple (M,A, µ) is said to be a measure space if M is a space, A is

a σ-algebra on M and µ is a measure on (M,A).

1.1 Ergodic theory

Definition 1.1.1. Let (M,A, µ) be a measure space and let g : M →M be a measurable

map. We say that µ is g-invariant or that g preserves µ if

µ(g−1(A)) = µ(A)

for every A ∈ A.

Proposition 1.1.2. Let g : M → M be a measurable map and µ a measure on (M,A).

Then g preserves µ if, and only if,∫
φ dµ =

∫
φ ◦ g dµ.

for any µ-integrable φ : M → R.

For a proof we refer the reader to [16, Proposition 2.1] or [58, Proposition 1.1.1].

We remark that if M is a metric space, a version of this result is true for any conti-

nuous and limited function φ : M → R.

Let us give some examples: let M = [0, 1] and consider µ the Lebesgue measure. Let

g : M → M be the map x 7→ 2x mod 1, called doubling map, and g : M → M defined

by g(x) = x + α, α ∈ M , the rotation of angle α on the circle. All these maps preserves

µ.

8
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Definition 1.1.3. A system (M,A, g, µ) is called a measure preserving system if M is a

space, A is a σ-algebra on M , g : M → M is a measurable map and µ is a g-invariant

probability measure.

Theorem 1.1.4 (Poincaré Recurrence Theorem). Let (M,A, g, µ) be a measure preser-

ving system. Let A ⊂ M be a measurable set with µ(A) > 0. Then, for µ-almost every

x ∈ A, for infinitely many n’s, gn(x) ∈ A.

Proof. Let A be a fixed set with µ(A) > 0. Let A∞ be the set of points of A which never

come back to A. Namely,

A∞ = {x ∈ A : gn(x) /∈ A, ∀n ≥ 1}.

We first show that A∞ has zero measure. We observe that g−n(A∞) ∩ g−m(A∞) = ∅, for

every m 6= n. Indeed, suppose that there exist m > n ≥ 1 such that x ∈ g−n(A∞) ∩
g−m(A∞), thus y = gn(x) ∈ A∞ and gm−n(y) = gm(x) ∈ A∞ ⊂ A. This means that

y come back to A, contradicting the definition of A∞. So, we proved that these two

preimages of g are disjoint. Since g is measure preserving, we have

µ

(
∞⋃
n=1

g−n(A∞)

)
=
∞∑
n=1

µ(g−n(A∞)) =
∞∑
n=1

µ(A∞).

Since µ is finite, we should have

µ

(
∞⋃
n=1

g−n(A∞)

)
<∞, then

∞∑
n=1

µ(A∞) <∞.

This last expression is an infinite sum of identic terms, thus, µ(A∞) = 0 and the claim is

proved.

Now, let F be the set of x ∈ A that come back to A only finitely many times, formally

F = {x ∈ A : ∃k ∈ N gn(x) /∈ A, ∀n > k}.

So, we have that every point x ∈ F has some iterated gk(x) in A∞. That is,

F ⊂
∞⋃
k=0

g−k(A∞).

Since µ(A∞) = 0 and µ is invariant, we get:

µ(F ) ≤ µ

(
∞⋃
k=0

g−k(A∞)

)
≤

∞∑
k=0

µ(g−k(A∞)) =
∞∑
k=0

µ(A∞) = 0.

Therefore, µ(F ) = 0. This proves the theorem.
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Definition 1.1.5. Let g : M → M be a measurable map and µ a g-invariant probability

measure. We say that µ is ergodic if for all measurable invariant set A, (i.e., g−1A = A),

either µ(A) = 0 or µ(A) = 1.

The doubling map and the rotation of angle α ∈ R \Q on the circle are ergodic with

respect to the Lebesgue measure µ.

Definition 1.1.6. Let g : M → M be a measurable map and µ a finite g-invariant

measure on M . Consider A ⊂ M a measurable set with µ(A) > 0 and a point x ∈ A.

The first return time of the orbit of x to the set A is defined by

τA(x) = min {n ≥ 1 : gnx ∈ A} .

Poincaré’s recurrence theorem states that under a measure preserving system, almost

every point of a measurable set A returns infinitely many times to A. However, it does

not give us an estimate of the expected time for an orbit to returns to A. The following

result shows that, for an ergodic measure, the mean of the return time to A is 1/µ(A).

Theorem 1.1.7 (Kac’s Lemma [35]). Let (M,A, g, µ) be a measure preserving system

such that µ is ergodic. Let A ⊂M be a measurable set with µ(A) > 0. Then,∫
A

τA dµ = 1.

Equivalently, 1
µ(A)

∫
A
τA dµ = 1

µ(A)
, i.e. the mean of the return time is inversely propor-

tional to the measure of A.

Proof. Consider the set

A∗∞ = {x ∈ X : gn(x) /∈ A, ∀n ≥ 0}.

For each n ≥ 1 we define

An = {x ∈ A : g(x) /∈ A, . . . , gn−1(x) /∈ A, but gn(x) ∈ A} and

A∗n = {x ∈M : x /∈ A, g(x) /∈ A, . . . , gn−1(x) /∈ A, but gn(x) ∈ A}.

That is, An is the set of points of A that return to A for the first time exactly at moment

n,

An = {x ∈ A : τA(x) = n}

and A∗n is the set of points that are not in A which enter into A for the first time exactly

at time n. These sets are measurable and then τA is measurable. Moreover, for each n ≥ 0

these sets are disjoint and their union gives the space M . Hence,

1 = µ(M) =
∞∑
n=1

(µ(An) + µ(A∗n)) + µ(A∞) + µ(A∗∞). (1.1)
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Since g is ergodic, almost every point of M enters in A and then µ(A∗∞) = 0. Moreover,

by the proof of Theorem 1.1.4, µ(A∞) = 0. It is a straightforward calculation to verify

that g−1(A∗n) = A∗n+1 ∪ An+1 for all n ≥ 1. Then by invariance on µ,

µ(g−1(A∗n)) = µ(A∗n) = µ(A∗n+1) + µ(An+1) for all n ≥ 1.

By applying this successively, we get

µ(A∗n) = µ(A∗m) +
m∑

i=n+1

µ(Ai) for all m > n.

The expression (1.1) implies that µ(A∗m)→ 0 when m→∞. Therefore, taking the limit

when m→∞ in last equality we obtain

µ(A∗n) =
∞∑

i=n+1

µ(Ai). (1.2)

By replacing (1.2) in (1.1) it follows that

1 = µ(M) =
∞∑
n=1

(
∞∑
i=n

µ(Ai)

)
=
∞∑
n=1

nµ(An) =

∫
A

τA dµ,

and this complete the proof.

In the first part of this work we will focus on studying the behavior of return time of

a point to the ball. Thus, to use results that relate return times and dimension we need

some conditions of asymptotic independence that are stronger than ergodicity.

Definition 1.1.8. Let (M,A, g, µ) be a measure preserving system. The correlation func-

tion for measurable observables ψ, φ : M → R is defined by

Cn(ψ, φ) =

∫
(ψ ◦ gn)φ dµ−

∫
ψ dµ

∫
φ dµ.

Definition 1.1.9. Let (M,A, g, µ) be a measure preserving system. The system is mixing

if we have for all A,B ∈ A,

lim
n→∞

µ(g−n(A) ∩B)− µ(A)µ(B) = 0.

Roughly speaking: if g is mixing, the events g−n(A) and B become independent as

n diverge.

Notice that by changing the observables by characteristic functions in the formula of

correlation function we get that the mixing definition is equivalent to lim
n→∞

Cn(χA, χB) = 0,

for all A,B ∈ A.
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Remark 1.1.10. Mixing implies ergodicity. In fact, suppose that there exists an invariant

set A ⊂ M , with 0 < µ(A) < 1. Taking B = Ac we obtain that g−n(A) ∩ B = ∅ for all

n. Then, µ(g−n(A) ∩ B) = 0 for all n. Since µ(A)µ(B) > 0 by definition we get a

contradiction with

lim
n→∞

µ(g−n(A) ∩B)− µ(A)µ(B) = 0.

Ergodicity is a weaker property. We observe that the doubling map is mixing but the

rotation of angle α ∈ R \Q is not mixing, and both are ergodic.

Definition 1.1.11. Let Φ : N → R be a function such that Φ(n) −→
n→∞

0. Consider V a

normed vector space. The system (M,A, g, µ) has decay of correlations with speed Φ if

for all ψ, φ ∈ V , ∣∣∣∣∫ (ψ ◦ gn)φ dµ−
∫
ψ dµ

∫
φ dµ

∣∣∣∣ ≤ ‖φ‖V ‖ψ‖V Φ(n),

where ‖ · ‖V is a norm on V .

We can also define a decay of correlations where Φ → 0 with some rate and V is a

space of functions. Let Hα(M,R) be the space of real Hölder functions on M , for some

α > 0. In Chapter 3 we will consider the rate of decay of correlations for observables

ψ, φ ∈ Hα(M,R). If Φ has a form Φ(n) = an with 0 ≤ a < 1, we say that the system has

an exponential decay of correlations.

We present another notion of rapid mixing.

Definition 1.1.12. We say that (M,A, g, µ) has super-polynomial decay of correlations

if for all ψ, φ ∈ Hα(M,R), the speed Φ satisfies,

lim
n→∞

Φ(n)nq = 0

for all q > 0.

There exists a wide class of systems that satisfy the condition of super-polynomial

decay of correlations. For more details and examples about this notion we refer the reader

to Section 1.2 in [49].

We introduce now briefly some notions of dimension theory.

Let (M,d) be a metric space. We define the diameter of the set U ⊂M by

diam U = sup {d(x, y) : x, y ∈ U}.

Let U denote the collection of subsets of M . The diameter of U is defined by

diam U = sup {diam U : U ∈ U}.
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Given Z ⊂M and s ∈ R, the s-dimensional Hausdorff measure of Z is defined by

m(Z, s) = lim
ε→0

inf
U

∑
U∈U

(diam U)s,

where the infimum is taken over all finite or countable covers U of the set Z with diam U ≤
ε.

Thus, we can present the notion of Hausdorff dimension.

Definition 1.1.13. The Hausdorff dimension of a set Z ⊂M is defined by

dimH Z = inf{s : m(Z, s) = 0} = sup{s : m(Z, s) =∞}.

Definition 1.1.14. The Hausdorff dimension of a measure µ is defined by

dimH µ = inf{dimH Z : µ(M \ Z) = 0}.

In what follows we present another notion of dimension.

Definition 1.1.15. The lower and upper pointwise dimensions of the measure µ at the

point x ∈Mare defined by

dµ(x) = lim
r→0

log µ(B(x, r))

log r
and dµ(x) = lim

r→0

log µ(B(x, r))

log r
,

where B(x, r) is the ball of radius r centered at x.

If there exists a constant dµ such that

dµ(x) = dµ(x) = dµ for µ-almost every x ∈M,

we call µ exact dimensional. And dµ is called pointwise dimensions of the measure µ.

For an exact dimensional measure, the Hausdorff dimension and the local dimension

coincide. Young established the following criterion, which we start without proof:

Proposition 1.1.16 ([61]). If µ is exact dimensional, then

dµ = dimH µ.

We now present results that relate quantitative recurrence and dimension. Firstly let

us state a key concept.

The first return time of a point x ∈M to the ball B(x, r) is given by

τr(x) = min{n ≥ 1 : d(gnx, x) < r}.

Definition 1.1.17. The lower and upper recurrence rates of x are defined by

R(x) = lim
r→0

log τr(x)

− log r
and R(x) = lim

r→0

log τr(x)

− log r
.
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When R(x) = R(x) we denote the common value by R(x).

Barreira and Saussol showed in [17] a result that relates these quantities with lower

and upper pointwise dimensions.

Theorem 1.1.18 ([17]). Let (M,A, g, µ) be a measure preserving system. Set M ⊂ Rd

for some d ∈ N. Then,

R(x) ≤ d(x) and R(x) ≤ d(x)

for µ-almost every x ∈M .

The authors also showed that these inequalities becomes equalities when the measure

µ has a condition called long return time.

Saussol in [51] extends the previous theorem for a class of systems such that the map

g is Lipschitz, with positive entropy and super-polynomial decay of correlation. Namely,

Theorem 1.1.19 ([51]). Let (M, g, µ) be a measure preserving system. If the entropy

hµ(g) > 0, g is Lipschitz and the decay of correlation is super-polynomial then

R(x) = d(x) and R(x) = d(x)

for µ-almost every x ∈M .

One notice that in the case that µ is exact dimensional this theorem implies that

log τr(x) ∼
r→0

log
(
r−dµ(x)

)
.

The remainder of this section is dedicate to present the definitions of entropy for a

continuous map of a compact metric space, and pressure.

Let (M,A, g, µ) be a measure preserving system. Let P be a measurable partition of

M , that is, a collection of pairwise disjoint measurable sets whose union is M . Denote by

P(x) the partition element that contains a point x.

We define the entropy of P as

Hµ(P) = −
∑
P∈P

µ(P ) log µ(P ).

Given a partition P of X with finite entropy, we denote

Pn =
n−1∨
i=0

g−i(P) for any n ≥ 1.

The element Pn(x) that contains x is given by

Pn(x) = P(x) ∩ g−1(P(g(x))) ∩ · · · ∩ g−n+1(P(gn−1(x))).
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We define the entropy of g with respect to µ and the partition P as

hµ(g,P) = lim
n

1

n
Hµ(Pn) = inf

n

1

n
Hµ(Pn).

Finally the entropy of the system (g, µ) is defined by

hµ(g) = sup
P
hµ(g,P),

where the supremum is taken over all partitions with finite entropy.

The notion of pressure was established by Ruelle and extended by Walters. The

variational principle says that for all continuous function ϕ,

P (ϕ) = sup
µ

(
hµ(g) +

∫
ϕ dµ

)
,

where the supremum is taken over all g-invariant probability measures µ in M . A g-

invariant probability measure µ is called an equilibrium measure for ϕ if

P (ϕ) = hµ(g) +

∫
ϕ dµ.

Now we give a notion of cohomology in dynamical systems.

Let S : M → M be a continuous map of a topological space M . Two continuous

functions ϕ1 : M → R and ϕ2 : M → R are said to be cohomologous to a constant if

there exists a continuous function φ : M → R and a constant c ∈ R such that

ϕ1 − ϕ2 = φ− φ ◦ S + c.

1.2 Markov partition and repeller

Let g : M → M be a C1+α map of a smooth manifold and consider a g-invariant

compact set J ⊂ M . The map g is said to be expanding on J if there exist constants

c > 0 and ρ > 1 such that

‖dxgnv‖ ≥ cρn‖v‖

for every n ∈ N, x ∈ J and v ∈ TxM. In addition, we call J a repeller if there exists an

open neighborhood V of J such that

J =
⋂
n≥0

g−nV.

The map g is said to be conformal on J if

dxg = a(x)Isomx,

where Isomx denotes an isometry of the tangent space TxM.
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Definition 1.2.1. We say that (J, g) is expansive when there exists δ > 0 such that for

any x, y ∈ J ,

if for all n ≥ 0 we have d(gn(x), gn(y)) < δ then x = y.

We call δ an expansiveness constant of g.

Remark 1.2.2. It is possible to show that all repellers are expansive.

Definition 1.2.3. Given α > 0, a sequence (xn)n≥0 is called α-pseudo-orbit of (J, g) if

d(g(xn), xn+1) < α, for all n ≥ 0.

We call a sequence x0, x1, . . . , xm−1, xm = x0 an α-periodic orbit if d(g(xn), xn+1) < α.

A particular case of an α-periodic orbit is provided by x0, g(x0), . . . , gm−1(x0) such that

d(gm(x0), x0) < α.

We now present the shadowing property. The proof due to Saussol [54].

Proposition 1.2.4 (Shadowing lemma). If (J, g) is a repeller then for every β > 0 there

exists α > 0 such that given an α-pseudo-orbit (xn)n≥0 in J there exists z ∈ J such that

its orbit β-shadows (xn)n≥0, that is, d(gn(z), xn) < β for all n ≥ 0. If β is less than half

of an expansive constant of g then the point z is unique. Moreover, if the pseudo-orbit is

periodic, then the orbit of z is periodic.

Proof. Since g is C1 and expanding on a neighborhood V of J , it is a local diffeomorphism.

By compacity there exists ε > 0 such that for all x ∈ J , g : B(x, 2ε) → g(B(x, 2ε)) is

an expanding diffeomorphism. In particular g(B(x, 2ε)) ⊃ B(g(x), 2ε) and for all x ∈ J ,

the branch of the inverse g−1
x : B(g(x), 2ε) → B(x, 2ε) is well defined. Without loss of

generality we will assume that B(x, 2ε) ⊂ J for all x ∈ J and that β < ε. Let α ∈ (0, ε)

be such that β = α
1−ρ .

If the pseudo-orbit is infinite then for all p > 0 we can make the following construction

that gives a zp which is β-shadowed by x0, . . . , xp. Let us put zp = xp. We will define

by induction (zj)j≤p. Put rj = d(zj, xj). We have rp = 0 < ε. Suppose we have defined

zp, . . . , zj+1 and that rj+1 < ε. Then

d(g(xj), zj+1) ≤ d(g(xj), xj+1) + d(xj+1, zj+1) ≤ α + rj+1 < 2ε.

Therefore the preimage zj := g−1
xj
zj+1 is well defined. Moreover,

rj = d(zj, xj) ≤ ρd(g(zj), g(xj)) ≤ ρ(α + rj+1).

By an immediate recurrence we get

rj < (ρ+ ρ2 + · · ·+ ρp−j)α =
α

1− ρ
< ε
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for all j ≤ p and hence the sequence (zj)j is well defined. The point

zp := z0 = g−1
x0
◦ g−1

x1
◦ · · · ◦ g−1

xp−1
(xp)

verifies the conditions presented.

Let z be an accumulation point of zp, which exists because the ball B(x0, ε) is com-

pact. Let n ≤ 0. For all p ≤ n we have

d(gn(z), xn) ≤ d(gn(z), gn(zp)) + d(gn(zp), xn) ≤ β + d(gn(z), gn(zp)).

By continuity of gn one obtain, taking the limit p → ∞, that d(gn(z), xn) ≤ β. So the

orbit of z is shadowed by the infinite orbit x0, x1, . . . and since β < ε we have gn(z) ∈ V
for all n, i.e. z ∈ J . If the pseudo-orbit is finite, it is enough to apply the previous part

to the infinite pseudo-orbit. The remaining statements are simple consequences. If z′ is

another point satisfying the conclusion of the proposition then

d(gn(z), gn(z′)) ≤ d(gn(z), xn) + d(xn, g
n(z′)) < 2β for all n ≥ 0.

By expansiveness, it follows that z = z′. Finally, if the pseudo-orbit is periodic, with

period k ≥ 1, we also have

d(gn(gk(z)), xn) ≤ d(gn+k(z), xn+k) < β for all n ≥ 0.

By uniqueness, we obtain that gk(z) = z.

It is important to note that the proof of Proposition 1.2.4 shows us that we can take

α = c1β, where c1 > 0 depends only of ρ.

Theorem 1.2.5 (Closing lemma). If (J, g) is a repeller then for all r, k, x such that

d(gk(x), x) < r there exists a point z with gk(z) = z and d(x, z) < c1r, c1 > 0.

Proof. The proof follows immediately from Proposition 1.2.4.

Assume that g is topologically mixing in J , that is, for all A,B open sets of M there

exists n0 ∈ N such that for all n ≥ n0, A ∩ g−n(B) 6= ∅.

Definition 1.2.6. Let J be a repeller of the map g. A collection of closed sets J =

{J1, . . . , Jk} is called a Markov partition of J (with respect to g) if:

1. J = ∪k1Ji and Ji = int Ji for each i;

2. int Ji ∩ int Jj = ∅ whenever i 6= j;

3. g(Ji) ∩ int Jj 6= ∅, then g(Ji) ⊃ Jj.
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Example 1.2.7. The collection J =
{[

0, 1
2

]
,
[

1
2
, 1
]}

is a natural Markov partition of the

doubling map.

Fix a Markov partition J and consider the k × k matrix A = (aij) with entries

aij =

{
1 if g(Ji) ∩ int Jj 6= ∅,
0 otherwise.

Let A = {1, . . . , k} and Σ+
A ⊂ AN the set of sequences defined by

Σ+
A =

{
ω = (ωi)i≥0 : aωiωi+1

= 1 for every i ∈ N
}
.

Consider σ : Σ+
A → Σ+

A the shift map defined by σ(ω)i = ωi+1 for every i ∈ N. This define

the symbolic coding χ : Σ+
A → J such that

χ(ω) =
∞⋂
i=0

g−iJωi

and

χ ◦ σ = g ◦ χ.

The map χ is Hölder continuous and injective except on the set S =
⋃∞
n=0 g

−n∂J , where

∂J =
⋃
i ∂Ji.

For ω ∈ Σ+
A we denote by Cn(ω) =

{
ω′ ∈ Σ+

A : ω′i = ωi for all 0 ≤ i ≤ n− 1
}

the

n-cylinder containing ω. We set Jn(x) = χ(Cn(ω)) when x = χ(ω) /∈ S.

We can now define the class of Gibbs measure.

Recall that Sn(ϕ) =
n−1∑
k=0

ϕ
(
gk(x)

)
.

Definition 1.2.8. Let ϕ be a Hölder function and µ be a g-invariant probability measure.

We say that µ is a Gibbs measure for the potential ϕ if there exists a constant P (ϕ) ∈ R
such that for some κϕ ≥ 1, for any x and n, the following holds:

1

κϕ
≤ µ(Jn(x))

exp(Snϕ(x)− nP (ϕ))
≤ κϕ.

Let ζ be a Hölder continuous function on J and µ = µζ be the equilibrium measure

for (g, ζ). Let ν = νϕ be the Gibbs measure of the Hölder potential ϕ = ζ ◦ χ on Σ+
A.

Note that µ = χ∗ν. Finally, consider the function ψ such that logψ = ϕ − P (ϕ). ψ is a

Hölder continuous function on M such that P (logψ) = 0 and ν is a unique equilibrium

measure for logψ.

We collect some facts about a notion of dimension denominated HP-spectrum for

dimensions, that was introduced by Hentschel and Procaccia in [32].

The following result was proved by Pesin and Weiss in [47] (see Theorem 1.(2) and

Lemma 5).
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Proposition 1.2.9 ([47]). For all q ∈ R, the following limit exists

T (q) = lim
r→0

log
∫
J
µ(B(x, r))q−1dµ(x)

− log r
. (1.3)

In addition, the function T (q) is real analytic for all q ∈ R, T (0) = dimH J, T (1) = 0,

T ′(q) ≤ 0 and T ′′(q) ≥ 0. And T ′′(q) > 0 if and only if the function logψ−T ′(q) log |a(χ(w))|
is not cohomologous to a constant, if and only if µ is not a measure of maximal dimension.

Remark 1.2.10. Given q ∈ (−∞,∞), define φq on Σ+
A the one parameter family of

functions by

φq(w) = −T (q) log |a(χ(w))|+ q logψ(w).

The function T (q) is chosen such that P (φq) = 0. Moreover, for any q > 1,

T (q)

1− q
= HPµ(q). (1.4)

Note that µ is exact dimensional, see for instance [46, Theorem 9].

Theorem 1.2.11 (Dimension of repellers of conformal maps). If (J, g) is a conformal

repeller then

dimHJ = s,

where s is the unique real number such that P (sϕ) = 0, for the function ϕ : J → R defined

by ϕ(x) = − log ‖dxg‖.

Proof. See e.g. Section 4.1 in [15].

Remark 1.2.12. Ruelle in [50] showed that a conformal repeller (J, g) such that g is

topologically mixing satisfies dimH J = dimH µ. In addition, the equilibrium measure µ of

sϕ is equivalent to the s-dimensional Hausdorff measure m. The equilibrium measure µ

is called the measure of maximal dimension.

We will now introduce another notion of dimension on dynamical system that is

related to invariant ergodic measures.

For q = 2, the formula (1.4) coincides with the correlation dimension of the measure

µ (see Section 17 in [44]). For simplicity of notation, we write Cµ instead of HPµ(2), that

is,

Cµ = lim
r→0

log
∫
M
µ(B(x, r)) dµ(x)

log r
. (1.5)

If µ is ergodic, Pesin and Tempelman [45] showed that for all q > 1 this limit exists.

Note that the limit (1.5) depends on the metric on M and on the invariant measure

but does not depend on the map.

The lower and upper correlation dimension of µ are denoted, respectively as

Cµ = lim
r→0

log
∫
M
µ(B(x, r)) dµ(x)

log r
and Cµ = lim

r→0

log
∫
M
µ(B(x, r)) dµ(x)

log r
.
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1.3 Probability results

In what follows we present inequalities in probability theory that will provide boun-

ding quantities throughout this work.

Let (Ω,F ,P) be a probability space, where Ω is the sample space, F is the event

space and P : F → [0, 1] is a function that assigns probabilities to events.

Definition 1.3.1. A real valued function X defined on Ω is said to be a random variable

if for every Borel set B ⊂ R we have X−1(B) = {ω : X(ω) ∈ B} ∈ F .

Theorem 1.3.2 (Markov’s inequality). Let X be a non-negative random variable and

suppose that E[X] exists. Therefore, for any t > 0,

P(X > t) <
E[X]

t
.

Theorem 1.3.3 (Chebyshev’s inequality). Let µ = E[X] and σ2 = V ar[X]. Then,

P(|X − µ| ≥ t) ≤ σ2

t2
and P(|Z| ≥ k) ≤ 1

k2

where Z = (X − µ)/σ.

The next theorem is a classical result that establishes if certain events occur infinitely

often or only finitely often.

Theorem 1.3.4 (Borel-Cantelli’s lemma). Let (Ω,F ,P) be a probability space and con-

sider a sequence An ∈ F , n ≥ 1.

(i) If
∞∑
n=1

P(An) <∞, then

P({x : x ∈ An for infinitely many n}) = 0.

(ii) If
∞∑
n=1

P(An) =∞ and the An’s are independent, then

P({x : x ∈ An for infinitely many n}) = 1.

Proof. A proof can be found in [34].

1.4 The large deviation principle

In this section we introduce a large deviation lower and upper bound that characte-

rizes the limiting behavior of a family of probability measures in terms of the logarithmic

moment generating function. This approach is due to Dembo and Zeitouni [26] who

concerns this to the study of rare events and its relation with large deviation theory.
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1.4.1 Basic definitions and properties

Throughout this section M denotes a topological space and B the Borel σ-algebra on

M .

Definition 1.4.1. The function I : M → [0,∞) is a rate function if it is lower continuous

( i.e., for all α ∈ [0,∞) the level set {x : I(x) ≤ α} is a closed subset of M). If the level

sets are compacts subsets of M , I is called a good rate function.

Definition 1.4.2. Let (µn)n≥0 be a family of probability measures on (M,B). W say that

(µn)n≥0 satisfies the large deviation principle (LDP) with a rate function I if:

1. for any closed set F ⊂M ,

lim
n→∞

1

n
log µn(F ) ≤ − inf

x∈F
I(x);

2. for any open set G ⊂M ,

lim
n→∞

1

n
log µn(G) ≥ − inf

x∈G
I(x).

Consider a sequence (Xj)j≥0 of d-dimensional random vectors independent and iden-

tically distributed (i.i.d.) according to the probability law µ ∈ M1(Rd) and let the

sequence of empirical means Sn :=
1

n

n∑
j=1

Xj.

Denote by µn the law of Sn and x = E[X1] and assume that x exists and is finite.

From the classical theory of probability we have two results: the law of large numbers

and the central limit theorem. The law of large numbers states that Sn converges to x

almost surely when n goes to infinity. If in addition σ2 = V ar[X1] is finite, the central

limit theorem states that

√
n(Sn − x)

σ
converges to the normal distribution. With large

deviations techniques it is possible to estimate the rate at which µn(Sn > a) converges to

zero for a > x.

Definition 1.4.3. The logarithmic moment generating function associated with the law

µ is defined as

Λ(λ) = logMX(λ) = logE
[
e〈λ,X1〉

]
, (1.6)

where 〈λ, x〉 =
d∑
j=1

λjxj is the usual scalar product in Rd.

Definition 1.4.4. The Fenchel-Legendre transform of Λ is defined by

Λ∗(x) := sup
λ∈Rd
{〈λ, x〉 − Λ(λ)} .
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Let us define Dλ = {λ : Λ(λ) < ∞} and DΛ∗ = {x : Λ∗(x) < ∞} the domain of Λ

and Λ∗, respectively.

We consider the first result for random variables taking values in R.

Theorem 1.4.5 (Cramér). The sequence of measures (µn)n≥0 satisfies the LDP with the

convex rate function Λ∗(·), that is:

(a) For any closed set F ⊂ R,

lim
n→∞

1

n
log µn(F ) ≤ − inf

x∈F
Λ∗(x).

(b) For any open set G ⊂ R,

lim
n→∞

1

n
log µn(G) ≥ − inf

x∈G
Λ∗(x).

Note that this theorem is a LDP with convex rate function Λ∗(·). Moreover it is a

result limited to the i.i.d. case.

The following lemma presents some properties of Λ∗(·) and Λ(·).

Lemma 1.4.6. (a) Λ is a convex function and Λ∗ is a convex rate function.

(b) Λ(·) is differentiable on Do
Λ with

Λ
′
(η) =

1

MX(η)
E
[
X1e

ηX1
]

(1.7)

and

Λ
′
(η) = y ⇒ Λ∗(y) = ηy − Λ(η). (1.8)

Proof. (a) Given λ1, λ2 ∈ R and θ ∈ [0, 1], applying Hölder’s inequality for the conjugate

exponents
1

θ
and

1

1− θ
we get,

Λ(θλ1 + (1− θ)λ2) = logE
[
e[θλ1+(1−θ)λ2]X1

]
= logE

[(
eλ1X1

)θ (
eλ2X1

)(1−θ)
]

≤ log
{[
E
[
eλ1X1

]]θ [
E
[
eλ2X1

]](1−θ)}
= log

[
E
[
eλ1X1

]]θ
+ log

[
E
[
eλ2X1

]](1−θ)
= θΛ(λ1) + (1− θ)Λ(λ2),

which proves convexity.
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The convexity of Λ∗ follows by definition,

θΛ∗(x1) + (1− θ)Λ∗(x2) = θ sup
λ∈R
{λx1 − Λ(λ)}+ (1− θ) sup

λ∈R
{λx2 − (1− θ)Λ(λ))}

= sup
λ∈R
{θλx1 − θΛ(λ)}+ sup

λ∈R
{(1− θ)λx2 − Λ(λ))}

≥ sup
λ∈R
{(θx1 + (1− θ)x2)λ+ Λ(λ)}

= Λ∗(θx1 + (1− θ)x2).

By definition Λ(0) = 0, so Λ∗(x) = supλ≤0[λx−Λ(λ)] ≥ 0x−Λ(0) = 0 is nonnegative.

Now, fix a sequence xn → x. Then, for every λ ∈ R,

lim
xn→x

Λ∗(xn) ≥ lim
xn→x

[λxn − Λ(λ)] = λx− Λ(λ).

Thus,

lim
xn→x

Λ∗(xn) ≥ sup
λ∈R

[λxn − Λ(λ)] = Λ∗(x).

And this proves that Λ∗ is lower semicontinuous.

(b) The identity (1.7) follows using the dominated convergence theorem, since

fε(x) =
(
e(η+εx) − eηx

)
/ε converges pointwise to xeηx as ε → 0, and

|fε(x)| ≤ eηx
(
eδ|x|−1

)
/δ := h(x) for every ε ∈ (−δ, δ), while E[|h(X1)|] < ∞ for

δ > 0 small enough. By convexity of Λ(λ),

Λ
′
(η)(λ− η) + λ(η) ≤ Λ(λ)

implies

y(λ− η) + Λ(η) ≤ Λ(λ).

Therefore (1.8) is established.

Lemma 1.4.7. Let {a1(n), . . . , aN(n)} be a collection of N sequences. Then, for every

ai(n) ≥ 0,

lim
n→∞

1

n
log

(
N∑
i=1

ai(n)

)
= max

i=1,...,N
lim
n→∞

1

n
log ai(n). (1.9)

Proof. We observe that

max
i=1,...,N

ai(n) ≤
N∑
i=1

ai(n) ≤ N max
i=1,...,N

ai(n).

Since the max is being taken over finitely many terms, 1
n

logN → 0 as n→∞ and

lim
n→∞

1

n
log

(
max

i=1,...,N
ai(n)

)
= max

i=1,...,N
lim
n→∞

1

n
log ai(n).

This concludes the proof.
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1.4.2 Gartner-Ellis theorem

Consider a family of random vectors (Zn)n in Rd, which will play a role as the

empirical mean Sn in the i.i.d. case. Consider the logarithmic moment generating function

Λn(λ) = logE
[
eλZn

]
. (1.10)

The family (µn)n≥0 may satisfy the large deviation property if there exists a limit of

properly scaled logarithmic moment generating functions.

Assumption 1.4.8. For each λ ∈ Rd, the logarithmic moment generating function defined

as the limit

Λ(λ) := lim
n→∞

1

n
Λn(nλ)

exists in R. Furthermore, the origin belongs to the interior of the set Dλ := {λ ∈ Rd :

Λ(λ) <∞}, Λ is C2 and a strictly convex function.

In particular, if µn is the law of Sn, then for all n ∈ Z+,

1

n
Λn(nλ) = Λ(λ) := logE

[
e〈λ,X1〉

]
,

and the assumption above holds when 0 ∈ Do
Λ.

More general, one can prove that Λ(·) is strictly convex and then Λ∗(·) is also strictly

convex.

In fact, computing the second derivative we get

Λ′′(λ) =
E
[
X2

1e
ηX1
]

M(η)
−

(
E
[
X2

1e
ηX1
]

M(η)

)2

> 0.

Note that Λ(0) = var(X1). Assume that var(X1) > 0.

Lemma 1.4.9. Λ∗ is strictly convex function and C1 on its support.

Proof. For simplicity of the proof we will consider d = 1.

By (1.8) we have that Λ∗(Λ′(η)) = ηΛ′(η)− Λ(η). Thus

(Λ∗)′(Λ′(η)) = (Λ∗)′(Λ′(η))Λ′′(η) = Λ′(η) + ηΛ′′(η)− Λ′′(η) = Λ′′(η).

Then,

(Λ∗)′(Λ′(η)) = η.

Now,

(Λ∗)′′(Λ′(η)) = (Λ∗)′(Λ′(η))Λ′′(η) = 1.

Therefore,

(Λ∗)′(Λ′(η)) =
1

Λ′′(η)
> 0,

since Λ is strictly convex. Thus, Λ∗(y) is also strictly convex.
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Definition 1.4.10. Suppose that all compact subsets of M belong to B. A family of

probability measures (µn) on M is exponentially tight if for every α < ∞, there exists a

compact set Kα ⊂M such that

lim
n→∞

1

n
log µn(Kc

α) < −α.

Definition 1.4.11. We say that y ∈ Rd is an exposed points of Λ∗ if for some Λ ∈ Rd

and for all x 6= y,

〈λ, y〉 − Λ∗(y) > 〈λ, x〉 − Λ∗(x). (1.11)

The vector λ is called an exposing hyperplane.

Definition 1.4.12. A convex function Λ : Rd → (−∞,∞] is essentially smooth if

1. Do
Λ is non empty;

2. Λ(·) is differentiable on Do
Λ;

3. Λ(·) is steep, i.e., if (λn) is a sequence on Do
Λ converging to a boundary point of Do

Λ

then limn→∞ |∇Λ(λn)| =∞.

We also need two auxiliary lemmas that presents the elementary properties of Λ and

Λ∗.

Lemma 1.4.13. Let Assumption 1.4.8 hold. Then,

(a) Λ(λ) is a convex function, Λ(λ) > −∞ everywhere, and Λ∗(x) is a good convex rate

function.

(b) Suppose that y = ∇Λ(η) for some η ∈ Do
Λ. Then λ∗(y) = 〈η, y〉 − Λ(η).

Moreover, y ∈ F , with η being the exposing hyperplane for y.

For every non empty convex set C, the relative interior of C, denoted by ri C, is

defined as the set

riC = {y ∈ C : x ∈ C ⇒ y − ε(x− y) ∈ C for some ε > 0}.

Lemma 1.4.14 (Rockafellar). If Λ : Rd → (−∞,∞] is an essentially smooth, lower

semicontinuous, convex function, then ri DΛ∗ ⊆ F .

Theorem 1.4.15 (Gartner-Ellis). Suppose that the Assumption 1.4.8 holds. Then,

(a) For any closed set F,

lim
n→∞

1

n
µn(F ) ≤ − inf

x∈F
Λ∗(x). (1.12)
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(b) For any open set G,

lim
n→∞

1

n
µn(G) ≥ − inf

x∈G∩F
Λ∗(x) (1.13)

where F is the set of exposing points of Λ∗ whose exposing hyperplane belongs to

Do
Λ.

(c) If Λ is an essentially smooth, lower semicontinuous function, then the LDP holds

with the good rate function Λ∗(·).

Proof. (a) The upper bound for compact sets is established by the same argument from

the proof of the theorem of Cramér-Rd (see Section 2.2 in [26] for details). The

extension to all closed sets follows by proving that the sequence of measures (µn)

is exponentially tight. For that, let µj denote the j-th unique vector in Rd for

j = 1, . . . , d. Since 0 ∈ Do
Λ, there exist θj > 0, ηj > 0 such that Λ(θjuj) < ∞ and

Λ(−ηjuj) <∞ for j = 1, . . . , d. Then, by Chebycheff’s inequality,

µjn((−∞,−ρ]) ≤ e−nηjρ+Λn(−nηjuj) and

µjn([ρ,∞)) ≤ e−nθjρ+Λn(nθjuj),

j = 1, . . . , d, where µjn are the laws of the coordinates of the random vector Zn.

Thus, for j = 1, . . . , d,

lim
ρ→∞

lim
n→∞

1

n
log µ((−∞,−ρ]) = −∞,

lim
ρ→∞

lim
n→∞

1

n
log µ([ρ,∞)) = −∞.

Consequently, combining these limits with Lemma1.4.7, we get

lim
ρ→∞

lim
n→∞

1

n
log µ(([−ρ, ρ]d)c) = −∞

i.e., (µn) is an exponentially tight sequence of probability measures.

(b) To establish the lower bound for any open set, it is sufficient to prove that for every

y ∈ F ,

lim
δ→∞

lim
n→∞

log µn(B(y, δ)) ≥ −Λ∗(y). (1.14)

Fix y ∈ F and let η ∈ Do
Λ an exposing hyperplane for y. Then for n large enough,

Λn(nη) <∞ and the probability measures µ̃n are well defined via,

dµ̃n
dµn

(z) = en〈η,z〉−Λn(nη).
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Thus,

1

n
log µn(B(y, δ)) =

1

n
Λn(nη)− 〈η, z〉+

1

n
log µ̃n(B(y, δ))

=
1

n
Λn(nη)− 〈η, y〉+ 〈η, y − z〉+

1

n
log µ̃n(B(y, δ))

≥ 1

n
Λn(nη)− 〈η, y〉 − |η|δ +

1

n
log µ̃n(B(y, δ)).

Therefore,

lim
δ→0

lim
n→∞

1

n
log µn(B(y, δ)) ≥ Λ(η)− 〈η, y〉+ lim

δ→0
lim
n→∞

1

n
log µ̃n(B(y, δ))(1.15)

≥ −Λ∗(y) + lim
δ→0

lim
n→∞

1

n
log µ̃n(B(y, δ)).

Since the weak law of large numbers can not be applied, the strategy now is to use

the upper bound proved in (a). At first we verify that µ̃n satisfies Assumption 1.4.8

with the limiting logarithmic moment generating function Λ̃(·) := Λ(· + η)− Λ(η).

In fact, Λ̃(0) = Λ(η)−Λ(η) = 0 and since η ∈ Do
λ it follows that Λ̃(λ) <∞ for every

|λ| sufficiently small. Let Λ̃n(·) denote the logarithmic moment generating function

corresponding to the law µ̃n. Then for every λ ∈ Rd,

1

n
λ̃n(ηλ) :=

1

n
log

[∫
Rd
en〈λ,z〉dµ̃n(z)

]
=

1

n
log

[∫
Rd
en〈λ+η,z〉−Λn(nη)dµn(z)

]
= − 1

n
Λn(nη) +

1

n
log

[∫
Rd
e〈n(λ+η),z〉dµn(z)

]
=

1

n
Λn(n(λ+ η))− 1

n
Λn(nη)→ Λ̃(λ)

because Λn(nη) <∞ for n large enough. Let us define

Λ̃∗(x) := sup
λ∈Rd
{〈λ, x〉 − Λ̃(λ)} = Λ∗(x)− 〈η, x〉+ Λ(η). (1.16)

Since Assumption 1.4.8 also holds for µ̃n, it follows, applying Lemma 1.4.13 to Λ̃,

that Λ̃∗ is a good rate function. Moreover, by part (a), a large deviations upper

bound of the form of (2.8) holds for the sequence of measures µ̃n with the good rate

function Λ̃∗. In particular, for the closed set B(y, δ)c it holds

lim
n→∞

1

n
log µ̃n(B(y, δ)c) ≤ − inf

x∈B(y,δ)c
Λ̃∗(x) = −Λ̃∗(x0)

for some x0 6= y. Since y is an exposed point of λ∗ with η being the exposing

hyperplane, we get that when Λ∗(y) ≥ [〈η, y〉 − Λ(η)] e x0 6= y, follows

Λ̃∗(x0) ≥ [Λ∗(x0)− 〈η, x0〉]− [Λ∗(y)− 〈η, y〉] > 0.
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Hence, for every δ > 0,

lim
n→∞

1

n
log µ̃n(B(y, δ)c) ≤ 0.

This inequality implies that µ̃n(B(y, δ)c)→ 0 and then , µ̃n(B(y, δ))→ 1 for every

δ > 0. In particular,

lim
δ→0

lim
n→∞

1

n
log µ̃n(B(y, δ)) = 0,

and (1.14) follows by (1.15).

(c) In view of parts (a) and (b) and Lemma 1.4.14, it is sufficient to show that for any

open set G,

inf
x∈G∩riDΛ∗

Λ∗(x) ≤ inf
x∈G

Λ∗(x).

If G∩DΛ∗ = ∅, there is nothing to prove. Then, assume that DΛ∗ 6= ∅. This implies

that there exists some z ∈ ri DΛ∗ . Fix y ∈ G∩DΛ∗ . Hence, for all α > 0 sufficiently

small,

αz + (1− α)y ∈ G ∩ riDΛ∗ .

Therefore,

inf
x∈G∩riDΛ∗

Λ∗(x) ≤ lim
α↘0

Λ∗(αz + (1− α)y) ≤ Λ∗(y).

The arbitrariness of y completes the proof.

Remark 1.4.16. In R, a point y is exposed if the curve Λ∗(y) lies strictly above the line of

slope λ through the point (x,Λ∗(x)). It was proved that Λ∗(·) is convex and differentiable,

then we can make this the tangent hyperplane (see lecture notes [56, Chapter 33]). So,

F is the interval where the tangent is well defined. And then the Theorem 2.2.5 can be

reduced to a simpler version since in R we have G ∩ F = G.



Chapter 2

Large deviation estimates for return

times

In this chapter we focus on large deviation results for a dynamical systems with an

exact dimensional measure. In the first section we present a generalization of [33] for

return time of the orbit of x to the ball B(x, r). We establish a link between return

time and rate functions for dimension and for fast return times. We prove that when a

dynamical system has an exact dimensional measure, the large deviation rate function

that is given in terms of the rate functions mentioned above. As an application, a large

deviation result for repellers is proven in Section 2.2.

This chapter is based on article [23], Large deviation for return times, written with

Benôıt Saussol and Jérôme Rousseau and published in Nonlinearity.

2.1 Large deviation estimates for return times in a

general setting

Throughout this section we consider g : M →M a measurable map and µ an ergodic

invariant probability measure on (M,A).

2.1.1 Definitions and statements

We define the rate functions which will appear in our large deviations estimates. The

first one is related to the deviations in the pointwise dimension; it has been computed in

[47] in the case of conformal repellers.

Definition 2.1.1. The exponential rate for dimension is defined for ε > 0 by:

ψ(±ε) = lim
r→0

1

log r
log µ

({
log µ(B(x, r))

− log r
∈ I±ε

})
, (2.1)

29
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where Iε = (−∞,−dµ − ε) and I−ε = (−dµ + ε,+∞).

If we denote by

µB(x,r)(A) =
µ(A ∩B(x, r))

µ(B(x, r))

the conditional measure on B(x, r), where A is a measurable set, then we can present the

second rate function that quantifies the probability of quick returns near the origin.

Definition 2.1.2. The exponential rate for fast return times is defined for ε, a > 0 by:

ϕ(a, ε) = lim
r→0

1

log r
log µ

({
x0 : µB(x0,2r)

(
τB(x0,2r) ≤ r−dµ+ε

)
≥ Cra

})
, (2.2)

for some constant C > 0.

We may now state our main result. We emphasize that the value of C in (2.2) is

irrelevant in the theorem.

Theorem 2.1.3. Let (M,A, g, µ) be a measure preserving system. Suppose that µ is an

exact dimensional measure. Given ε > 0, we have:

lim
r→0

1

log r
logµ

(
τr ≥ r−dµ−ε

)
≥ max

γ∈(0,1)
min

{
(1− γ)ε, ψ(γε)

}
(2.3)

lim
r→0

1

log r
logµ

(
τr ≤ r−dµ+ε

)
≥ max

γ∈(0,1)
a,ε′′>0

min
{
−γε− ε′′ + a, ψ(γε), ϕ(a, ε), ψ(−ε′′)

}
. (2.4)

This result is satisfactory in the sense that it can be applied to a broad class of

dynamical systems, provided one can estimate the rate functions ψ and ϕ.

The rate function for dimension ψ is rather classical. We can observe that in (2.3) if

the rate function for dimension ψ is positive in some interval (0, ε), it readily implies that

µ
(
τr ≥ r−dµ−ε

)
has a fast decay.

The rate function ϕ is not so well known. However, for several dynamical systems an

estimation of the error in the approximation to the exponential law for return time has

been computed. In many cases, including Hénon maps [20, Theorem 3.1], it is possible to

show that for some a, b > 0, and any sufficiently small r > 0,

E1 there exists a set Ωr ⊂M such that µ(Ωc
r) < rb;

E2 for all x ∈ Ωr,

sup
t≥0

∣∣∣∣µB(x,r)

(
τB(x,r) >

t

µ(B(x, r))

)
− e−t

∣∣∣∣ ≤ ra.

The conditions E1-E2 imply that ϕ(a, ε) ≥ min{ψ(a − ε), b} (see Proposition 2.1.5 in

Subsection 2.1.2).
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2.1.2 Proof of the general result

In this section we prove the Theorem 2.1.3 using the method developed in [52]. We

start by the result that is an elementary property related to the lower bound that will be

used throughout the chapter.

Lemma 2.1.4. Let {a1(r), . . . , ap(r)} be a collection of p sequences with ai(r) > 0. If

∀i ≤ p, γi = lim
r→0

1

log r
log ai(r) > 0.

Then

lim
r→0

1

log r
log

(
p∑
i=1

ai(r)

)
≥ min

i=1,...,p
γi.

Proof. For all ε > 0 there exists ri > 0 such that r < ri implies ai ≤ rγi−ε. Let ε > 0

sufficiently small such that γi − ε > 0. We have,

p∑
i=1

ai(r) ≤
p∑
i=1

rγi−ε ≤ prmin{γi}−ε

and this implies

1

log r
log

(
p∑
i=1

ai(r)

)
≥ min

i=1,...,p
{γi} − ε+

log p

log r
.

Finally,

lim
r→0

1

log r
log

(
p∑
i=1

ai(r)

)
≥ min

i=1,...,p
{γi} − ε.

The result is proved since ε can be chosen arbitrarily small.

Denote

f(ε) = lim
r→0

1

log r
log µ

(
τr ≥ r−dµ−ε

)
and

f(−ε) = lim
r→0

1

log r
log µ

(
τr ≤ r−dµ+ε

)
.

Given ε, ξ > 0, define

Aε(r) =
{
x ∈M : µ(B(x, r)) ≥ rdµ+ε

}
(2.5)

and

A−ξ(r) =
{
x ∈M : µ(B(x, r)) ≤ rdµ−ξ

}
. (2.6)

Proof of the Theorem 2.1.3. Let γ ∈ (0, 1). We have

µ({x : τr(x) ≥ r−dµ−ε}) ≤ µ
({
x ∈ Aγε

(r
4

)
: τr(x) ≥ r−dµ−ε

})
+ µ

({
x ∈ Acγε

(r
4

)
: τr(x) ≥ r−dµ−ε

})
.



32

Let us define the set

Mr =
{
x ∈ Aγε

(r
4

)
: τr(x) ≥ r−dµ−ε

}
.

Let
{
B
(
xi,

r
2

)}
i

be a family of balls of radius r/2 centered at points of Aγε(
r
4
) that covers

Mr and such that B
(
xi,

r
4

)
∩B

(
xj,

r
4

)
= ∅ if xi 6= xj. We have

µ
({
x : τr(x) ≥ r−dµ−ε

})
≤ µ(∪iBi ∩Mr) + µ

({
x ∈ Acγε

(r
4

)
: τr(x) ≥ r−dµ−ε

})
≤

∑
i

µ(Bi ∩Mr) + µ
(
Acγε

(r
4

))
.

Using first the triangle inequality and then Kac’s lemma and Markov inequality, we obtain

µ(Bi ∩Mr) ≤ µ
(
Bi ∩

{
τBi ≥ r−dµ−ε

})
≤ rdµ+ε

∫
Bi

τBidµ = rdµ+ε.

Observe that
∑
i

(r
4

)dµ+γε

≤
∑
i

µ
(
B
(
xi,

r

4

))
≤ 1. Thus, since the balls are disjoint it

follows that the number of balls is bounded by
(

1
4
r
)−dµ−γε

. Therefore,

µ
({
x : τr(x) ≥ r−dµ−ε

})
≤

∑
i

rdµ+ε + µ
(
Acγε

(r
4

))
≤

(
1

4
r

)−dµ−γε
rdµ+ε + µ

(
Acγε

(r
4

))
≤ 4dµ+γεr(1−γ)ε + µ

(
Acγε

(r
4

))
.

Thus,

1

log r
log µ

({
x : τr(x) ≥ r−dµ−ε

})
≥ 1

log r
log
(

4dµ+γεr(1−γ)ε + µ
(
Acγε

(r
4

)))
.

Hence, by Lemma 2.1.4, we get

f(ε) ≥ lim
r→0

1

log r
log
(

4dµ+γεr(1−γ)ε + µ
(
Acγε

(r
4

)))
≥ min

{
lim
r→0

1

log r
log
(
4dµ+γεr(1−γ)ε

)
, lim
r→0

1

log r
log µ

(
Acγε

(r
4

))}
= min

{
(1− γ)ε, ψ(γε)

}
.

This proves the first statement.

Now, let ε′′ > 0. We define

Γr =
{
x ∈ Aγε(2r) ∩ A(−ε′′)(2r) : τr(x) ≤ r−dµ+ε

}
and

Dr =
{
x0 : µB(x0,2r)(τB(x0,2r) ≤ r−dµ+ε) ≤ Cra

}
, C > 0.



33

Let {B(xi, 2r}i be a family of balls of radius 2r centered at points of

Aγε(2r)∩Dr∩A(−ε′′)(2r) that covers Γr∩Dr and such that B (xi, r)∩B (xj, r) = ∅ if xi 6=
xj. We have

µ
({
x : τr(x) ≤ r−dµ+ε

})
≤ µ

({
x ∈ Aγε(2r) ∩Dr ∩ A(−ε′′)(2r) : τr(x) ≤ r−dµ+ε

})
+µ
({
x ∈ (Aγε(2r) ∩Dr ∩ A(−ε′′)(2r))

c : τr(x) ≤ r−dµ+ε
})

≤ µ (∪iB(xi, 2r) ∩ Γr ∩Dr) + µ
(
Acγε(2r)

)
+ µ (Dc

r) + µ
(
Ac(−ε′′)(2r)

)
.

We remark that

µ (∪iB(xi, 2r) ∩ Γr ∩Dr)

≤
∑
i

µ(B(xi, 2r) ∩ Γr ∩Dr)

≤
∑
i

µ(B(xi, 2r))
1

µ(B(xi, 2r))
µ
(
B(xi, 2r) ∩

{
τB(xi,2r) ≤ r−dµ+ε

})
where the last inequality follows from

{
τB(xi,r) ≤ r−dµ+ε

}
⊂
{
τB(xi,2r) ≤ r−dµ+ε

}
. There-

fore, by definition of Dr,

µ
({
x : τr(x) ≤ r−dµ+ε

})
≤

∑
i

µ(B(xi, 2r))µ(B(xi,2r))

(
τB(xi,2r) ≤ r−dµ+ε

)
+ µ

(
Acγε(2r)

)
+ µ (Dc

r) + µ
(
Ac(−ε′′)(2r)

)
≤

∑
i

µ(B(xi, 2r))Cr
a + µ

(
Acγε(2r)

)
+ µ (Dc

r) + µ
(
Ac(−ε′′)(2r)

)
.

Observe that
∑
i

rdµ+γε ≤
∑
i

µ(xi, r) ≤ 1. Thus, since balls are disjoint it follows that

the number of balls is bounded by r−dµ−γε and∑
i

µ(B(xi, 2r)) ≤
∑
i

(2r)dµ−ε
′′

≤ r−dµ−γε(2r)dµ−ε
′′

≤ 2dµ−ε
′′
r−γε−ε

′′
.

Then, we obtain that

µ
({
x : τr(x) ≤ r−dµ+ε

})
≤ C2dµ−ε

′′
r−γε−ε

′′+a + µ
(
Acγε(2r)

)
+ µ (Dc

r) + µ
(
Ac(−ε′′)(2r)

)
.

Hence,

f(−ε) ≥ lim
r→0

1

log r
log
(
C2dµ−ε

′′
r−γε−ε

′′+a + µ
(
Acγε(2r)

)
+ µ (Dc

r) + µ
(
Ac(−ε′′)(2r)

))
.

Finally, using the definitions of ψ and ϕ we get by Lemma 2.1.4 that

f(−ε) ≥ min
{
−γε− ε′′ + a, ψ(γε), ϕ(a, ε), ψ(−ε′′)

}
.

This concludes the proof of the theorem.
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We finish with a brief result that may help to estimate the rate function for fast

returns.

Proposition 2.1.5. If there exist constants a, b > 0 such that for all r ∈ (0, 1) :

• there exists a set Ωr such that

µ(Ωc
r) < rb;

• for all x ∈ Ωr, ∣∣∣∣µB(x,r)

(
τB(x,r) >

t

µ(B(x, r))

)
− e−t

∣∣∣∣ ≤ ra,

for every t > 0.

Then, ϕ(a, ε) ≥ min{ψ(a− ε), b}.

Proof. Take t = Cra, C > 0. Making the first order expansion of e−t, we have for x ∈ Ωr∣∣∣∣µB(x,r)

(
τB(x,r) >

Cra

µ(B(x, r))

)
− 1 + Cra + o(r2a)

∣∣∣∣ ≤ ra,

which implies ∣∣∣∣µB(x,r)

(
τB(x,r) <

Cra

µ(B(x, r))

)
+ Cra + o(r2a)

∣∣∣∣ ≤ ra.

So, it follows that

µB(x,r)

(
τB(x,r) <

Cra

µ(B(x, r))

)
< ra.

Let Nr be a set defined by Nr =
{
x : µ(B(x, r)) ≥ rdµ+a−ε} . For x ∈ Nr ∩ Ωr we obtain

µB(x,r)

(
τB(x,r) < Cr−dµ+ε

)
< ra.

Thus,

µ
({
x : µB(x,2r)

(
τB(x,2r) ≤ r−dµ+ε

)
> 2ara

})
≤ µ((N2r ∩ Ω2r)

c) ≤ µ(N c
2r) + µ(Ωc

2r).

Finally, by Lemma 2.1.4, we get

ϕ(a, ε) ≥ min{ψ(a− ε), b}.
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2.2 Large deviation estimates for return times for

conformal repeller

From now on, let (J, g) be a conformal repeller.

If we consider a conformal repeller and an equilibrium state of a Hölder potential ζ

we obtain a somewhat more concrete version of our principal result:

1. in this setting we can compute the exponential rate for the dimension ψ, using

thermodynamic formalism;

2. we can also estimate the exponential rate for fast return times ϕ, using a technique

similar to the one used to prove exponential return time statistics.

Thus, applying Theorem 2.1 to this setting, we obtain a large deviation result with

a rate that is given in terms of Legendre transform of the convex function T (·) defined in

(1.3).

Theorem 2.2.1. Let (J, g) be a conformal repeller and µ an equilibrium state for a Hölder

potential ζ. For any ε > 0, we have:

lim
r→0

1

log r
log µ

(
τr ≥ r−dµ−ε

)
≥ g1(ε)

lim
r→0

1

log r
log µ

(
τr ≤ r−dµ+ε

)
≥ g2(ε),

where

g1(ε) = max
γ∈(0,1)

min {(1− γ)ε,Λ∗(−dµ − γε)} > 0

and

g2(ε) = max
γ∈(0,1)
ε′>0
ε′′>0

min {a′,Λ∗(−dµ − γε),min{a0,Λ
∗(−dµ + ε′)},Λ∗(−dµ + ε′′)} > 0

with a′ = −γε − ε′′ + min{d2, ε − ε′}, Λ∗(x) = −x + T ∗(x) = −x + sup
λ∈R
{λx − T (λ)} and

a0, d2 are some constants.

Lemma 2.2.2. If µ is the measure of maximal dimension then HPµ(q) is constant and

equal to dµ.

Proof. See for instant the proof of [15, Lemma 6.1.7].

Remark 2.2.3. If µ is the measure of maximal dimension the above theorem remains

valid. However, since HPµ(q) is constant and equal to dµ, it follows that Λ∗(x) = +∞ for

x 6= 0, and thus g1(ε) = max
γ∈(0,1)

(1−γ)ε and g2(ε) = max
γ∈(0,1)
ε′>0
ε′′>0

min{−γε−ε′′+min{d2, ε−ε′}, a0}.
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Proposition 2.2.4. Suppose that µ is not the measure of maximal dimension. Then for

any κ < 1 and ε sufficiently small, g1 ≥ κcε2 and g2 ≥ κc
( ε

3

)2

, with c =
1

2
(Λ∗)′′(−dµ) =

λµ
σ2
µ

, where λµ is the Lyapunov exponent of g and σ2
µ the variance of logψ + log |a| with

respect to µ.

Proof. By definition T ∗(x) = sup
q∈R
{qx− T (q)}. The supremum is achieved for q such that

d

dq
(qx− T (q)) = x− T ′(q) = 0, that is, T ′(q) = x. Thus, for any q ∈ R

T ∗(T ′(q)) = qT ′(q)− T (q).

So, it follows that

(T ∗)′(T ′(q))T ′′(q) = qT ′′(q),

and hence, (T ∗)′(T ′(q)) = q and, differentiating, we obtain

(T ∗)′′(T ′(q))T ′′(q) = 1,

that is

(T ∗)′′(T ′(q)) =
1

T ′′(q)
for every q ∈ R such that T ′(q) = x.

Since Λ(λ) = T (λ+ 1) and Λ∗(x) = −x+ T ∗(x) we conclude that

(Λ∗)′′(x) =
1

T ′′(q)
, where T ′(λ+ 1) = x.

Moreover, by Proposition 1.2.9 this is non negative.

For x = −dµ we have λ = 0. Then, by Lemma 5 in [47]

(Λ∗)′′(−dµ) =
1

T ′′(1)
=
λµ
σ2
µ

.

Finally, for ε sufficiently small, g1 ≥ κcε2 and taking ε′ = ε′′ = γε =
ε

η
, with η > 3, we

have g2 ≥ κc
( ε

3

)2

.

To obtain Theorem 2.2.1, we need a fundamental theorem of large deviation theory,

the Gartner-Ellis Theorem, that was presented in Subsection 1.4.2.

In this context, for r ∈ (0, 1) let (µr)r be a family of probability measures and consider

a family of random variables (Zr)r in R.

Hence, for any λ ∈ R and taking n = − log r, the logarithmic moment generating

function defined in Assumption 1.4.8 can be reformulated as

Λ(λ) := lim
r→0

1

− log r
Λr(−λ log r). (2.7)

Thanks to Remark 1.4.16, in R we can enunciate Gartner-Ellis theorem as follows.
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Theorem 2.2.5. If Assumption 1.4.8 holds, then

(a) for any closed set F ,

lim
r→0

1

− log r
log µr(F ) ≤ − inf

x∈F
Λ∗(x); (2.8)

(b) for any open set G,

lim
r→0

1

− log r
log µr(G) ≥ − inf

x∈G
Λ∗(x). (2.9)

We will apply this Theorem 2.2.5 to the family Zr defined by

Zr =
log µ(B(x, r))

− log r
.

Replacing Zr in (1.10) we get that

Λr(λ) = log

∫
eλ

log µ(B(x,r))
− log r dµ(x). (2.10)

Thus, substituting (2.10) into (2.7) we obtain

Λ(λ) = lim
r→0

1

− log r
log

∫
eλ log µ(B(x,r))dµ(x)

= lim
r→0

1

− log r
log

∫
µ(B(x, r))λdµ(x). (2.11)

The next result is basically a consequence of Proposition 1.2.9 combined with (2.11).

Proposition 2.2.6. Let (J, g) be a conformal repeller and µ an equilibrium state for the

Hölder potential ζ. Then, for λ > 0, the following limit exists

Λ(λ) = lim
r→0

1

− log r
log

∫
µ(B(x, r))λdµ(x) = T (λ+ 1).

Proof. The result follows taking λ = q − 1 in (1.3).

Applying Gartner-Ellis Theorem, we obtain that the quantity µ
({

log µ(B(x,r))
− log r

∈ I
})

,

where I is an interval, decrease exponentially when r goes to zero. Namely,

Corollary 2.2.7. Under the same conditions of Proposition 2.2.6 we have that for all

interval I,

lim
r→0

1

− log r
log µ

({
log µ(B(x, r))

− log r
∈ I
})

= − inf
x∈I

Λ∗(x),

where Λ∗(x) = −x+ T ∗(x) is continuous on its domain.
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Proof. This equality is a direct consequence of Theorem 2.2.5. Since the logarithmic mo-

ment generating function is defined by Λ(λ) = T (λ+ 1), the Fenchel-Legendre transform

of Λ(λ) is

Λ∗(x) = sup
λ∈R
{λx− Λ(λ)}

= sup
λ∈R
{λx− T (λ+ 1)}

= sup
ν∈R
{(ν − 1)x− T (ν)}

= −x+ sup
ν∈R
{νx− T (ν)}

= −x+ T ∗(x).

The continuity of Λ∗(x) follows from its convexity.

In Figure 2.1, one can see a graph of the Fenchel-Legendre transform of Λ, where the

interval I ⊂ (−∞,−dµ − ε) ∪ (−dµ + ε,+∞) = Iε ∪ I−ε. Λ∗ is strictly convex and its

minimum is reached at −dµ.

Figure 2.1: Graph of Λ∗.

Recall we defined the exponential rate for the dimension

ψ(±ε) = lim
r→0

1

log r
log µ

({
log µ(B(x, r))

− log r
∈ I±ε

})
(see Section 2.1). Using Corollary 2.2.7, we get the rate function for the dimension for

conformal repellers.
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Proposition 2.2.8. For any ε > 0, the exponential rate for the dimension is given by:

ψ(ε) = inf
x∈(−∞,−dµ−ε)

Λ∗(x) = Λ∗(−dµ − ε) > 0

and

ψ(−ε) = inf
x∈(−dµ+ε,+∞)

Λ∗(x) = Λ∗(−dµ + ε) > 0.

Proof. By Corollary 2.2.7 and from the convexity of Λ∗, we deduce that

ψ(±ε) = inf
x∈I±ε

Λ∗(x)

= Λ∗(−dµ ∓ ε)

which proves the proposition.

From now on, assume that ζ is an Hölder potential such that P (ζ) = 0. To obtain

an exponential rate for the fast return times (Proposition 2.2.9), we will need the Closing

lemma (recall Theorem 1.2.5).

We will use these properties to obtain information about the rate function for the

fast return times.

Proposition 2.2.9. There exist constants a0, d2 > 0 such that for ε, ε′ > 0, the exponential

rate for fast return times satisfies:

ϕ(min{d2, ε− ε′}, ε) ≥ min{a0, ψ(−ε′)} > 0.

This proposition is a consequence of the following lemma.

Lemma 2.2.10. For any d0 ∈ (0, dµ) there exist constants a0, c3, c4, c5, d1, D > 0 and a

set Ωr such that

µ(Ωc
r) < Dra0

and for all x0 ∈ Ωr, one has

µB(x0,2r)

(
τB(x0,2r) ≤ r−d0

)
≤ (c4 − c5 log r)µ(B(x0, c3r

d1)) + r−d0µ(B(x0, 3r)).

Proof. We first claim that there exists Ωr with µ(Ωc
r) ≤ Dra0 such that for all x0 ∈ Ωr

and for all k ≤ c0 log 1
2r

we have B(x0, 2r) ∩ g−k(B(x0, 2r)) = ∅.
Indeed, let c0 = dµ

2 logm
, where m is the degree of the map g. If x0 is such that

B(x0, 2r)∩g−k(B(x0, 2r)) 6= ∅, there exists x such that d(x, x0) < 2r and d(gk(x), x0) < 2r,

thus d(x, gk(x)) < 4r. By the Closing lemma, there exists a point z such that gk(z) = z

and d(z, x) < 4c1r.
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Define Pk = {z : gk(z) = z} that is, the set of points that are arbitrarily close to x

such that are also periodic. Thus d(x,Pk) < 4c1r. Observe that{
x0 : B(x0, 2r) ∩ g−k(B(x0, 2r)) 6= ∅

}
⊂ B(Pk, (4c1 +2)r) =

⋃
y∈Pk

B(y, (4c1 +2)r). (2.12)

Moreover, let ξ = dµ
4 logm

. Using (2.6), we have the inequality

µ
(
A(−ξ)((8c1 + 4)r) ∩B(Pk, (4c1 + 2)r)

)
≤ #Pk sup

x∈A(−ξ)((8c1+4)r)

µ(B(x, (8c1 + 4)r))

≤ mk((8c1 + 4)r)dµ−ξ.

Now, take K = c0 log 1
2r

and define

Ωr = A(−ξ)((8c1 + 4)r) ∩
⋂
k≤K

B(Pk, (4c1 + 2)r)c.

We proceed to compute a upper bound for the quantity µ(Ωc
r). In order to get this, it will

be necessary to combine the previous inequality with Corollary 2.2.7. Hence,

µ(Ωc
r) ≤

K∑
k=1

µ
(
A(−ξ)((8c1 + 4)r) ∩B(Pk, (4c1 + 2)r)

)
+ µ

(
Ac(−ξ)((8c1 + 4)r)

)
≤ ((8c1 + 4)r)dµ−ξ

K∑
k=1

mk + ((8c1 + 4)r)ψ(−ξ)−δ,

≤ ((8c1 + 4)r)dµ−ξmK+1 + ((8c1 + 4)r)ψ(−ξ)−δ

≤ Dra0 ,

for δ > 0 sufficiently small and a0 = min{dµ − ξ − c0 logm,ψ(−ξ)− δ}.
We observe that x0 ∈ Ωr implies that x0 /∈ B(Pk, (4c1 + 2)r) for all k ≤ c0 log 1

2r
.

Therefore, from (2.12) we obtain B(x0, 2r) ∩ g−k(B(x0, 2r)) = ∅ which proves our initial

claim.

We now turn to estimate the quantity µB(x0,2r)

(
g−kB(x0, 2r)

)
for large values of k.

Recall that ζ is a Hölder potential such that P (ζ) = 0. We also recall that the Ruelle-

Perron-Frobenius operator Lζ : C(M)→ C(M) defined on the space C(M) of continuous

function by

Lζ(f)(x) =
∑

y∈g−1(x)

eζ(y)f(y).

By induction, for every n ≥ 1,

Lnζ (f)(x) =
∑

y∈g−n(x)

eSnζ(y)f(y), (2.13)
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where Snζ =
n−1∑
k=0

ζ ◦ gk. Now we have that

µ
(
B(x0, 2r) ∩ g−kB(x0, 2r)

)
=

∫
1B(x0,2r)1B(x0,2r) ◦ gk dµ

=

∫
Lk(1B(x0,2r))1B(x0,2r) dµ

≤ µ(B(x0, 2r))
∥∥Lk(1B(x0,2r))

∥∥
∞ .

Hence, the conditional measure is limited to

µB(x0,2r)

(
g−kB(x0, 2r)

)
≤
∥∥Lk(1B(x0,2r))

∥∥
∞ . (2.14)

Now let f = 1R be the characteristic function of R ∈ Jk. Applying (2.13) we have

Lk(1R)(x) =
∑

y∈g−kx

eSkζ(y)1R(y)

≤
∑

y∈g−kx, y∈R

kζµ(R)

where the last inequality follows from the Gibbs property since P (ζ) = 0. In addition, the

preimage of x under gk has just one element in R, thus

Lk(1R)(x) ≤ kζµ(R). (2.15)

By (2.15) we have

Lk(1B(x0,2r)) =
∑

R∈Jk,R∩B(x0,2r)6=∅

Lk(1R)

≤
∑

R∈Jk,R⊂B(x0,2r+diam(Jk))

kζµ(R)

≤ kζµ(B(x0, 2r + diam(Jk))). (2.16)

Substituting (2.16) into (2.14) see that

µB(x0,2r)

(
g−kB(x0, 2r)

)
≤ kζµ(B(x0, 2r + diam(Jk))).

Let k > c0 log 1
2r

. We have that diam(Jk) < c2β
−k. Then, for k such that c2β

−k > r, we

have

β−k < β−c0 log 1
2r = (2r)c0 log β,

which implies

µ(B(x0, 2r + diam(Jk))) ≤ µ(B(x0, 3c2β
−k))

≤ µ(B(x0, c3r
c0 log β)).
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When k satisfies c2β
−k ≤ r, we obtain

µ(B(x0, 2r + diam(Jk))) ≤ µ(B(x0, 3r)).

Recall that for all x0 ∈ Ωr and for all k ≤ c0 log 1
2r
, B(x0, 2r) ∩ g−k(B(x0, 2r)) = ∅.

We may now combining these informations to conclude that

µB(x0,2r)

(
τB(x0,2r) ≤ r−d0

)
≤

r−d0∑
k=1

µB(x0,2r)

(
g−kB(x0, 2r)

)

=

b log c2−log r
log β

c∑
k=c0 log 1

2r

µB(x0,2r)

(
g−kB(x0, 2r)

)
+

r−d0∑
k=b log c2−log r

log β
c+1

µB(x0,2r)

(
g−kB(x0, 2r)

)

≤
b log c2−log r

log β
c∑

k=c0 log 1
2r

µ(B(x0, c3r
d1)) +

r−d0∑
k=b log c2−log r

log β
c+1

µ(B(x0, 3r))

≤ (c4 − c5 log r)µ(B(x0, c3r
d1)) + r−d0µ(B(x0, 3r))

with d1 = c0 log β, which ends the proof.

Remark 2.2.11. Given a subset A ⊂ Rn by the usual metric on Rn we have that d(a, b) =

|a − b|, for all a, b ∈ A. However, we can also consider the intrinsic metric on Rn,

defined as the infimum of the lengths of curves that connect a to b in A. Thus, the

intrinsic diameter is the longest of all shortest paths on the surface between pairs of

points. Following this notion, let us denote by int diam Jk(x) the intrinsic diameter of

the cylinder Jk(x).

From the theory of conformal repellers we obtain the lemma that gives a uniform

bound for the measure.

Lemma 2.2.12. There exists d3 > 0 such that for all x ∈ J and r > 0, one has

µ(B(x, r)) ≤ rd3 .

Proof. Let r > 0. Given a point x ∈ J by [46, Proposition 2], there exist positive constants

c8 and c9 such that, for every x,

diamJk(x) ≤ c8

k−1∏
i=0

∣∣a (gi(x)
)∣∣−1

and int diamJk(x) ≥ c9

k−1∏
i=0

∣∣a (gi(x)
)∣∣−1

.

Let k be the minimum value such that diamJk(x) < r. We claim that there exists c10 > 0

such that int diamJk(x) > c10r. Indeed,

diamJk−1(x) ≥ r implies that c8

k−2∏
i=0

∣∣a (gi(x)
)∣∣−1 ≥ r.
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And then,

int diamJk(x) ≥ c9

k−1∏
i=0

|a(gi(x))|−1 ≥ c9

c8

∣∣a (gk−1(x)
)∣∣−1

r > c10r,

where c10 is independent of x and r (see proof of Theorem 4.1.7 in [15]). Thus the claim

is proved.

Therefore, it follows that there exists y such that B(y, c10r) ⊂ Jk(x). On the other

hand, since diamJk(x) < r we have B(x, r) ⊂ B(y, 2r). Then, since µ is diametrically

regular (see [44, Proposition 21.4]), that is, there exist constants γ0 > 1 and C0 > 0 such

that for any point z and any r > 0

µ(B(z, γ0r)) ≤ C0µ((B(z, r)),

we obtain

µ(B(x, r)) ≤ µ(B(y, 2r))

≤ Ck+1
0 µ(B(y, 2−kr))

≤ Ck+1
0 µ(B(y, c10r)), (2.17)

for k large enough such that 2−k < c10.

Now, we claim that there exist positive constants b and C1 such that

µ(Jk(x)) ≤ C1e
−bk. (2.18)

If h is the density of µ with respect to the conformal measure, i.e. Lζh = h then, the

potential ζ = ζ − log(h ◦ g) + log h has the same equilibrium measure µ as ζ. Moreover,

Lζ1 = 1, implies that ζ(y) < 0 for all y (if we suppose that each x has at least two

preimages, otherwise we should to normalise with gN for N such that each x has at least

two preimages for gN). Thus, there exists b > 0 such that

max
y
{ζ(y)} ≤ −b.

And then,

max
y
{expSkζ(y)} ≤ e−bk.

By Gibbs property, we obtain the claim.

Therefore, by (2.17) and (2.18), it follows that µ(B(x, r)) < C1C
k+1
0 e−bk.

Let k = − log r, thus µ(B(x, r)) < C11r
b. Choosing d3 such that rd3 > C11r

b, we

conclude the proof of the Lemma.

Proof of Proposition 2.2.9. Using the above lemma we have that there exist constants

c6, d2 > 0 such that (c4 − c5 log r)µ(B(x0, c3r
d1)) ≤ c6r

d2 , for all x0.
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Let 0 < ε′ < ε, for x ∈ Ωr ∩ A(−ε′)(3r) and using Lemma 2.2.10 we obtain

µB(x0,2r)

(
τB(x0,2r) ≤ r−d0

)
≤ c6r

d2 + r−d0(3r)dµ−ε
′

≤ c7r
min{d2,−d0+dµ−ε′}.

Consequently

µ
({
x : µB(x0,2r)

(
τB(x0,2r) ≤ r−d0

)
> c7r

min{d2,−d0+dµ−ε′}
})

≤ µ
((

Ωr ∩ A(−ε′)(3r)
)c)

≤ µ(Ωc
r) + µ

(
Ac(−ε′)(3r)

)
.

Finally, taking d0 = dµ − ε and using Lemma 2.1.4, we get

ϕ(min{d2, ε− ε′}, ε) ≥ min{a0, ψ(−ε′)}

and the proposition is proved.

We are now able to prove Theorem 2.2.1.

Proof of the Theorem 2.2.1. For γ ∈ (0, 1), by Proposition 2.2.8

ψ(γε) = Λ∗(−dµ − γε) > 0

and

ψ(−ε′′) = Λ∗(−dµ + ε′′) > 0.

Moreover, by Proposition 2.2.9,

ϕ(min{d2, ε− ε′}, ε) ≥ min{a0, ψ(−ε′)} = min{a0,Λ
∗(−dµ + ε′)} > 0.

Thus, it follows from Theorem 2.1.3, that

lim
r→0

1

log r
log µ

(
τr ≥ r−dµ−ε

)
≥ max

γ∈(0,1)
min{(1− γ)ε,Λ∗(−dµ − γε)} > 0

and

lim
r→0

1

log r
log µ

(
τr ≤ r−dµ+ε

)
≥ max

γ∈(0,1)
ε′>0
ε′′>0

min {a′,Λ∗(−dµ − γε),min{a0,Λ
∗(dµ + ε′)},Λ∗(−dµ + ε′′)}

> 0,

with a′ = −γε− ε′′ + min{d2, ε− ε′}. Thus the theorem is proved.



Chapter 3

Shortest distance between observed

orbits and matching strings in

encoded sequences

In this chapter we present our results related to behaviour of the shortest distance

between observed orbits. For a dynamical system (M,A, g, µ) and an observation f from

M to a metric space (Y, d), in Section 3.1, we study the shortest distance between two

observed orbits, proving that the limiting rate is related to the correlation dimension of

the pushfoward measure f∗µ. In Section 3.2, we present a result in the case of random

dynamical systems and give some examples for which the theorem applies. Finally, in

Section 3.3, under mixing conditions, we present the symbolic theorem which establishes

a relation between the longest common substring between encoded strings and the Rényi

entropy. This chapter is a joint work with Rodrigo Lambert and Jérôme Rousseau.

3.1 Shortest distance between observed orbits

Let (M,A, g, µ) be a measure preserving dynamical system. In what follows, we

present one of the main quantities of this chapter.

Definition 3.1.1. Let f : M → Y ⊂ Rn be a measurable function, called the observation.

We define the shortest distance between two observed orbits as follows

mf
n(x, y) = min

i,j=0,...,n−1

(
d(f(gix), f(gjy))

)
.

We will show that the shortest distance between two observed orbits is related with

the correlation dimension of the pushforward measure f∗µ. Recall that the pushforward

measure is given by f∗µ(·) := µ(f−1(·)).
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We also recall that the lower and upper correlation dimension of f∗µ are denoted by

Cf∗µ and Cf∗µ.

Theorem 3.1.2. Let (M,A, g, µ) be a dynamical system. Consider an observation f :

M → Y such that Cf∗µ > 0. Then for µ⊗ µ-almost every (x, y) ∈M ×M

lim
n→∞

logmf
n(x, y)

− log n
≤ 2

Cf∗µ

. (3.1)

We recall that the condition Cf∗µ = 0 can lead to unknown values for the above

limit. However, one can observe that if mf
n = 0 on a set of positive measure, our result

implies immediately that Cf∗µ = 0. In the following example we present a measure µ and

an observation f for which Cf∗µ is zero. Moreover, mf
n(x, y) is also zero for the system

(M,A, g, µ) such that µ is invariant by g.

Example 3.1.3. Let M ⊂ R and µ = Leb the Lebesgue measure on M . Given A ⊂ M

with µ(A) > 0 we define a function f : M →M by

f(x) =

{
x, if x ∈ Ac

c, if x ∈ A

where c ∈ Å is a constant and Å is the interior of A.

Now, take any transformation g which is µ-invariant. By Poincaré’s recurrence Theo-

rem, we obtain that, for some finite n, the pair (gix, gjy) visits A×A for some 0 ≤ i, j ≤ n.

Therefore, for n sufficiently large mf
n(x, y) = 0, and then Cf∗µ = 0.

Note that Im(f) = Ac ∪ {c}. Then for r < d(c, Ac), if f(x) = c we get that

f∗µ(B(f(x), r)) = µ(A). On the other hand, if f(x) ∈ Ac, f∗µ(B(f(x), r)) ≤ 2r. Thus∫
M

f∗µ(B(f(x), r)) dµ(x) =

∫
A

f∗µ(B(f(x), r)) dµ(x) +

∫
Ac
f∗µ(B(f(x), r)) dµ(x)

≤
∫
A

µ(A) dµ(x) +

∫
Ac

2r dµ(x)

≤ µ2(A) + 2rµ(Ac).

It is easy to see that Cf∗µ = 0. As an illustration, take: M = [0, 1], c = 3/4, A = [1/2, 1]

and g(x) = 2x mod 1.

Now let us present some technical notation as well as some tools that will be used to

proof our results. For ε > 0 we define

kn =
2 log n+ log log n

Cf∗µ − ε
.

We also define

Afij(y) = g−i
[
f−1B

(
f(gjy), e−kn

)]
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and

Sfn(x, y) =
∑

i,j=1,...,n

1Afij(y)(x).

Lemma 3.1.4. Under the same conditions of Theorem 3.1.2 we have

mf
n(x, y) ≤ e−kn ⇐⇒ Sfn(x, y) > 0 .

Proof. Sfn(x, y) > 0 if and only if there exists at least a pair (i, j) ∈ {1, . . . , n}×{1, . . . , n}
such that x ∈ Afij(y), i.e. f(gix) ∈ B(f(gjy), e−kn), thus d (f(gix), f(gjy)) ≤ e−kn . This

occurs if and only if, for all 1 ≤ i, j ≤ n

mf
n(x, y) = min

{
d(f(gix), f(gjy))

}
≤ e−kn .

In general the pushforward measure is not invariant. Nonetheless, since µ is g-

invariant, given y ∈ M and taking φ(y) = f∗µ(B(f(y), e−kn)) in Proposition 1.1.2 we

have:

Lemma 3.1.5. By invariance of µ follows the equality∫
f∗µ

(
B
(
f(gjy), e−kn

))
dµ(y) =

∫
f∗µ

(
B
(
f(y), e−kn

))
dµ(y).

Proof of the Theorem 3.1.2. We first show that the event
{
mf
n < e−kn

}
occurs only finitely

many times. By Lemma 3.1.4 and Markov inequality, we get that

µ⊗ µ
({

(x, y) : mf
n(x, y) < e−kn

})
≤ E

(
Sfn
)
.

By definition, the expected value of Sfn is given by

E
(
Sfn
)

=

∫ ∫ ∑
i,j=1,...,n

1Afij(y)(x) dµ(x) dµ(y)

=
∑

i,j=1,...,n

∫ (∫
1Afij(y)(x) dµ(x)

)
dµ(y)

=
∑

i,j=1,...,n

∫
µ
(
f−1B

(
f(gjy), e−kn

))
dµ(y)

=
∑

i,j=1,...,n

∫
f∗µ

(
B
(
f(gjy), e−kn

))
dµ(y)

= n2

∫
f∗µ

(
B
(
f(y), e−kn

))
dµ(y),

where the last inequality follows is according to Lemma 3.1.5. Thus,

µ⊗ µ
({

(x, y) : mf
n(x, y) < e−kn

})
≤ n2

∫
f∗µ

(
B
(
f(y), e−kn

))
dµ(y).
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For large values of n, by definition of Cf∗µ it holds∫
f∗µ

(
B
(
f(y), e−kn

))
dµ(y) ≤ e−kn(Cf∗µ−ε).

Moreover by definition of kn,

µ⊗ µ
({

(x, y) : mf
n(x, y) < e−kn

})
≤ n2e−kn(Cf∗µ−ε) =

1

log n
.

Choosing a subsequence (nκ)κ∈N such that nκ =
⌈
eκ

2
⌉
, we have that

µ⊗ µ
({

(x, y) : mf
nκ(x, y) < e−knκ

})
≤ 1

κ2
.

Since the last quantity is summable in κ, the Borel-Cantelli lemma gives that if κ is

large enough, then for µ⊗ µ-almost every pair (x, y) it holds

mf
nκ(x, y) ≥ e−knκ

and then

logmf
nκ(x, y)

− log nκ
≤ 1

Cf∗µ − ε

(
2 +

log log nκ
log nκ

)
. (3.2)

We observe that for all n, there exists κ such that eκ ≤ n ≤ eκ+1. In addition, since(
mf
n

)
n∈N is a decreasing sequence and log z is a monotone function, it follows that

logmf
nκ(x, y)

− log nκ+1

≤ logmf
n(x, y)

− log n
≤

logmf
nκ+1

(x, y)

− log nκ
.

Taking the limit superior in the above inequalities and observing that lim
κ→∞

log nκ
log nκ+1

=

1, we get

lim
n→∞

logmf
n(x, y)

− log n
= lim

κ→∞

logmf
nκ(x, y)

− log nκ
.

Thus, by (3.2) we obtain

lim
n→∞

logmf
n(x, y)

− log n
≤ 2

Cf∗µ − ε
.

Since ε can be arbitrarily small, the prove is complete.

As in [18], to obtain an equality in (3.1), we will need more assumptions on the

system.

(H1) Let Hα(M,R) be the space of Hölder observables. For all ψ, φ ∈ Hα(M,R) and

for all n ∈ N∗, we have:∣∣∣∣∫
M

ψ ◦ f(gnx)φ ◦ f(x) dµ(x)−
∫
X

ψ ◦ f dµ
∫
M

φ ◦ f dµ
∣∣∣∣ ≤ ‖ψ ◦ f‖α‖φ ◦ f‖αθn

with θn = an and a ∈ [0, 1).
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(HA) There exist r0 > 0, ξ ≥ 0 and β > 0 such that for f∗µ-almost every y ∈ Rn and

any r0 > r > ρ > 0,

f∗µ(B(y, r + ρ)\B(y, r − ρ)) ≤ r−ξρβ.

One can observe that, if f is Lipschitz, assuming hypothesis (H1) is weaker than

assuming a exponential decay of correlations (for Hölder observables) for the system

(M,A, g, µ). Indeed, note that if f is Lipschitz then ψ ◦ f is Hölder for every Hölder

function ψ.

Theorem 3.1.6. Let (M,A, T, µ) be a dynamical system and consider a Lipschitz obser-

vation f : M → Y such that Cf∗µ > 0. If the system satisfies (H1) and (HA), then for

µ⊗ µ-almost every (x, y) ∈M ×M

lim
n→∞

logmf
n(x, y)

− log n
≥ 2

Cf∗µ

.

Furthermore, in the case that Cf∗µ = Cf∗µ = Cf∗µ we get

lim
n→∞

logmf
n(x, y)

− log n
=

2

Cf∗µ
.

To prove Theorem 3.1.6, the main difficulty is that we cannot apply mixing as simply.

In particular, we can only apply mixing to Hölder observables and indicator functions are

not even continuous. To overthrow this difficulty, we will first prove that a particular

function is Hölder in order to apply the mixing property, then, in the proof of Theorem

3.1.6, we will also approximate characteristic functions by Lipschitz functions in order to

apply mixing again.

Lemma 3.1.7. Let (M,A, g, µ) be a dynamical system with observation f . If it satisfies

(HA), then there exist 0 < r0 < 1, c ≥ 0 and ζ ≥ 0 such that for any 0 < r < r0, the

function ψ1 : x 7→ f∗µ(B(x, r)) belongs to Hα(M,R) and

||ψ1||α ≤ 2r−ζ .

Proof. Let x, y ∈M and 0 < r < r0, if ||x− y|| < r we have

(i) B(x, r − ||x− y||) ⊂ B(x, r) and B(x, r − ||x− y||) ⊂ B(y, r);

(ii) B(x, r) ⊂ B(x, r + ||x− y||) and B(y, r) ⊂ B(x, r + ||x− y||).

Then it holds

f∗µ (B(x, r − ||x− y||)) ≤ f∗µ(B(x, r)) and f∗µ(B(y, r)) ≤ f∗µ(B(x, r + ||x− y||)) .
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Hence

||f∗µ(B(y, r))− f∗µ(B(x, r))|| ≤ f∗µ(B(x, r + ||x− y||))− f∗µ(B(x, r − ||x− y||)).

Thus, by (HA),

||f∗µ(B(y, r))− f∗µ(B(x, r))|| ≤ r−ξ||x− y||β.

On the other hand, if ||x− y|| ≥ r then

||f∗µ(B(y, r))− f∗µ(B(x, r))|| ≤ 2 ≤ 2

r
||x− y|| .

Thus, ψ1 is Hölder and ||ψ1||α ≤ 2r−ζ with ζ = max{1, ξ}.

In the sequel, we present the proof of Theorem 3.1.6. This proof mainly follows the

ideas of the proof of [18, Theorem 5].

Proof of Theorem 3.1.6. Without loss of generality we will assume that θ` = e−`. Let

b < −4. Given ε > 0, we define

kn =
2 log n+ b log log n

Cf∗µ + ε
.

Remember that in the proof of Theorem 3.1.2 we had

E
(
Sfn
)

= n2

∫
f∗µ

(
B
(
f(y), e−kn

))
dµ(y).

In addition, by Lemma 3.1.4

µ⊗ µ
({

(x, y) : mf
n(x, y) ≥ e−kn

})
≤ µ⊗ µ

({
(x, y) : Sfn(x, y) = 0

})
≤ µ⊗ µ

({
(x, y) :

∣∣Sfn(x, y)− E
(
Sfn
)∣∣ ≥ ∣∣E (Sfn)∣∣}) .

By Chebyshev’s inequality we get that this last quantity is limited by
var(Sfn)
E(Sfn)

2 . And thus,

µ⊗ µ
({

(x, y) : mf
n(x, y) ≥ e−kn

})
≤

var
(
Sfn
)

E(Sfn)2
.

We now proceed to estimate the variance of Sfn .

We see at once that

var
(
Sfn
)

=
∑

1≤i,i′,j,j′≤n

cov
(
1Afij

,1Af
i′j′

)
=

∑
1≤i,i′,j,j′≤n

∫ ∫
1Afij(y)1Af

i′j′ (y) −
∫ ∫

1Afij(y)

∫ ∫
1Af

i′j′ (y)

=
∑

1≤i,i′,j,j′≤n

∫ ∫
1f−1B(f(gjy),e−kn)(gix)1f−1B(f(gj′y),e−kn)(gi

′
x)

− n4

(∫
f∗µ

(
B
(
f(y), e−kn

))
dµ(y)

)2

. (3.3)
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Since we would like to apply the mixing property to estimate the previous sum, we

will present an approximation for characteristic functions by Lipschitz functions following

the construction of the proof of Lemma 9 in [51].

Let ρ > 0 (to de defined properly later). Let ηe−kn : [0,∞) → R be the 1
ρe−kn

-

Lipschitz function such that 1[0,e−kn ] ≤ ηe−kn ≤ 1[0,(1+ρ)e−kn ] and set ϕf(y),e−kn (x) =

ηe−kn (d(f(y), x)). Since f is L-Lipschitz it follows that ϕf(y),e−kn ◦ f is L
ρe−kn

-Lipschitz.

Moreover, we have

1f−1B(f(gjy),e−kn)(x) = 1B(f(gjy),e−kn)(f(x))

= 1[0,e−kn ](d(f(gjy), f(x)))

≤ ηe−kn (d(f(gjy), f(x)))

= ϕf(gjy),e−kn (f(x)). (3.4)

We are now able to apply the mixing property. We will consider four different cases.

Let us fix ` = `(n) = log(nγ) for some γ > 0 to be defined later.

Case 1: |i− i′| > `. By (H1) and (3.4) we obtain∫ ∫
1f−1B(f(gjy),e−kn)(gix)1f−1B(f(gj

′
y),e−kn)(gi

′
x) dµ(x) dµ(y)

=

∫ ∫
1f−1B(f(gjy),e−kn)(gi−i

′
x)1f−1B(f(gj′y),e−kn)(x) dµ(x) dµ(y)

≤
∫ (∫

ϕf(gjy),e−kn (f(gi−i
′
x)) dµ(x)

∫
ϕf(gj′y),e−kn (f(x)) dµ(x)

)
dµ(y)

+ θg
∥∥ϕf(gjy),e−kn

∥∥∥∥∥ϕf(gj′y),e−kn

∥∥∥
≤ L2

ρ2e−2kn
θ` +

∫
f∗µ

(
B
(
f(gjy), (1 + ρ)e−kn

))
f∗µ

(
B
(
f(gj

′
y), (1 + ρ)e−kn

))
dµ(y).

To estimate the second part of the last inequality, we can observe that using (HA)

we obtain∫
f∗µ

(
B
(
f(gjy), (1 + ρ)e−kn

))
f∗µ

(
B
(
f(gj

′
y), (1 + ρ)e−kn

))
dµ(y)

−
∫
f∗µ

(
B
(
f(gjy), e−kn

))
f∗µ

(
B
(
f(gj

′
y), e−kn

))
dµ(y)

≤
∫
f∗µ

(
B
(
f(gjy), (1 + ρ)e−kn

)) (
f∗µ

(
B
(
f(gj

′
y), (1 + ρ)e−kn

))
− f∗µ

(
B
(
f(gj

′
y), e−kn

)))
dµ(y)

+

∫
f∗µ

(
B
(
f(gj

′
y), e−kn

)) (
f∗µ

(
B
(
f(gjy), (1 + ρ)e−kn

))
− f∗µ

(
B
(
f(gjy), e−kn

)))
dµ(y)

≤
∫
f∗µ

(
B
(
f(gjy), (1 + ρ)e−kn

))
eξknρβ dµ(y) +

∫
f∗µ

(
B
(
f(gj

′
y), e−kn

))
eξknρβ dµ(y).

Therefore, choosing ρ = n−δ for some δ > 0 to be defined later, we have for n large
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enough ∫ ∫
1f−1B(f(gjy),e−kn)(gix)1f−1B(f(gj′y),e−kn)(gi

′
x) dµ(x) dµ(y)

≤ L2

ρ2e−2kn
θ` + 2eξknρβ

∫
f∗µ

(
B
(
f(gjy), 2e−kn

))
dµ(y)

+

∫
f∗µ

(
B
(
f(gjy), e−kn

))
f∗µ

(
B
(
f(gj

′
y), e−kn

))
dµ(y).

To deal with the third term of the last inequality we need to consider two different

cases.

Case 1.1: |j − j ′| > `. Using Lemma 3.1.7, we can use the mixing property (H1)∫
f∗µ

(
B
(
f(gjy), e−kn

))
f∗µ

(
B
(
f(gj

′
y), e−kn

))
dµ(y)

≤
∫
f∗µ

(
B
(
f(gjy), e−kn

))
dµ(y)

∫
f∗µ

(
B
(
f(gj

′
y), e−kn

))
dµ(y)

+θ`
∥∥f∗µ (B (·, e−kn))∥∥ ∥∥f∗µ (B (·, e−kn))∥∥

≤ 4θ`e
2ζkn +

(∫
f∗µ

(
B
(
f(y), e−kn

))
dµ(y)

)2

.

Case 1.2: |j − j ′ | ≤ `. Using Holder’s inequality together with Lemma 3.1.5 we have∫
f∗µ

(
B
(
f(gjy), e−kn

))
f∗µ

(
B
(
f(gj

′
y), e−kn

))
dµ(y)

≤
(∫

f∗µ
(
B
(
f(gjy), e−kn

))2
dµ(y)

)1/2(∫
f∗µ

(
B
(
f(gj

′
y), e−kn

))2

dµ(y)

)1/2

=

∫
f∗µ

(
B
(
f(y), e−kn

))2
dµ(y).

Combining these cases we can write

∑
|i−i′ |>`,|j−j′ |>`

∫ ∫
1f−1B(f(gjy),e−kn)(gix)1f−1B(f(gj′y),e−kn)(gi

′
x) dµ(x) dµ(y)

+
∑

|i−i′ |>`,|j−j′ |≤`

∫ ∫
1f−1B(f(gjy),e−kn)(gix)1f−1B(f(gj′y),e−kn)(gi

′
x) dµ(x) dµ(y)

≤ n4L2ρ−2e2knθ` + 2n2eξknρβ
∑
|j−j′ |>`

∫
f∗µ

(
B
(
f(gjy), 2e−kn

))
dµ(y)

+ 4n4θ`e
2ζkn + n2

∑
|j−j′ |>`

(∫
f∗µ

(
B
(
f(y), e−kn

))
dµ(y)

)2

+ n2
∑
|j−j′|≤`

∫
f∗µ

(
B
(
f(y), e−kn

))2
dµ(y)

≤ n4L2ρ−2e2knθ` + 2n4eξknρβ
∫
f∗µ

(
B
(
f(gjy), 2e−kn

))
dµ(y) + 4n4θ`e

2ζkn

+ n4

(∫
f∗µ

(
B
(
f(y), e−kn

))
dµ(y)

)2

+ 2n3`

∫
f∗µ

(
B
(
f(y), e−kn

))2
dµ(y). (3.5)
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Case 2: |i− i′| ≤ `. At first we observe that for all l,m ∈ N it holds

1f−1B(f(gly),e−kn)(gmx) = 1f−1B(f(gmx),e−kn)(gly).

And this implies that∫ ∫
1f−1B(f(gjy),e−kn)(gix)1f−1B(f(gj′y),e−kn)(gi

′
x) dµ(x) dµ(y)

=

∫ ∫
1f−1B(f(gix),e−kn)(gjy)1f−1B(f(gi′x),e−kn)(gj

′
y) dµ(y) dµ(x). (3.6)

Case 2.1: |j − j ′| > `. In this case, we can proceed in the same way as in the second

sum using the above symmetry.

Case 2.2: |j−j ′ | ≤ `. For this, the boundedness of the indicator function and Lemma

3.1.5 give that, ∫ ∫
1f−1B(f(gjy),e−kn)(gix)1f−1B(f(gj′y),e−kn)(gi

′
x) dµ(x) dµ(y)

≤
∫ ∫

1f−1B(f(gjy),e−kn)(gix) dµ(x) dµ(y)

≤
∫
f∗µ

(
B
(
f(gjy), e−kn

))
dµ(y)

=

∫
f∗µ

(
B
(
f(y), e−kn

))
dµ(y). (3.7)

Finally, for these cases we have∑
|i−i′ |≤`,|j−j′ |>`

∫
f∗µ

(
B
(
f(gjy), e−kn

))
f∗µ

(
B
(
f(gj

′
y), e−kn

))
dµ(y)

+
∑

|i−i′ |≤`,|j−j′ |≤`

∫
f∗µ

(
B
(
f(gjy), e−kn

))
f∗µ

(
B
(
f(gj

′
y), e−kn

))
dµ(y)

≤ n4L2e2knθ` + 2n`
∑
|j−j′|>`

∫
f∗µ

(
B
(
f(y), e−kn

))2
dµ(y)

+ 2n`
∑
|j−j′|≤`

∫
f∗µ

(
B
(
f(y), e−kn

))
dµ(y)

≤ n4L2ρ−2e2knθ` + 2n3`

∫
f∗µ

(
B
(
f(y), e−kn

))2
dµ(y)

+ 4n2`2

∫
f∗µ

(
B
(
f(y), e−kn

))
dµ(y). (3.8)

Putting all the previous estimates in (3.3) we obtain

var
(
Sfn
)

E
(
Sfn
)2 ≤

2n4L2ρ−2e2knθ` + 4n4θ`e
2ζkn + 2n4eξknρβ

∫
f∗µ

(
B
(
f(gjy), 2e−kn

))
dµ(y)(

n2
∫
f∗µ (B (f(y), e−kn)) dµ(y)

)2

+
4n2`2

∫
f∗µ

(
B
(
f(y), e−kn

))
dµ(y) + 4n3`

∫
f∗µ

(
B
(
f(y), e−kn

))2
dµ(y)(

n2
∫
f∗µ (B (f(y), e−kn)) dµ(y)

)2 .

(3.9)
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By definition of Cf∗µ we have for n large enough∫
f∗µ

(
B
(
f(y), e−kn

))
dµ(y) ≥ e−kn(Cf∗µ+ε).

Recalling that ρ = n−δ, we can observe that we can choose δ large enough (depending

on ξ, β, Cf∗µ, Cf∗µ, b and ε) so that

2n4eξknρβ
∫
f∗µ

(
B
(
f(y), 2e−kn

))
dµ(y)(

n2
∫
f∗µ (B (f(y), e−kn)) dµ(y)

)2 ≤ 1

n
. (3.10)

Recalling that ` = log(nγ), we can observe that we can choose γ large enough (de-

pending on δ, Cf∗µ, ζ, b and ε) so that

2n4L2ρ−2e2knθ`(
n2
∫
f∗µ (B (f(y), e−kn)) dµ(y)

)2 ≤
1

n
(3.11)

and so that
4n4θ`e

ζkn(
n2
∫
f∗µ (B (f(y), e−kn)) dµ(y)

)2 ≤
1

n
. (3.12)

For the fourth term we have

4n2`2
∫
f∗µ

(
B
(
f(y), e−kn

))
dµ(y)(

n2
∫
f∗µ (B (f(y), e−kn)) dµ(y)

)2 ≤ 4`2

n2e−kn(Cf∗µ+ε)

≤ 4γ2(log n)2+b. (3.13)

To estimate the last term, we will use the following lemma.

Lemma 3.1.8 (Lemma 14 [18]). Let Z ⊂ Rn and let ν be a probability measure on Z.

There exists a constant K > 0 depending only on n such that for every r small enough∫
Z

µ (B(y, r))2 dν(y) ≤ K

(∫
Z

µ (B(y, r)) dν(y)

)3/2

.

Applying the previous lemma with Z = Y and ν = f∗µ we obtain

4n3`
∫
f∗µ

(
B
(
f(y), e−kn

))2
dµ(y)(

n2
∫
f∗µ (B (f(y), e−kn)) dµ(y)

)2 ≤
4n3`K

(∫
f∗µ

(
B
(
f(y), e−kn

))
dµ(y)

)3/2(
n2
∫
f∗µ (B (f(y), e−kn)) dµ(y)

)2

≤ 4`K

n
(∫

f∗µ(B(f(y), e−kn)) dµ(y)
)1/2

≤ 4`K

n
e
kn(Cf∗µ+ε)

2

≤ 4`K(log n)b/2

≤ 4Kγ(log n)1+ b
2 . (3.14)
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Taking b < −4 and substituting (3.10), (3.11), (3.12), (3.13) and (3.14) into (3.9) we

get

µ⊗ µ
({

(x, y) : mf
n(x, y) ≥ e−kn

})
≤

var
(
Sfn
)

E
(
Sfn
)2

≤ O((log n)−1). (3.15)

Thus, taking a subsequence nκ =
⌈
eκ

2
⌉
. As in the proof of Theorem 3.1.2, by the

Borel-Cantelli Lemma we obtain

lim
n→∞

logmf
n(x, y)

− log n
= lim

κ→∞

logmf
nκ(x, y)

− log nκ
≥ 2

Cf∗µ + ε
.

Since ε can be arbitrarily small, the theorem follows.

3.2 Shortest distance between orbits for random dy-

namical systems

Let M ⊂ Rn and let (Ω, θ,P) be a probability measure preserving system, where Ω is

a metric space and B(Ω) its Borelian σ-algebra. We first introduce the notion of random

dynamical system.

Definition 3.2.1. A random dynamical system G = (gω)ω∈Ω on M over (Ω, B(Ω),P, θ)

is generated by maps gω such that (ω, x) 7→ gω(x) is measurable and satisfies:

g0
ω = Id for all ω ∈ Ω,

gnω = gθn−1(ω) ◦ · · · ◦ gθ(ω) ◦ gω for all n ≥ 1.

The map S : Ω×M → Ω×M defined by S(ω, x) = (θ(ω), gω(x)) is the dynamics of the

random dynamical systems generated by G and is called skew-product.

Definition 3.2.2. A probability measure µ is said to be an invariant measure for the

random dynamical system G if it satisfies

1. µ is S-invariant

2. π∗µ = P

where π : Ω×M → Ω is the canonical projection.

Let (µω)ω denote the decomposition of µ on M , that is, dµ(ω, x) = dµω(x)dP(ω). We

denote by ν =
∫
µωdP the marginal of ν on M .

To obtain a result that links the shortest distance between orbits and random dy-

namical systems we need to assume a hypothesis for the measure and an (annealed) decay

of correlations for the random dynamical system. Namely,
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(a) There exist r0 > 0, ξ ≤ 0 and β > 0 such that for almost every y ∈ M and any

r0 > r > ρ > 0,

ν(B(y, r + ρ)\B(y, r − ρ)) ≤ r−ξρβ.

(b) (Annealed decay of correlations) ∀n ∈ N∗, ψ and φ Hölder observables from M to R,∣∣∣∣∫
Ω×M

ψ(gnω(x))φ(x) dµ(ω, x)−
∫

Ω×M
ψ dµ

∫
Ω×M

φ dµ

∣∣∣∣ ≤ ‖ψ‖α‖φ‖αθn
with θn = e−n.

Definition 3.2.3. We define the shortest distance between two random orbits as follows

mω,ω̃
n (x, x̃) = min

i,j=0,...,n−1

(
d
(
giω(x), gjω̃(x̃)

))
.

Theorem 3.2.4. Let G be a random dynamical system on M over (Ω, B(Ω),P, θ) with

an invariant measure µ such that Cν > 0. Then for µ ⊗ µ-almost every (ω, x, ω̃, x̃) ∈
Ω×M × Ω×M,

lim
n→∞

logmω,ω̃
n (x, x̃)

− log n
≤ 2

Cν

.

Moreover, if the random dynamical system satisfies assumptions (a) and (b), then

lim
n→∞

logmω,ω̃
n (x, x̃)

− log n
≥ 2

Cν

and if Cν = Cν, then

lim
n→∞

logmω,ω̃
n (x, x̃)

− log n
=

2

Cν
.

Proof. This proof will follow the idea given in [49].

This theorem is proved using Theorem 3.1.2 and Theorem 3.1.6 applied to the dy-

namical system (Ω×M,B(Ω×M), µ, S) with the observation f defined by

f : Ω×M →M

(ω, x) 7→ x.

With this observation, for all z and t ∈ Ω ×M we can link the shortest distance

between two observed orbits and the shortest distance between two random orbits. Set

z = (ω, x) and t = (ω̃, x̃) then

mf
n(z, t) = min

i,j=0,...,n−1

(
d
(
f
(
Si(ω, x)

)
, f
(
Sj(ω̃, x̃)

)))
= min

i,j=0,...,n−1

(
d
(
giω(x), gjω̃(x̃)

))
= mω,ω̃

n (x, x̃).

Moreover, we can identify the pushforward measure: f∗µ = ν. Therefore, in view of the

lower and upper correlation dimensions, the following statement finishes the proof

Cf∗µ = Cν and Cf∗µ = Cν .



57

3.2.1 Examples

We will present some examples of random dynamical systems where for which we can

apply the last statement.

Non-i.i.d. random dynamical system

The first example is a non-i.i.d. random dynamical system for which it was computed

recurrence rates in [40] and hitting times statistics in [49].

Consider the two linear maps which preserve Lebesgue measure Leb on M = T1, the

one-dimensional torus:

g1 : M →M and g2 : M →M

x 7→ 2x x 7→ 3x.

The following skew product gives the dynamics of the random dynamical system:

S : Ω×M → Ω×M

(ω, x) 7→ (θ(ω), gω(x))

with Ω = [0, 1], gω = g1 if ω ∈ [0, 2/5) and gω = g2 if ω ∈ [2/5, 1] where ω is the following

piecewise linear map:

θ(ω) =


2ω if ω ∈ [0, 1/5)

3ω − 1/5 if ω ∈ [1/5, 2/5)

2ω − 4/5 if ω ∈ [2/5, 3/5)

3ω/2− 1/2 if ω ∈ [3/5, 1].

Note that the random orbit is constructed by choosing one of these two maps following

a Markov process with the stochastic matrix

A =

(
1/2 1/2

1/3 2/3

)
.

The associated skew-product S is Leb ⊗ Leb-invariant. It is easy to check that

Lebesgue measure satisfies (a). Moreover, by [13] the skew product S has an exponential

decay of correlations. Since in this example Cν = 1 with ν = Leb, Theorem 3.2.4 implies

that for Leb⊗ Leb⊗ Leb⊗ Leb-almost every (ω, x, ω̃, x̃) ∈ [0, 1]× T1 × [0, 1]× T1,

lim
n→∞

logmω,ω̃
n (x, x̃)

− log n
= 2.
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Randomly perturbed dynamical systems

Consider a deterministic dynamical system (M, g, µ) where M is a compact Rieman-

nian manifold, g is a map and µ is a g-invariant probability measure. We will present a

random dynamical system constructed by perturbing the map g with a random additive

noise. For ε > 0, set Λε = B(0, ε) and let Pε be a probability measure on Λε. For each

ω ∈ Λε, we denote the family of transformations {gω}ω where the map gω : M → M are

given by

gω(x) = g(x) + ω.

Denote G the i.i.d dynamical system on M over (ΛNε ,PNε , σ). In the case where M = Td,
for some expanding and piecewise expanding maps, if ε is sufficiently small, it was proved

(see e.g. [11, 14, 57]) that the random dynamical system has a stationary measure µε

absolutely continuous with respect to Lebesgue measure with density hε such that 0 <

hε ≤ hε ≤ hε < ∞ and the system has a superpolynomial decay of correlation. Thus,

since the assumptions (a) and (b) are satisfied one can apply Theorem 3.2.4 and obtain

behavior of the shortest distance mω,ω̃
n .

Random hyperbolic toral automorphisms

A linear toral automorphism is a map g : T2 → T2 defined by the matrix action

x 7→ Ax, where the matrix A has integer entries and detA = ±1. We say that g is

hyperbolic if A has eigenvalues with modulus different from 1. For more simplicity, we

will use the notation A for both the matrix and the associated automorphism.

For an hyperbolic toral automorphism A, we denote EA
u the subspace spanned by eAu ,

the eigenvector associated to the eigenvalue whose absolute value is greater than 1 and

we denote EA
s the subspace spanned by eAs , the eigenvector associated to the eigenvalue

whose absolute value is less than 1.

Following the definition from [12], we say that a pair (A0, A1) of hyperbolic toral

automorphisms has the cone property if there exists an expansion cone E such that

1. AiE ⊂ E ,

2. there exists λE > 1 such that |Aix| ≥ λE |x| for x ∈ E ,

3. EAi
u ∩ ∂E = 0, where ∂E denote the boundary of E ,

and there exists a contraction cone C such that C ∩ E = 0 and

1. A−1
i C ⊂ C,

2. there exists λC < 1 such that |A−1
i x| ≥ λ−1

C |x| for x ∈ C,
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3. EAi
s ∩ ∂C = 0.

One can observe that for example a pair of hyperbolic toral automorphisms with

positive entries, or a pair of hyperbolic toral automorphisms with negative entries, has

the cone property.

Let Λ = {0, 1} and θ = σ be the left shift on ΛN. Let A0, A1 two hyperbolic

automorphisms satisfying the cone property. Let A0 be chosen with a probability q and

A1 with a probability 1− q, i.e. P = PN with P(0) = q and P(1) = 1− q.
Then, for the i.i.d. random dynamical system on T2 over (ΛN,PN, σ), the Lebesgue

measure is stationary (and thus hypothesis (a) is satisfied) and the system has an expo-

nential decay of correlations (see [12]).

Note that ν = Leb ⊗ Leb implies that Cν = 2. Then, by Theorem 3.2.4 we get for

P⊗ Leb⊗ P⊗ Leb-almost every (ω, x, ω̃, x̃) ∈ Ω× T2 × Ω× T2,

lim
n→∞

logmω,ω̃
n (x, x̃)

− log n
= 1.

3.3 Matching strings in encoded sequences

The present section is dedicated to study of longest common substring of encoded

sequences. We start by presenting some terminology and definitions, in order to introduce

the problem.

Let (Ω,F ,P) be a probability space, where Ω = χN for some alphabet χ, F the sigma-

algebra generated by the n-cylinders in Ω, and P is a stationary probability measure on

F . If σ is the left shift on Ω, we can see (Ω,F ,P, σ) as a symbolic dynamical system with

P σ-invariant. Let Ω̃ = χ̃N for some alphabet χ̃ and F̃ the sigma-algebra generated by

the n-cylinders in Ω̃.

Definition 3.3.1. Let f : Ω→ Ω̃ be a code. Given two sequences x, y ∈ Ω, we define the

n-length of the longest common substring for the encoded pair (f(x), f(y)) by

M f
n (x, y) = max

{
k : f(x)i+k−1

i = f(y)j+k−1
j for some 0 ≤ i, j ≤ n− k

}
,

where f(x)i+k−1
i and f(y)j+k−1

j denote the substrings of length k beginning in f(x)i and

f(y)j respectively.

For y ∈ Ω (respectively Ω̃) we denote by Cn(y) the n-cylinder containing y, that is,

the set of sequences z ∈ Ω (respectively Ω̃) such that zi = yi for any i = 0, . . . , n − 1.

We denote Fn0 (respectively F̃n0 ) the sigma-algebra on Ω (respectively Ω̃) generated by all

n-cylinders.
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Definition 3.3.2. The lower and upper Rényi entropies of a measure P are defined as

H2(P) = − lim
k→∞

1

k
log
∑
Ck

P(Ck)
2 and H2(P) = − lim

k→∞

1

k
log
∑
Ck

P(Ck)
2

where the sums are taken over all k-cylinders. When the limit exists we denote by H2(P)

the common value.

In general, the existence of the Rényi entropy is not known. However, it was computed

in some particular cases: Bernoulli shift, Markov chains and Gibbs measure of a Hölder-

continuous potential [31]. The existence was also proved for φ-mixing measures [39], for

weakly ψ-mixing processes [31] and for ψg-regular processes [1]. In Section 3.3.1, we will

prove that for Markov chains, the Rényi entropy does not depend on the initial distribution

but only on the transition matrix and that one can compute the Rényi entropy even if

the measure is not stationary.

Definition 3.3.3. Consider the dynamical system (Ω,P, σ). We say that it is α-mixing

if there exists a function α : N→ R where α(`) converges to zero when ` goes to infinity

and such that

sup
A∈Fn0 ; B∈Fm0

∣∣P (A ∩ σ−`−nB)− P(A)P(B)
∣∣ ≤ α(`),

for all m,n ∈ N. Moreover, we say that the system is ψ-mixing if there exists a function

ψ : N→ R where ψ(`) converges to zero when ` goes to infinity and such that

sup
A∈Fn0 ; B∈Fm0

∣∣∣∣∣P
(
A ∩ σ−`−nB

)
− P(A)P(B)

P(A)P(B)

∣∣∣∣∣ ≤ ψ(`),

for all m,n ∈ N. In the cases that α(`) or ψ(`) decreases exponentially fast to zero, we

say that the system has an exponential decay.

Now we are ready to present the main result of this section. It states that, under

suitable conditions and large values of n, the longest common substring behaves like log n,

for almost all realizations.

Theorem 3.3.4. Consider f : Ω→ Ω̃ a code such that H2(f∗P) > 0. For P⊗ P-almost

every (x, y) ∈ Ω× Ω,

lim
n→∞

M f
n (x, y)

log n
≤ 2

H2(f∗P)
. (3.16)

Moreover, if

(i) the system (Ω,P, σ) is α-mixing with an exponential decay (or ψ-mixing with ψ(`) =

`−a for some a > 0);
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(ii) Cn ∈ F̃n0 implies f−1Cn ∈ Fh(n)
0 , where h(n) = o(nγ), for some γ > 0,

then, for P⊗ P-almost every (x, y) ∈ Ω× Ω,

lim
n→∞

M f
n (x, y)

log n
≥ 2

H2(f∗P)
. (3.17)

Then if the Rényi entropy exists, we get for P⊗ P-almost every (x, y) ∈ Ω× Ω,

lim
n→∞

M f
n (x, y)

log n
=

2

H2(f∗P)
. (3.18)

Proof. For simplicity we will assume that α(`) = e−`. The proof of this theorem follows

the proof of the Theorem 7 in [18]. In the first part of the proof, for ε > 0 we denote

kn =

⌈
2 log n+ log log n

H2(f∗P)− ε

⌉
.

Let us also denote

Afi,j(y) = σ−1[f−1Ckn(f(σjy))]

and

Sfn(x, y) =
∑

i,j=1,...,n

1Afi,j(y)(x).

We first show that the event
{
M f

n ≥ kn
}

occurs only finitely many times. It follows

from Lemma 3.1.4 and Markov’s inequality that

P⊗ P
({

(x, y) : M f
n (x, y) ≥ kn

})
≤ P⊗ P({(x, y) : Sfn(x, y) ≥ 1}) ≤ E

(
Sfn
)
.

Moreover, by computing the expected value of Sfn we get

E
(
Sfn
)

=

∫ ∫ ∑
i,j=1,...,n

1Afij(y)(x) dP(x) dP(y)

=
∑

i,j=1,...,n

∫ (∫
1Afij(y)(x) dP(x)

)
dP(y)

=
∑

i,j=1,...,n

∫
P
(
f−1Ckn(f(σjy))

)
dP(y)

=
∑

i,j=1,...,n

∫
f∗P

(
Ckn(f(σjy))

)
dP(y)

= n2

∫
f∗P (Ckn(f(y))) dP(y),

where the last inequality follows as in Lemma 3.1.5.

Thus,

P⊗ P
({

(x, y) : M f
n (x, y) ≥ kn

})
≤ n2

∫
f∗P (Ckn(f(y))) dP(y).
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For large values of n, by definition of H2(f∗P) it holds∫
f∗P (Ckn(f(y))) dP(y) =

∑
Ckn

P
(
f−1 (Ckn)

)2 ≤ e−kn(H2(f∗P)−ε).

Moreover by definition of kn,

P⊗ P
({

(x, y) : M f
n (x, y) ≥ kn

})
≤ n2e−kn(H2(f∗P)−ε) =

1

log n
.

Choosing a subsequence (nκ)κ∈N such that nκ =
⌈
eκ

2
⌉

we have that

P⊗ P
({

(x, y) : M f
nκ(x, y) ≥ knκ

})
≤ 1

κ2
.

Since the last quantity is summable in κ, the Borel-Cantelli lemma gives that if κ is

large enough, then for almost every pair (x, y) it holds

M f
nκ(x, y) < knκ

and then

M f
nκ(x, y)

log nκ
≤ 1

H2(f∗P)− ε

(
2 +

1 + log log nκ
log nκ

)
. (3.19)

We observe that for all n, there exists κ such that eκ ≤ n ≤ eκ+1. In addition, since(
M f

n

)
n∈N is an increasing sequence, we get

M f
nκ(x, y)

log nκ+1

≤ M f
n (x, y)

log n
≤
M f

nκ+1
(x, y)

log nκ
.

Taking the limit superior in the above inequalities and observing that lim
κ→∞

log nκ
log nκ+1

= 1

by (3.19) we obtain

lim
n→∞

M f
n (x, y)

log n
= lim

κ→∞

M f
nκ(x, y)

log nκ
.

Thus, by (3.19) we have

lim
n→∞

M f
n (x, y)

log n
≤ 2

H2(f∗P)− ε
.

Since ε can be arbitrarily small, (3.16) is proved.

We will now prove (3.17). In order to do that denote, for ε > 0,

kn =

⌊
2 log n+ b log log n

H2(f∗P) + ε

⌋
,

where b is a constant to be chosen.
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Note that by Lemma 3.1.4 we have

P⊗ P
({

(x, y) : M f
n (x, y) < kn

})
≤ P⊗ P

({
(x, y) : Sfn(x, y) = 0

})
≤ P⊗ P

({
(x, y) :

∣∣Sfn(x, y)− E
(
Sfn
)∣∣ ≥ ∣∣E (Sfn)∣∣}) .

By Chebyshev’s inequality we deduce that

P⊗ P
({

(x, y) : M f
n (x, y) < kn

})
≤

var
(
Sfn
)

E
(
Sfn
)2 .

We have to estimate the variance of Sfn .

We see at once that

var
(
Sfn
)

=
∑

1≤i,i′,j,j′≤n

cov
(
1Afij

,1Af
i′j′

)
=

∑
1≤i,i′,j,j′≤n

∫ ∫
1Afij(y)1Af

i′j′ (y) −
∫ ∫

1Afij(y)

∫ ∫
1Af

i′j′ (y)

=
∑

1≤i,i′,j,j′≤n

∫ ∫
1f−1Ckn (f(σjy))(σ

ix)1f−1Ckn (f(σj′y))(σ
i′x) (3.20)

− n4

(∫
f∗P (Ckn(f(y))) dP(y)

)2

.

Let ` = `(n) = (log n)β, for some β > γ such that

(log n)β > (log n)γ. (3.21)

As in the proof of Theorem 3.1.6 there are four cases to consider.

Case 1: |i− i′| > `+ kn. Using the α-mixing condition we have∫ (∫
1f−1(Ckn (f(σjy)))(σ

(i−i′)x)1f−1(Ckn (f(σj′y)))(x)dP(x)

)
dP(y)

≤
∫ (∫

1f−1(Ckn (f(σjy)))(x)dP(x)

∫
1f−1(Ckn (f(σj′y)))(x)dP(x)

)
dP(y)

+α(`+ kn − h(kn))

=

∫
f∗P

(
Ckn

(
f
(
σjy
)))

f∗P
(
Ckn

(
f
(
σj
′
y
)))

dP(y)

+α(`+ kn − h(kn)). (3.22)

To estimate the first term of the sum above we analyse two cases.
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Case 1.1: |j − j′| > `+ kn. In this case we have∫
f∗P

(
Ckn

(
f
(
σjy
)))

f∗P
(
Ckn

(
f
(
σj
′
y
)))

dP(y)

=

∫
f∗P

(
Ckn

(
f
(
σj−j

′
y
)))

f∗P (Ckn (f (y))) dP(y)

=
∑

Ckn ,C
′
kn

∫
f−1(Ckn )∩σj−j′(f−1(C′kn))

f∗P (Ckn) f∗P
(
C
′

kn

)
dP(y)

=
∑

Ckn ,C
′
kn

f∗P (Ckn) f∗P
(
C
′

kn

)
P
(
f−1 (Ckn) ∩ σj−j′

(
f−1

(
C
′

kn

)))
.

Using the α-mixing condition in the last expression we get that∫
f∗P

(
Ckn

(
f
(
σjy
)))

f∗P
(
Ckn

(
f
(
σj
′
y
)))

dP(y)

≤
∑

Ckn ,C
′
kn

f∗P (Ckn) f∗P
(
C
′

kn

)(
f∗P (Ckn) f∗P

(
C
′

kn

))
+

∑
Ckn ,C

′
kn

f∗P (Ckn) f∗P
(
C
′

kn

)
(α (`+ kn − h(kn)))

=
∑

Ckn ,C
′
kn

[(
f∗P (Ckn) f∗P

(
C
′

kn

))2
]

+
∑

Ckn ,C
′
kn

f∗P (Ckn) f∗P
(
C
′

kn

)
(α (`+ kn − h(kn)))

≤ α (`+ kn − h(kn)) +
∑
Ckn

f∗P (Ckn)4 +
∑

Ckn 6=C
′
kn

(
f∗P (Ckn) f∗P

(
C
′

kn

))2

≤ α (`+ kn − h(kn)) +

∑
Ckn

f∗P (Ckn)2

2

. (3.23)

Case 1.2 |j − j′| ≤ `+ kn. By Hölder’s inequality it follows that,

∫
f∗P

(
Ckn

(
f
(
σjy
)))

f∗P
(
Ckn

(
f
(
σj
′
y
)))

dP(y)

≤
(∫

f∗P
(
Ckn

(
f
(
σjy
)))2

dP(y)

)1/2(∫
f∗P

(
Ckn

(
f
(
σj
′
y
)))2

dP(y)

)1/2

=

∑
Ckn

f∗P (Ckn)3

1/2
∑

C
′
kn

f∗P
(
C
′

kn

)3


1/2

=
∑
Ckn

f∗P (Ckn)3 .
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Using the subadditivity of the function z(x) = x2/3 we obtain

∑
Ckn

f∗P (Ckn)3 ≤

∑
Ckn

(
f∗P (Ckn)3)2/3

3/2

≤

∑
Ckn

f∗P (Ckn)2

3/2

. (3.24)

Using (3.23) and (3.24) we obtain

∑
|i−i′ |>`+kn,|j−j′ |>`+kn

∫ ∫
1f−1(Ckn (f(σjy)))(σ

ix)1f−1(Ckn (f(σj′y)))(σi
′
x)dP(x)dP(y)

+
∑

|i−i′ |>`+kn,|j−j′ |≤`+kn

∫ ∫
1f−1(Ckn (f(σjy)))(σ

ix)1f−1(Ckn (f(σj′y)))(σi
′
x)dP(x)dP(y)

≤ n4α (`+ kn − h(kn)) + n2
∑

|j−j′|>`+kn

α (`+ kn − h(kn))

+n2
∑

|j−j′|>`+kn

∑
Ckn

f∗P (Ckn)2

2

+ n2
∑

|j−j′|≤`+kn

∑
Ckn

f∗P (Ckn)2

3/2

≤ 2n4α (`+ kn − h(kn)) + n4

∑
Ckn

f∗P (Ckn)2

2

+2n3(`+ kn)

∑
Ckn

f∗P (Ckn)2

3/2

. (3.25)

Case 2. |i− i′| ≤ `+ kn:

Case 2.1 |j − j′| > `+ kn:

This case is analogous to the case 1.2.

Case 2.2. |j − j′| ≤ `+ kn:∫ ∫
1f−1(Ckn (f(σjy)))(σ

ix)1f−1(Ckn (f(σj′y)))(σi
′
x)dP(x)dP(y)

≤
∫ ∫

1f−1(Ckn (f(σjy)))(σ
ix)dP(x)dP(y)

=

∫
f∗P

(
Ckn

(
f
(
σjy
)))

dP(y)

=
∑
Ckn

f∗P (Ckn)2 . (3.26)
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Using (3.24) and (3.26) we get∑
|i−i′ |≤`+kn,|j−j′ |>`+kn

∫ ∫
1f−1(Ckn (f(σjy)))(σ

ix)1f−1(Ckn (f(σj′y)))(σi
′
x)dP(x)dP(y)

+
∑

|i−i′ |≤`+kn,|j−j′ |≤`+kn

∫ ∫
1f−1(Ckn (f(σjy)))(σ

ix)1f−1(Ckn (f(σj′y)))(σi
′
x)dP(x)dP(y)

≤ n4α(`+ kn − h(kn)) + 2n(`+ kn)
∑

|j−j′|>`+kn

∑
Ckn

f∗P (Ckn)2

3/2

+ 2n(`+ kn)
∑

|j−j′|≤`+kn

f∗P (Ckn)2

≤ n4α(`+ kn − h(kn)) + 2n3(`+ kn)

∑
Ckn

f∗P (Ckn)2

3/2

+ 4n2(`+ kn)2
∑
Ckn

f∗P (Ckn)2 . (3.27)

Putting these estimates together in (3.20) we get

var
(
Sfn
)
≤ 3n4α (`+ kn − h(kn)) + 4n3(`+ kn)

∑
Ckn

P
(
f−1 (Ckn)

)2

3/2

+4n2(`+ kn)2
∑
Ckn

f∗P (Ckn)2 . (3.28)

Therefore,

var
(
Sfn
)

E(Sfn)2
≤

3n4α (`+ kn − h(kn)) + 4n3(`+ kn)

(∑
Ckn

f∗P (Ckn)2

)3/2

(
n2
∑
Ckn

f∗P (Ckn)2

)2

+

4n2(`+ kn)2
∑
Ckn

f∗P (Ckn)2

(
n2
∑
Ckn

f∗P (Ckn)2

)2 . (3.29)

We estimate each term on the right separately. Using the definition of kn and of the

Rényi entropy and the choice of `, we have for the first term

3n4α (`+ kn − h(kn))(
n2
∑
Ckn

f∗P (Ckn)2

)2 ≤ 3n4e−(logn)βn−2/(H2(f∗P)+ε)(log n)−b/(H2(f∗P)+ε)eh(kn)

(log n)−2b
.
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By hypothesis, h(kn) = o((log n)γ) thus there exists n0 such that for all n ≥ n0, h(kn) <

(log n)γ. In (3.21) take β large enough such that (log n)β > (log n)γ + log n4−2/(H2(f∗P)+ε).

Hence,

3n4α (`+ kn − h(kn))(
n2
∑
Ckn

f∗P (Ckn)2

)2 ≤ 3(log n)−b/(H2(f∗P)+ε))

(log n)−2b

= 3(log n)b(2−1/(H2(f∗P)+ε)). (3.30)

To estimate the second term we obtain

4n3(`+ kn)

(∑
Ckn

f∗P (Ckn)2

)3/2

(
n2
∑
Ckn

f∗P (Ckn)2

)2

≤ 4n3(`+ kn)

n4

(∑
Ckn

f∗P (Ckn)2

)1/2

≤ 4(`+ kn)(log n)b/2

≤ 4(log n)β+b/2 +
2(log n)1+b/2 + b log(log n)(log n)b/2

H2(f∗P) + ε
. (3.31)

Finally for the third term we get

4n2(`+ kn)2
∑
Ckn

f∗P (Ckn)2

(
n2
∑
Ckn

f∗P (Ckn)2

)2

≤ 4n2(`+ kn)2

n4
∑
Ckn

f∗P (Ckn)2

≤ 4(`+ kn)2(log n)b

= 4(log n)2β+b + 8(log n)β+b2 log n+ b log(log n)

H2(f∗P) + ε

+
4(2 log n+ b log(log n))2(log n)b(

H2(f∗P) + ε)
)2 . (3.32)

Taking b < −2− 2β and substituting (3.30), (3.31) and (3.32) into (3.29), we obtain

P⊗ P
({

(x, y) : M f
n (x, y) ≤ kn

})
≤ O

(
(log n)−1

)
. (3.33)

Thus, taking a subsequence (nκ)κ =
⌈
eκ

2
⌉

as in the proof of (3.16) we use the Borel

Cantelli Lemma to obtain (3.17).
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On the other hand, if the system is ψ-mixing, for |i− i′| > ` + kn we have the

equivalent of equation (3.22):∫ (∫
1f−1(Ckn (f(σjy)))(σ

(i−i′)x)1f−1(Ckn (f(σj′y)))(x)dP(x)

)
dP(y)

≤
∫
f∗P

(
Ckn

(
f
(
σjy
)))

f∗P
(
Ckn

(
f
(
σj
′
y
)))

dP(y) (1 + ψ(`+ kn − h(kn)) .

If, moreover, |j − j′| > `+ kn, we have the equivalent of (3.23):∫
f∗P

(
Ckn

(
f
(
σjy
)))

f∗P
(
Ckn

(
f
(
σj
′
y
)))

dP(y)

≤ ψ (`+ kn − h(kn)) +

∑
Ckn

f∗P (Ckn)2

2

.

Then,

var
(
Sfn
)
≤ n4

[
ψ (`+ kn − h(kn)) + (ψ (`+ kn − h(kn)))2]+ 4n2(`+ kn)2

∑
Ckn

f∗P (Ckn)2

+2n3(`+ kn)(2 + ψ (`+ kn − h(kn)))

∑
Ckn

f∗P (Ckn)2

3/2

.

Using the definition of ψ we can estimate the first and the second term

n4ψ (`+ kn − h(kn))(
n2
∑
Ckn

f∗P (Ckn)2

)2 ≤ n4(`+ kn − h(kn))−a

n4e−2kn(H2(f∗P)+ε)

=
(`+ kn − h(kn))−a

n−4(log n)−2b

=
n4(log n)2b

(`+ kn − h(kn))a

and

n4ψ (`+ kn − h(kn))2(
n2
∑
Ckn

f∗P (Ckn)2

)2 ≤ n4(`+ kn − h(kn))−2a

n4e−2kn(H2(f∗P)+ε)

=
(`+ kn − h(kn))−2a

n−4(log n)−2b

=
n4(log n)2b

(`+ kn − h(kn))2a
.

The third term and the first part of the fourth term are estimated in the same way

as in (3.32) and (3.31) respectively.
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Finally, for the second part of the fourth term we get

2n3(`+ kn)ψ (`+ kn − h(kn))

(∑
Ckn

f∗P (Ckn)2

)3/2

(
n2
∑
Ckn

f∗P (Ckn)2

)2

≤ 2n3(`+ kn)ψ (`+ kn − h(kn))

n4

(∑
Ckn

f∗P (Ckn)2

)1/2

≤ 2n3(`+ kn) (`+ kn − h(kn))−a

n4e−
1
2
kn(H2(f∗P)+ε)

=
2n3(`+ kn)(`+ kn − h(kn))−a

n4n−1(log n)−b/2

=
2(`+ kn)(`+ kn − h(kn))−a

(log n)−b/2

=
2(`+ kn)(log n)b/2

(`+ kn − h(kn))a
.

Using the hypothesis that h(kn) = o((log n)γ), the definition of kn and choosing

b < 2β, we conclude this case as in the proof of the case α-mixing.

Finally, if the Rényi entropy exists, by (3.16) and (3.17) we conclude the proof of the

theorem.

3.3.1 Rényi entropy of Markov chains

In the sequel we present an entropy’s invariance statement by change of initial dis-

tribution. In particular, we will use this result in the example of the stochastic scrabble

(Subsection 3.3.2) to compute the entropy of the pushforward measure.

Theorem 3.3.5. Let (Xn)n∈N be a Markov chain in a finite alphabet χ, with irreducible

and aperiodic transition matrix P = [(pij)] and stationary measure µ. For any Markov

measure ν with initial distribution π and transition matrix P it holds

H2(ν) = H2(µ) = − log p

where p is the largest eigenvalue of the matrix [(pij)
2].

Proof. First of all, we observe that the second equality is a well-known result (see e.g.

[31] Section 2.2). For the first equality, we will show that

H2(µ) ≤ H2(ν) ≤ H2(µ) .
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For convenience here, we will adopt the following notation for strings of stochastic

processes: {Xm
n = xmn } = {Xn = xn, Xn+1 = xn+1, · · · , Xm = xm} for every non-negative

integers n,m such that n ≤ m and for any realization x = x∞0 .

We will use corollary (3.13) from [28], which states that there exists γ ∈ (0, 1) such

that for all k > 1

sup
xk∈χ
|ν(Xk = xk)− µ(xk)| ≤ γk .

A straightfoward computation gives that for every n > k > 1

sup
x0,xk∈χ

|ν(Xk = xk | X0 = x0)− µ(xk)| ≤ γk

and for every xnk ∈ χn−k+1

|ν(Xn
k = xnk)− µ(xnk)| ≤ cγkµ(xnk)

with c = (infx0{µ(x0)})−1 < +∞.

Let (an)n∈N be a non-decreasing and unbounded sequence in n taking values on the

non-negative integers and such that n ≥ an = o(n). Without loss of generality we will

only consider the strings xn0 such that ν(Xn
0 = xn0 ) > 0. On the one hand, we get

ν(Xn
0 = xn0 ) ≤ ν(Xn

an = xnan)

≤
[
cγanµ(xnan) + µ(xnan)

]
.

Therefore

1

n
log
∑
xn0

ν(Xn
0 = xn0 )2 ≤ 2

n
log(cγan + 1) +

1

n
log
∑
xn0

µ(xnan)2

=
2

n
log(cγan + 1) +

1

n
log

∑
xan−1

0

∑
xnan

µ(xnan)2

≤ 2

n
log(cγan + 1) +

1

n
log |χ|an +

1

n
log
∑
xnan

µ(xnan)2.

One can observe that the two first terms in the last line vanish as n→∞. Moreover,

by stationarity of µ we obtain

lim
n→∞

1

n
log
∑
xnan

µ(xnan)2 = lim
n→∞

1

n
log

∑
xn−an0

µ(xn−an0 )2 = H2(µ)

which gives us the first inequality.
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On the other hand, first notice that for strings such that ν(Xn
0 = xn0 ) > 0, we have

for n large enough

ν(Xn
0 = xn0 ) = π(x0)Px0x1 · · ·Pxan−1xanPxanxan+1 · · ·Pxn−1xn

≥ π(x0)ρan
1

ν(Xan = xan)
ν(Xn

an = xnan)

≥ π(x0)ρan

µ(xan) + γan

[
µ(xnan)(1− γan)

]
≥ dρan

[
µ(xnan)(1− γan)

]
where ρ := min

Pij>0
Pij and d =

1

2
min

π(x0)>0
π(x0).

Now

1

n
log
∑
xn0

ν(Xn
0 = xn0 )2 ≥ 2

n
log (dρan) +

1

n
log
∑
xn0

[
µ(xnan)(1− γan)

]2
≥ 2

n
log (dρan) +

2

n
log(1− γan) +

1

n
log
∑
xnan

[
µ(xnan)

]2
.

As in the first part of the proof, the first two terms in the last line vanish and the third

one converges to H2(µ) as n diverges. This last statement concludes the proof.

3.3.2 Applications

In what follows we present some applications of the above stated theorem. They come

from some well-known cases of probability’s literature. The first one is a contamination

code that flips to zero some symbols of the sequence, and in some sense shrinks the strings.

The second put a weight on each symbol of χ, and has an effect of expanding the strings.

The zero-inflated contamination model

Example 3.3.6. Let (ξi)i∈N be a sequence of i.i.d. Bernoulli random variables taking

values on {0, 1}, independently of P, governed by a Bernoulli measure given by µ(ξi =

1) = 1− ε, where ε is a noise parameter in (0, 1). Let fξ : Ω→ Ω be a perturbation given

by fξ(z) = (ξizi)i∈N. This defines the zero inflated contamination model (see [22, 30]).

To shorten notation, we write f instead of fξ.

Then, if H2(f∗P) > 0, for P⊗ P-almost every (z, t) ∈ Ω× Ω,

lim
n→∞

M f
n (z, t)

log n
≤ 2

H2(f∗P)
.

Moreover, if the system (Ω,P, σ) is α-mixing with an exponential decay, for P ⊗ P-

almost every (z, t) ∈ Ω× Ω,

lim
n→∞

M f
n (z, t)

log n
≥ 2

H2(f∗P)
.
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Indeed, for k large enough f−1Ck ∈ Fmε(k)
0 , where mε(k) is the proportion of 1’s in the

k-cylinder Ck(ξ). Let µ⊗N denote the product measure that governs the stochastic process

{ξi}i∈N. One can observe that by the law of large numbers µ⊗N-almost every realization ξ

has an ε-proportion of zeros, i.e.

lim
k→∞

mε(k)

k
= 1− ε.

Thus, for µ⊗N-almost every ξ, it exists ε1 > 0 such that mε(k) = o(k1+ε1) and we can

apply Theorem 3.3.4.

Moreover, if P is a Bernoulli measure we can calculate explicitly the Rényi entropy

of f∗P. Namely, by using the binomial theorem, for k large enough we get

∑
Ck

[P(f−1Ck)]
2 =

mε(k)∑
j=1

(
mε(k)

j

)
p2j(1− p)2(mε(k)−j)

=
[
p2 + (1− p)2

]mε(k) .

Therefore the Rényi entropy is given by

H2(f∗P) = − lim
k→∞

mε(k)

k
log(p2 + (1− p)2)

= −(1− ε) log
(
p2 + (1− p)2

)
.

We observe that if χ = {a1, . . . , an} is a finite alphabet and P(X = ai) = pi, by similar

computations (and the multinomial theorem) we obtain

H2(f∗P) = −(1− ε) log

(∑
i

p2
i

)
= (1− ε)H2(P) .

Therefore, in view of Theorem 3.3.4, as n diverges we get

M f
n

log n
−→ 2

(1− ε)H2(P)
.

The case f = Id is equivalent to ε = 0 (no contamination) and if ε > 0 we expect to

observe larger values for M f
n (in view of Theorem 3.3.4). This can be summarized with

the following assertion: the more contamination, the more coincidences appear between

the encoded strings. This is a rather intuitive feature of the string matching problem,

which indicates that sequences which had lost much information tends to present more

similarity.

The highest-scoring matching subsequence

Example 3.3.7. In this example we will consider the case in which a shorter match can be

better scored than a long one, depending on the symbols that compose the matched strings.
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For this we assume that each string is scored according to the symbols that compose it.

In this sense suppose that each letter a ∈ χ is associated to a weight v(a) ∈ N∗. We

also denote the score of a string zm−1
0 by V (zm−1

0 ) =
∑m−1

j=0 v(zj). If x and y are two

realizations of the χ-valued stochastic processes (Xn) and (Yn) (for short notation),

Vn(x, y) = max
0≤i,j≤n−m

{
V (zm−1

0 ) : there exists 1 ≤ m ≤ n such that zm−1
0 = xi+m−1

i = yj+m−1
j

}
is the nth highest-scoring matching subsequence [9]. The authors also named it stochastic

Scrabble, because of the namesake board game. For two copies independently generated

by the same Markov source P with positive transition probabilities [pij], they stated the

following result:

lim
n→∞

Vn
log n

=
2

− log p
P× P− a.s. , (3.34)

where p ∈ (0, 1) is the largest root of det(P −λV ) = 0, with P =
[
p2
ij

]
and λV =

[
δijλ

v(i)
]
.

One can observe that this result (3.34) can be obtained as particular case of Theo-

rem 3.3.4. Indeed, inspired by [9], we can construct a specific code f that stretches the

sequences depending on the weights of its letters. Formally

f : χN → χN

x∞0 7→ x0x0 · · ·x0︸ ︷︷ ︸
v(x0)

x1x1 · · ·x1︸ ︷︷ ︸
v(x1)

· · ·xnxn · · ·xn︸ ︷︷ ︸
v(xn)

· · · (3.35)

With this particular code, we get that M f
n (x, y) = Vn(x, y) and thus to get (3.34) we

need to compute H2(f∗P) and check that conditions (i) and (ii) are satisfied.

We recall that if (Xn) is a Markov chain in χ = {1, 2, . . . , d}, we can see f(Xn) as a

Markov Chain in χ̃, which is a (
∑
i∈χ

v(i))-sized alphabet, given by

χ̃ =
{

11, 12, . . . , 1v(1), 21, 22, . . . , 2v(2), . . . , d1, d2, . . . , dv(d)

}
.

In this context, we will consider that f : χN → χ̃N. Furthermore, if Q = [Qij], 1 ≤ i, j ≤ d

is the transition matrix for (Xn) we get that the transition matrix Q∗ for the chain f(Xn)

on χ̃ is given by

Q∗i`i`+1
= 1 if 1 ≤ ` ≤ v(i)− 1 and 1 ≤ i, j ≤ d ;

Q∗iv(i)j1
= Qij if 1 ≤ i, j ≤ d ;

Q∗ij = 0 otherwise.

Let us give an example. Consider a i.i.d. random sequences over χ = {0, 1, 2}, with

v(0) = 2, v(1) = 2 and v(2) = 1. Note that gdc{v(0), v(1), v(2)} = 1. The transition
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matrix for χ̃ = {01, 02, 11, 12, 2} is

0 1 0 0 0

Q00 0 Q01 0 Q02

0 0 0 1 0

Q10 0 Q11 0 Q12

Q20 0 Q21 0 Q22


.

Notice that, if vmin = min
i∈χ
{v(i)} is the minimum weight, we get for any cylinder Cn,

f−1Cn ∈ F
⌊

n
vmin

⌋
0 ,

and since n/vmin = o(n1+ε) for all ε > 0, condition (ii) of Theorem 3.3.4 is then satisfied.

We recall that an irreducible and aperiodic positive recurrent Markov chain is an α-mixing

process with exponential decay of correlation (see e.g. Theorem 4.9 in [38]) which implies

condition (i).

Finally, to obtain (3.34), we need to compute H2(f∗P). As in [9], to assure aperiod-

icity for the encoded process f(Xn) we assume that gdc{v(1), v(2), . . . , v(d)} = 1.

Moreover, by Theorem 3.3.5 we know that the Rényi entropy of its stationary measure

µ is given by H2(µ) = − log p, where p is the largest positive eigenvalue of the matrix[
(Q∗)2

ij

]
, 1 ≤ i, j ≤

∑
i∈χ v(i) (it was proved in [9] that this p is the same as the one defined

in (3.34)). Moreover, we observe that f∗P is a Markov measure with initial distribution π

and transition matrix Q∗, where π is defined by π(i1) = P(X0 = i) and π(ij) = 0 for any

i ∈ χ and 1 < j ≤ v(i). It is important to notice that in general, f∗P is not stationary.

Thus, by Theorem 3.3.5, we have H2(µ) = H2(f∗P) and we can combine it with equa-

tion (3.18) in Theorem 3.3.4 to conclude that, for P⊗P almost every pair of realizations,

as n diverges it holds
Vn

log n
−→ 2

− log p
.

We remark that this example generalizes [9] to α-mixing processes with exponential decay

and ψ-mixing with polynomial decay, since we can apply Theorem 3.3.4 to this code f ,

and then obtain information on the highest scoring Vn.



Chapter 4

Future perspectives

In view of the first part of this work, we intend to study properties of large deviation

for return time in cylinders for Bernoulli shifts. More precisely, using results from [7] and

techniques of [6] we expect to find estimates of large deviation for return time in cylinders

in the case of shifts with a Bernoulli measure.

In Chapter 2, rates functions were estimated with elements of multifractal analysis

found in the work of Pesin and Weiss [47]. Following this, we would like to estimate

exponential rates for dimension and for fast return time in these above mentioned cases.

Let us define:

τ(Cn) = min{1 ≤ k ≤ n : Cn ∩ σ−kCn = ∅}

and

τCn(x) = inf{k ≥ 1 : σk(x) ∈ Cn}.

Then, we are interested in investigating the asymptotic behavior of µ
(
x : τCn(x)(x) ≤ en(h−ε))

and µ
(
x : τCn(x)(x) ≥ en(h+ε)

)
, where h denote the entropy of the system.

We would like to extend these results to φ-mixing systems with 0 < φ(0) <∞.

We recall that the dynamical system (Ω, µ, σ) is φ-mixing if there exists a function

φ : N→ R where φ(`) converges to zero when ` goes to infinity and such that

sup
A∈Fn0 ; B∈Fm0

∣∣∣∣∣µ
(
A ∩ σ−`−nB

)
− µ(A)µ(B)

µ(A)

∣∣∣∣∣ ≤ φ(`),

for all m,n ∈ N.

As a second perspective, we propose to study the behavior of the non-aligned segment

score presented by Dembo, Karlin and Zeitouni in [24]. More precisely, let X1, . . . , Xn

and Y1, . . . , Yn be two sequences of length n, where the letters Xi and Yi take values in a

finite alphabet χ and Y , respectively. Consider a score function f : χ × Y → R that is

assigned to each pair of letters (Xi, Yj). The non-aligned maximal segment score is given

75
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by

Mn(X, Y ) = max
0≤i,j≤n−m

m>0

{
m∑
k=1

f(Xi+k, Yj+k)

}
.

If we suppose that the two sequences are independent: X1, . . . , Xn i.i.d. following the

distribution law µX and Y1, . . . , Yn i.i.d following the distribution law µY , where µX and

µY are probabilities measures on X and Y , respectively. Moreover, if we assume that

the expected score per pair is negative and there is positive probability of attaining some

positive pair score, i.e.

EµX×µY (f) < 0 and µX × µY (f > 0) > 0,

the authors proved that Mn/ log n converges almost surely to a positive finite constant

γ(µX , µY ) defined in terms of appropriate relatives entropy.

As in Theorem 3.3.4, we would like to extend these results to ψ-mixing systems.
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