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Abstract

This work provides some original contributions to the study of large deviation for
return times and the asymptotic behavior of the shortest distance between observed orbits.
In the first part, we prove a large deviation result for return time of the orbits of a
dynamical system in a r-neighbourhood of an initial point x. Our first result may be
seen as a differentiable version of the work by Jain and Bansal, who considered the
return time of a stationary and ergodic process defined in the space of infinite sequences.
We obtain large deviation estimates for dynamical systems in general and in the case of
conformal repellers we compute the rate functions in terms of HP-spectrum for dimensions
of multifractal analysis.

In the second part of this work, we investigate the shortest distance between two
observed orbits and its asymptotic behavior. The main result is a strong law of large
numbers for a re-scaled version of this quantity, which presents an explicit relation with
the correlation dimension of the pushforward measure. We apply this result to study the
shortest distance between orbits of a random dynamical system. In the symbolic case, this
problem corresponds to the longest common substring problem for encoded sequences and
its limiting relationship with the Rényi entropy. We apply this results to the zero-inflated

contamination model and to the stochastic scrabble.

Keywords: Poincaré recurrence, exponential rate, conformal repeller, large devia-

tion, string-matching, coding theory, Rényi entropy.



Resumo

Este trabalho fornece algumas contribuigoes originais para o estudo de grandes desvios
para tempo de retorno e comportamento assintético da menor distancia entre duas 6rbitas
transformadas. Na primeira parte, provamos um resultado de grandes desvios para o
tempo de retorno de uma Orbita de um sistema dinamico numa r-vizinhanca de seu
ponto inicial x. Nosso primeiro resultado pode ser visto como uma versao diferenciavel
do trabalho de Jain e Bansal, que consideraram o tempo de retorno de um processo
estacionario e ergédico definido no espaco das sequéncias finitas. Obtemos estimativas de
grandes desvios para sistemas dinamicos gerais, e no caso de repulsor conforme calculamos
as fungoes taxas em termos do HP-espectro para dimensao da andlise multifractal.

Na segunda parte deste trabalho, investigamos a menor distancia entre duas orbitas
transformadas e seu comportamento assintético. O principal resultado é uma lei forte dos
grandes numeros para uma versao reescalonada desta quantidade. A quantidade limite
apresenta uma relagao explicita com a dimensao de correlacao da medida pushforward.
Aplicamos este resultado ao estudo da menor distancia entre érbitas para um sistema
dinamico aleatoério. No caso simbdlico, este problema corresponde ao problema da maior
subsequéncia comum entre sequéncias codificadas, e o seu limitante esta relacionado com
a entropia de Rényi do processo. Aplicamos este resultado aos modelos de contaminagao

inflada por zeros, e sequéncias de caracteres com pesos.

Palavras-chave: Recorréncia de Poincaré, taxa exponencial, repulsor conforme,

grandes desvios, correspondéncia de sequéncias, teoria de codigos, entropia de Rényi.
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Introduction

Consider a dynamical system (M, A, g, u) where M is a compact metric space, A is a
o-algebra on M, g : M — M is a measurable map and p an invariant probability measure
on (M, A). An essential result in ergodic theory is Poincaré’s recurrence theorem. It
states that any probability measure preserving map has almost everywhere recurrence.
It is natural to ask for more quantitative results of recurrence. In [35], Kac has proven
that, when the system is ergodic, the mean of the return time in a measurable set is
equal to the inverse of the measure of this set. This subject has been further studied by
many authors. In particular, Boshernitzan [19] established a link between the Hausdorff
dimension of M and the time needed by an orbit to approach its initial point. To review
results on quantitative recurrence see, for example [29, 52]. In the present work we are
interested in large deviation for return times for a class of systems with exact dimensional
measures.

Moreover, finding patterns on symbolic strings has been a widely studied subject
matter on Genetics, Probability and Information Theory over the years. The investiga-
tions about how many information a n-string have on the whole realization of the process
are naturally linked with the concept of redundancy and compression algorithms. On
the other hand, the overlap between (some proportion of) two different strings can give
us some knowledge about the similarity of the sources that generate those processes. In
addition, repetition and similarity are two well-exploited concepts in the study of DNA
sequences. In this direction, we will focus on the longest common substring problem and
its dynamical correspondent, the shortest distance between observed orbits.

The remainder of this introduction will be devoted to discuss about these individual

topics.

Results on large deviation theory

Several works already addressed large deviations for return time. Abadi and Vaienti
in [6] proved large deviation properties of 7(C,,)/n, where 7(C,,) is the first return of a

n-cylinder to itself. More precisely, if the system is ¢-mixing, if /(0) < 1 and the Rényi



entropies exist for all integers /3, then for ¢ € (0, 1], the limit

lim L log i {z : 7(C,) < [5n]} = M(5)

n—oo N,

exists. In addition, they provide an explicit expression for M (d). Generalizations were
later shown in [2, 31].

A large deviation result for the n-th return times 7% (x) into a fixed set A was also
considered by Chazottes and Leplaideur [21] (see also [37]). Birkhoff’s theorem gives that
for p-almost every point x

Th(x) 1

lim = :
nmoo o pu(A)
For Axiom A diffeomorphisms and equilibrium states u, they proved the existence of a

rate function ® 4, such that for every u > ﬁ,

1 n
lim —log,u{T—A > u} =P (u),
n

n—oo M

with the appropriate change in the definition when 0 < u < ﬁ.

Our first result concerns a different notion of large deviation for return time, and may
be seen as a differentiable version of a recent work by Jain and Bansal [33]. They studied
a large deviation property for repetition times under ¢-mixing conditions. Let H denote
the entropy rate of a finite-valued process X = (X,,) and x a particular realization of X.
Define the first return time of z7 as

Ry(z)=min{j >1:a} = $:jff :

We say that X has exponential rates for entropy if for every € > 0, we have
P ({af : 27" < P(af) <27"H79Y) <1 —r(n,e),

where 7(e,n) = e 9" with k(e) a real valued positive function of . They proved that

for an exponentially ¢-mixing process with exponential rates for entropy,

?(

where I(€) is a real positive valued function for all € > 0 and 1(0) = 0.

log R, (X)
n

— H‘ > e) < 2¢7 19" for any n sufficiently large,

Here, we will study the return time 7,.(z) of a point z € M under the map ¢ in its

r-neighborhood, defined as follows:
7.(2) = T () = min{n > 1 : d(¢g"z,x) < r}.
It was proved by Barreira and Saussol [17] that

R(r) < d,(x) and R(z) < d,(x).



for p-almost every x € M, where R(x), R(x), d,(z) and d,(z) are the lower and upper
recurrence rates and the lower and upper pointwise dimensions of the measure p at the
point © € M, respectively. If the system has a super-polynomial decay of correlations,
Saussol in [51] showed that equalities will hold for the expressions above.

In the first part of this work, for a measure ;1 exact dimensional, we are interested in
studying the limiting behavior as r goes to zero of (Tr > r‘d“_e) and g (Tr < r‘d“+6) :

This characterization is made via asymptotic exponential bound. We consider the limits

limL log 1 (TT > r_d“_€) and lim log 11 (7} < r_d“JrE) )

r—ologr r—ologr
The choice of the normalization logr is suggested by the discrete case [33]. Moreover,
this choice is strengthen by the large deviation principle for the pointwise dimension
(see Corollary 2.2.7) where the normalization factor comes directly form Gartner-Ellis
Theorem.

We apply our first result to conformal repellers. More precisely, given J C M an
invariant and compact set, if (J, g) is a conformal repeller and p is an equilibrium state
for a Holder potential, we estimate large deviation rate functions which are related to
H P-spectrum for dimensions.

Large deviations results are often related to multifractal analysis [47]. It turns out
that in the case of conformal repellers, the multifractal spectra is degenerated [53, 27],
that is

1
dimg {x € M lim 287 (@) _ a} — dimy M
r—0 —logr

for any 0 < o < oo. It is not clear if this fact does influence large deviations for return

time.

String matching problem

Along the second part of this work we will adopt the following terminology about
searching and finding patterns. When the search occurs on the same string, we are talking
about repetition. Otherwise we treat this as a coincidence. In what follows we present a
brief discussion about this concepts and present some previous results in the literature.

Let Y = Y§® be a stochastic process taking values on 2 = YN, where y is an alphabet.
Consider a string 7 € x" and a realization y = y{°. In view of repetition, one of the
earliest studied quantities is the (Ornstein-Weiss) return time, defined in the previous
subsection. Let R, (y) be the first return of a realization y to its own n-cylinder (or to its
first n-string), that is, the first time that the string y}" recurs in the past of y. In [42], it
was stated that W — h,, for p-almost every realization y, where h,, is the entropy

of the measure pu.



An interesting and intuitive link between return times and the notion of data com-
pression schemes can be found in [60]. In that paper the author present a quantity that
essentially measures the smallest string on the process that did not appear in the n-sized

past database of the realization. Formally

Ln(x):inf{jzlzx{#:ciﬂﬂ , for some 1 <m <n} .

logn
Ln

for p-almost realization of the process. In the sequel, an entropy statistical estimator

The authors then have used the duality R, > m <= L,, < n to prove that

— hy

based on L,, and the proofs for its consitence were provided in [36].

The notion of coincidence has been exploited on the context waiting times (or string
matching) concept (see [25, 59, 60]). Let x and y two realizations of the independent
stochastic processes X and Y. The waiting time between x and y, defined as the first

time that the string y' appears in x is given by
Wa(z,y) =inf {j > 1:27 " =y}

In [59], an exponential limiting distribution was proved for the waiting time (properly
re-scaled), in the case that the measure is ¥)-mixing with exponential decay of correlations.

Since most of the above mentioned quantities are typically exponentially large in
the size of the cylinders, it becomes necessary to investigate some smaller-order quantity
that gives an information about the process. In that sense, we get the first-return (or
short-return) function of a cylinder, defined as

Th(z) = inf 7un(2),

PV R )
ZiZ) =Ty

where 7,x(z) is a hitting time to a string 27 of a realization z of the process that starts
with the initial condition: 2] = z7.

In [8] and [55], the authors used different techniques to state that 7, /n — 1 almost
surely when n diverges, which provides a linear feature of T,, as a function of n. The rate
for this convergence was also investigated, and large deviation principles for 7,, (and its
relationship with the Rényi entropy) were presented in [1, 6, 31]. A weak convergence
theorem for the fluctuations of T;, was presented on [3, 4].

In view of coincidence, a two-dimensional version of the short-return function was
presented on [5]. It is the shortest path between two observables, and is given as follows:
for two realizations x and y

TP (z,y) = inf Wy(z, 2).

s —p M
Z21=0

For independent sources, the authors proved a linear increasing of T with respect to n, a

large deviation principle for 7{¥ and a weak convergence for a re-scalled version of T2,



The string matching problem is essentially motivated by biomolecular sequence com-
parison. The alignments of DNA and protein sequences, for example, consists of iden-
tifying common subsequences to understand evolutionary relationships. On the scenario
of Erdos-Rényi laws, a remarkable matching quantity has been studied in [10]: M, (z,v),
the length of the longest matching consecutive subsequence (or longest common substring)
between two sequences. More precisely, if x and y are two realizations of the stochastic

processes (X, )nen and (Y3,)nen,

M, (x,y) = max {k il = yj:J“k_l for some 0 <i4,5 <n — k} ,

(respectively yjf TR

i+k—1

where z; ) denotes the substring z;x;,1 - z;1r_1 (respectively

YiYje1 Yjrk—1)-

If the two processes are independent and identically distributed, and generated by the
same source P, the authors proved that M, /(log; ,,n) — 2 for almost every realization
(x,y), where p = P(Xy = Y) [10]. Furthermore, if P defines a Markov chain, p is the
largest eigenvalue of the matrix [(p;;)?], where [p;;] is its matrix. This result was recently
generalized in [18] for t-mixing processes with polynomial decay of correlations. For
another works related to matching sequences, see for example [24, 41].

Following the direction of the pattern investigation between strings, one can ask if
the above mentioned results hold if we put a perturbation on the orbits. In other words:
what happens if we consider encoded sequences as our interest objects of investigation?

In view of this, we study a version of the longest matching substring problem when the
orbits are encoded by a measurable function (which we call code or observation, depending
on the context). We call it the longest common substring between encoded strings. More
precisely, let x (respectively %) be an alphabet, Q = \™ (respectively Q = YN) the space
of all sequences with symbols in x (respectively x) and let f: Q — Q) be a code. Given

two sequences z,y € (), we define the n-length of the longest common substring for the
encoded pair (f(z), f(y)) by

M/ (z,y) = max {k: L f(x)itRt = f(y)frk_1 for some 0 <i4,j <n — k:} :

where f (x)?rk_l and f (y);}k_1 denotes the substrings (of the encoded sequences f(x)
and f(y)) of length k beginning in f(x); and f(x); respectively.

Our theorem generalizes the results from the stochastic scrabble given by [9], from a
Markov chain to a general a-mixing process with exponential decay. Another application
deals with the zero-inflated contamination model defined in [22, 30]. In dynamical system,
the correspondent of the longest common substring for the encoded pair is the shortest

distance between observed orbits. If we consider a dynamical system (M, A, g, 1) and an



observation f : M — Y, we investigate the asymptotic behavior of

ml(z,y) = min (d(f(g'z), f(g'y))),

1,7=0,...,n—1

proving that its limiting behavior is related to the correlation dimension of the pushfoward
measure f,u. An application of this result is given for the shortest distance between

random orbits.

Structure of the work

In the first part of this work we are interested in studying the asymptotic behavior of
return times in dynamical systems. In view of this, in Chapter 1 we recall basic concepts in
ergodic theory and thermodynamic formalism. We also present a construction of Markov
partitions for repellers and a few useful inequalities from probability theory. Some classic
results of multifractal analysis theory will also appear. We try to make the reader familiar
with some concepts in large deviation theory and also present fundamental results such as
Gartner-Ellis Theorem. These results will be used in Chapter 2 to obtain large deviations
estimates for return times. Section 2.1 has essential definitions of rate functions in order
to give a precise statement of Theorem 2.1.3 whose proof is presented in the sequel. An
application for conformal repellers is given in Section 2.2: the rate functions are related
with the HP-spectrum for dimensions of multifractal analysis.

In Chapter 3, for general dynamical systems, we study the shortest distance between
two observed orbits (see Definition 3.1.1), that is, the orbits are encoded by a measurable
function. For this case, we states a strong law of large numbers in which the limiting rate
is given by the correlation dimension of the pushforward measure f.u (see Section 3.1).
We also investigate this distance in the case of random dynamical systems, in Section
3.2, proving a similar result. In Section 3.3, we study the longest matching substring
problem for encoded orbits. Under suitable mixing conditions on the source we prove a
strong convergence for this quantity, and concludes that it grows logarithmically fast in
n. This is in fact a law of large numbers which has Rényi’s entropy as limiting-rate in
the symbolic case. The rest of the chapter is dedicate to present particular examples: the
zero-inflated contamination and the matching string with scores models.

Finally, in Chapter 4, we discuss about future perspectives for further scientific in-

vestigations of this subject on the context of Dynamical System and Stochastic Process.



Chapter 1
Preliminary results

In this chapter we recall some notions from ergodic theory, Markov partitions, repeller
and large deviation. We also present some useful results that will be used in the proofs
of our theorems.

We recall that a triple (M, A, p) is said to be a measure space if M is a space, A is

a o-algebra on M and p is a measure on (M, A).

1.1 Ergodic theory

Definition 1.1.1. Let (M, A, 1) be a measure space and let g : M — M be a measurable

map. We say that p is g-invariant or that g preserves u if

ug~ (A) = pu(A)
for every A € A.

Proposition 1.1.2. Let g : M — M be a measurable map and p a measure on (M, A).
Then g preserves p if, and only if,

[odu=[oogn

For a proof we refer the reader to [16, Proposition 2.1] or [58, Proposition 1.1.1].

for any p-integrable ¢ : M — R.

We remark that if M is a metric space, a version of this result is true for any conti-
nuous and limited function ¢ : M — R.

Let us give some examples: let M = [0, 1] and consider p the Lebesgue measure. Let
g: M — M be the map x — 2x mod 1, called doubling map, and g : M — M defined

by g(x) = = + a, o € M, the rotation of angle a on the circle. All these maps preserves

L4



Definition 1.1.3. A system (M, A, g, 1) is called a measure preserving system if M is a
space, A is a o-algebra on M, g : M — M is a measurable map and p is a g-invariant

probability measure.

Theorem 1.1.4 (Poincaré Recurrence Theorem). Let (M, A, g, ) be a measure preser-
ving system. Let A C M be a measurable set with u(A) > 0. Then, for p-almost every
x € A, for infinitely many n’s, g"(x) € A.

Proof. Let A be a fixed set with p(A) > 0. Let Ay be the set of points of A which never
come back to A. Namely,

Ao ={zr€A:¢"(x) ¢ A, Vn > 1}.

We first show that A, has zero measure. We observe that g7 (A ) N g ™ (Ax) = 0, for
every m # n. Indeed, suppose that there exist m > n > 1 such that 2 € ¢g7"(A) N
g ™(Ay), thus y = ¢"(z) € Ay and g™ "(y) = g™(x) € A C A. This means that
y come back to A, contradicting the definition of A.. So, we proved that these two

preimages of g are disjoint. Since g is measure preserving, we have

1 (U 9‘"(Aoo)) =) ulgTM(AR) =Y i(Ax).

Since p is finite, we should have

1 (U g”(Aoo)> < 00, then Z,u(Aoo) < 0.

n=1

This last expression is an infinite sum of identic terms, thus, ;(A«) = 0 and the claim is
proved.

Now, let F' be the set of © € A that come back to A only finitely many times, formally
F={reA:3keNg"(z) ¢ A, Yn>k}.

So, we have that every point x € F has some iterated ¢*(z) in A,. That is,
Fc o™ (Ax).
k=0

Since pu(As) = 0 and p is invariant, we get:

p(F) <p (U g’“(Aoo)> <Y g MAR) =D p(As) = 0.

Therefore, p(F) = 0. This proves the theorem. O
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Definition 1.1.5. Let g : M — M be a measurable map and p a g-invariant probability
measure. We say that u is ergodic if for all measurable invariant set A, (i.e., g7*A = A),
either (A) =0 or u(A) = 1.

The doubling map and the rotation of angle & € R\ Q on the circle are ergodic with

respect to the Lebesgue measure pu.

Definition 1.1.6. Let g : M — M be a measurable map and p a finite g-invariant
measure on M. Consider A C M a measurable set with u(A) > 0 and a point x € A.
The first return time of the orbit of x to the set A is defined by

Ta(x) =min{n >1: ¢"x € A}.

Poincaré’s recurrence theorem states that under a measure preserving system, almost
every point of a measurable set A returns infinitely many times to A. However, it does
not give us an estimate of the expected time for an orbit to returns to A. The following

result shows that, for an ergodic measure, the mean of the return time to A is 1/u(A).

Theorem 1.1.7 (Kac’s Lemma [35]). Let (M, A, g,u) be a measure preserving system
such that p is ergodic. Let A C M be a measurable set with u(A) > 0. Then,

/TAd,u:L
A
1

Equivalently, ﬁ fA Ta dp = L i.e. the mean of the return time is inversely propor-

tional to the measure of A.

Proof. Consider the set
Al ={xe X :g"(x) ¢ A, VYn > 0}.
For each n > 1 we define
Ap={zcA: gx)¢ A, ....¢" (x) ¢ A, but g"(x) € A} and

A ={reM: x¢ Aglx)g A, ... .¢g" '(z)¢ A but g"(x) € A}.

That is, A, is the set of points of A that return to A for the first time exactly at moment
n7

A, ={z € A:1a(x) =n}

and A’ is the set of points that are not in A which enter into A for the first time exactly
at time n. These sets are measurable and then 7,4 is measurable. Moreover, for each n > 0

these sets are disjoint and their union gives the space M. Hence,

[e.e]

L= u(M) = S (0(A) + 1(AL) + p(As) + plAL). (L.1)

n=1
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Since ¢ is ergodic, almost every point of M enters in A and then p(A% ) = 0. Moreover,
by the proof of Theorem 1.1.4, p(As) = 0. It is a straightforward calculation to verify
that g~'(A;) = A%, U A,y for all n > 1. Then by invariance on g,

(g7 (AD)) = w(AL) = (A%, ) + pu(Apys) for all n > 1.

By applying this successively, we get

m

w(Ar) = p(Ar) + Z w(A;) for all m > n.
1=n+1
The expression (1.1) implies that p(A%) — 0 when m — oo. Therefore, taking the limit

when m — oo in last equality we obtain

o0

A = 3 4. (1.2)

i=n+1

By replacing (1.2) in (1.1) it follows that

et =3 (0 ) = St = [ o

and this complete the proof. ]

In the first part of this work we will focus on studying the behavior of return time of
a point to the ball. Thus, to use results that relate return times and dimension we need

some conditions of asymptotic independence that are stronger than ergodicity.

Definition 1.1.8. Let (M, A, g, 1) be a measure preserving system. The correlation func-
tion for measurable observables 1, ¢ : M — R is defined by

o) = [wogo du [vau [ du

Definition 1.1.9. Let (M, A, g, 1) be a measure preserving system. The system is mizing
if we have for all A,B € A,

lim (9" (A) N B) — p(A)pu(B) = 0.

n—oo

Roughly speaking: if ¢ is mixing, the events ¢g~"(A) and B become independent as
n diverge.
Notice that by changing the observables by characteristic functions in the formula of

correlation function we get that the mixing definition is equivalent to lim C,,(xa, x5) = 0,
n—oo
for all A,B € A.
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Remark 1.1.10. Mizing implies ergodicity. In fact, suppose that there exists an invariant
set A C M, with 0 < u(A) < 1. Taking B = A° we obtain that g~"(A) N B = for all
n. Then, u(g~"(A) N B) = 0 for all n. Since p(A)u(B) > 0 by definition we get a
contradiction with

lim pu(g™"(4) N B) — u(A)u(B) = 0.

n—oo

Ergodicity is a weaker property. We observe that the doubling map is mixing but the

rotation of angle o € R\ @ is not mixing, and both are ergodic.

Definition 1.1.11. Let ® : N — R be a function such that ®(n) — 0. Consider V a

n—oo

normed vector space. The system (M, A, g, 1) has decay of correlations with speed ® if
forall i, €V,

'/(w og"o du— [vdu [0 du’ < ollvllllv (),

where || - ||v is a norm on V.

We can also define a decay of correlations where & — 0 with some rate and V' is a
space of functions. Let H*(M,R) be the space of real Hélder functions on M, for some
a > 0. In Chapter 3 we will consider the rate of decay of correlations for observables
v, ¢ € H*(M,R). If ® has a form ®(n) = o™ with 0 < a < 1, we say that the system has
an exponential decay of correlations.

We present another notion of rapid mixing.

Definition 1.1.12. We say that (M, A, g, 1) has super-polynomial decay of correlations
if for all 1, ¢ € H*(M,R), the speed ® satisfies,

lim ®(n)n? =0

n—o0

for all ¢ > 0.

There exists a wide class of systems that satisfy the condition of super-polynomial
decay of correlations. For more details and examples about this notion we refer the reader
to Section 1.2 in [49].

We introduce now briefly some notions of dimension theory.

Let (M, d) be a metric space. We define the diameter of the set U C M by

diam U = sup {d(x,y) : z,y € U}.
Let U denote the collection of subsets of M. The diameter of I is defined by

diam Y = sup {diam U : U € U}.
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Given Z C M and s € R, the s-dimensional Hausdorff measure of Z is defined by

m(Z,s) =liminf Y (diam U)*,
e—0 U Ueut

where the infimum is taken over all finite or countable covers U of the set Z with diam U <
€.

Thus, we can present the notion of Hausdorff dimension.
Definition 1.1.13. The Hausdorff dimension of a set Z C M s defined by
dimy Z = inf{s: m(Z,s) = 0} = sup{s: m(Z,s) = oco}.
Definition 1.1.14. The Hausdorff dimension of a measure p is defined by
dimpy p = inf{dimy Z : (M \ Z) = 0}.
In what follows we present another notion of dimension.

Definition 1.1.15. The lower and upper pointwise dimensions of the measure p at the
point x € M are defined by

. logu(B(z,7)) =\ =—logu(B(x,r))
M(ZL') = 11_1’)I(1)T and du(l') = ,E,%T

d

where B(x,1) is the ball of radius r centered at x.

If there exists a constant d,, such that
d,(r) = d,(z) =d, for p-almost every x € M,

we call 1 exact dimensional. And d,, is called pointwise dimensions of the measure .
For an exact dimensional measure, the Hausdorff dimension and the local dimension

coincide. Young established the following criterion, which we start without proof:
Proposition 1.1.16 ([61]). If p is exact dimensional, then
d, = dimpy p.

We now present results that relate quantitative recurrence and dimension. Firstly let
us state a key concept.

The first return time of a point x € M to the ball B(z,r) is given by
7(x) =min{n > 1:d(¢"z,x) < r}.

Definition 1.1.17. The lower and upper recurrence rates of x are defined by

— —1
and R(z) = limm.

. log7,(2)
R(x) = lim———= L

r—0 —logr
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When R(z) = R(x) we denote the common value by R(z).
Barreira and Saussol showed in [17] a result that relates these quantities with lower

and upper pointwise dimensions.

Theorem 1.1.18 ([17]). Let (M, A, g, 1) be a measure preserving system. Set M C R¢
for some d € N. Then,
R(z) < d(x) and R(z) <d(z)

for p-almost every x € M.

The authors also showed that these inequalities becomes equalities when the measure
i has a condition called long return time.
Saussol in [51] extends the previous theorem for a class of systems such that the map

g is Lipschitz, with positive entropy and super-polynomial decay of correlation. Namely,

Theorem 1.1.19 ([51]). Let (M, g, 1) be a measure preserving system. If the entropy
h,(g) >0, g is Lipschitz and the decay of correlation is super-polynomial then

for p-almost every x € M.

One notice that in the case that u is exact dimensional this theorem implies that

log 7..(2) -~ log (r‘d“(z)) :

The remainder of this section is dedicate to present the definitions of entropy for a
continuous map of a compact metric space, and pressure.

Let (M, A, g, 1) be a measure preserving system. Let P be a measurable partition of
M, that is, a collection of pairwise disjoint measurable sets whose union is M. Denote by
P(z) the partition element that contains a point x.

We define the entropy of P as

H,(P) == u(P)log u(P).

PeP

Given a partition P of X with finite entropy, we denote
n—1

Pt = \/ g " (P) for any n > 1.
i=0

The element P"(z) that contains x is given by

P'(z) =P(@)Nng (Pg(x)) N---Ng " (P(g" ().
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We define the entropy of g with respect to p and the partition P as
1 1
h,(g,P) = lim EH“(Pn) = inf EH”(Pn)'
Finally the entropy of the system (g, u1) is defined by

hu(g) = SUp h.(g,P),

where the supremum is taken over all partitions with finite entropy.
The notion of pressure was established by Ruelle and extended by Walters. The

variational principle says that for all continuous function ¢,

P(p) = sup <h#(9) + /90 du) ,

"

where the supremum is taken over all g-invariant probability measures p in M. A g-

invariant probability measure p is called an equilibrium measure for ¢ if

P(¢) = hy(g) + / o dp.

Now we give a notion of cohomology in dynamical systems.
Let S : M — M be a continuous map of a topological space M. Two continuous
functions ¢y : M — R and ¢y : M — R are said to be cohomologous to a constant if

there exists a continuous function ¢ : M — R and a constant ¢ € R such that

1 —p2=¢—¢poS+ec.

1.2 Markov partition and repeller

Let g : M — M be a C'™ map of a smooth manifold and consider a g-invariant
compact set J C M. The map g is said to be expanding on J if there exist constants
c¢ > 0 and p > 1 such that

ldeg™v]| = cp™ |0

for every n € N, z € J and v € T, M. In addition, we call J a repeller if there exists an

open neighborhood V' of J such that

J={()g"V.

n>0

The map g is said to be conformal on J if
d.g = a(x)Isom,,

where [som, denotes an isometry of the tangent space T, M.
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Definition 1.2.1. We say that (J, g) is expansive when there exists § > 0 such that for
any x,y € J,

if for alln > 0 we have d(g"(x),¢"(y)) < 0 then x =y.

We call 6 an expansiveness constant of g.
Remark 1.2.2. [t is possible to show that all repellers are expansive.

Definition 1.2.3. Given a > 0, a sequence (x,,)n>0 s called a-pseudo-orbit of (J,g) if
d(g(xpn), Tps1) < a, for alln > 0.

We call a sequence xg, T1, ..., Tym_1, Tym = To an a-periodic orbit if d(g(x,), T,41) < a.
A particular case of an a-periodic orbit is provided by zg, g(zo),- .., 9™ (zo) such that
d(g™(zo), z0) <

We now present the shadowing property. The proof due to Saussol [54].

Proposition 1.2.4 (Shadowing lemma). If (J, g) is a repeller then for every B > 0 there
exists a > 0 such that given an a-pseudo-orbit (x,)n>o in J there exists z € J such that
its orbit B-shadows (xy,)n>0, that is, d(g™(z),x,) < B for alln > 0. If § is less than half
of an expansive constant of g then the point z is unique. Moreover, if the pseudo-orbit is

periodic, then the orbit of z is periodic.

Proof. Since g is C' and expanding on a neighborhood V of J, it is a local diffeomorphism.
By compacity there exists € > 0 such that for all x € J, g : B(z,2¢) — g(B(x,2¢)) is
an expanding diffeomorphism. In particular g(B(x,2¢)) D B(g(x),2¢) and for all z € J,
the branch of the inverse g, : B(g(z),2¢) — B(x,2¢) is well defined. Without loss of
generality we will assume that B(z,2¢) C J for all x € J and that § < e. Let a € (0,¢)
be such that g = l%p.

If the pseudo-orbit is infinite then for all p > 0 we can make the following construction
that gives a 2” which is S-shadowed by xo,...,x,. Let us put 2z, = z,. We will define
by induction (z;);<,. Put r; = d(z;, ;). We have r, = 0 < e. Suppose we have defined

Zp, ..., %41 and that r;;; < e. Then

d(g(x;), zj+1) < d(g(x;), Tj41) + d(@jr1, 2j41) < @+ 71540 < 26
Therefore the preimage z; := Ya, '2j41 is well defined. Moreover,
rj = d(z, ;) < pd(g(25), 9(x;)) < pla+ 7j41).
By an immediate recurrence we get

rp<(ptpt et )a= —— <e
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for all j < p and hence the sequence (z;); is well defined. The point

P .— — g1 -14... -1
£T =20 = g:vo © g:rl ° ° gajp,1 (xp)

verifies the conditions presented.
Let z be an accumulation point of 2P, which exists because the ball B(z,€) is com-

pact. Let n < 0. For all p < n we have

d(g"(2),zn) < d(g"(2), 9" (")) + d(g"(2"), 2n) < B+ d(g"(2), g"(2")).

By continuity of g™ one obtain, taking the limit p — oo, that d(¢"(2),z,) < 8. So the
orbit of z is shadowed by the infinite orbit zg, x1, ... and since 5 < ¢ we have ¢"(z) € V
for all n, i.e. z € J. If the pseudo-orbit is finite, it is enough to apply the previous part
to the infinite pseudo-orbit. The remaining statements are simple consequences. If 2’ is

another point satisfying the conclusion of the proposition then
d(g"(2),g"(2") < d(g"(2),2,) + d(xp, g"(2')) < 28 for all n > 0.

By expansiveness, it follows that z = 2/. Finally, if the pseudo-orbit is periodic, with

period k£ > 1, we also have
d(g™(g"(2)), 2,) < d(g"™(2), Znsr) < B for all n > 0.

By uniqueness, we obtain that g*(z) = 2. O

It is important to note that the proof of Proposition 1.2.4 shows us that we can take

a = ¢1 3, where ¢; > 0 depends only of p.

Theorem 1.2.5 (Closing lemma). If (J,g) is a repeller then for all r,k,x such that
d(gF(x),x) < r there exists a point z with ¢*(z) = z and d(x,z) < cyr,¢; > 0.

Proof. The proof follows immediately from Proposition 1.2.4. O]

Assume that g is topologically mixing in .J, that is, for all A, B open sets of M there
exists ng € IN such that for all n > ny, ANg™"(B) # 0.

Definition 1.2.6. Let J be a repeller of the map g. A collection of closed sets J =
{J1,..., ik} is called a Markov partition of J (with respect to g) if:

1. J=UJ; and J; = int J; for each i;
2. int J; Nint J; = () whenever i # j;
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Example 1.2.7. The collection J = {[O, %} , [%, 1}} s a natural Markov partition of the
doubling map.

Fix a Markov partition J and consider the k x k matrix A = (a;;) with entries

{ 1 if g(J;) Nint J; # 0,
CLZ']' =

0 otherwise.

Let A= {1,...,k} and ¥} C AN the set of sequences defined by
¥ = {w = (Wi)i>0 © Quwyewy,, = 1 for every i € ]N} .

Consider o : X} — X7 the shift map defined by o(w); = w; 11 for every i € N. This define
the symbolic coding y : X} — J such that

X(w) = ﬂ g_i‘]wz'
1=0

and
X000 =gox.

The map x is Holder continuous and injective except on the set S = J,—, 97 "0J, where
0T =, 0J;.

For w € ¥} we denote by Cy(w) = {w' € X} :w]=w; forall 0 <i<n—1} the
n-cylinder containing w. We set J,(z) = x(Cy(w)) when z = y(w) ¢ S.

We can now define tl}ﬁ 1class of Gibbs measure.

Recall that S,,(¢) = k;) ¢ (9*(x)).

Definition 1.2.8. Let ¢ be a Hélder function and u be a g-invariant probability measure.
We say that p is a Gibbs measure for the potential ¢ if there exists a constant P(p) € R

such that for some Ky, > 1, for any x and n, the following holds:

IEAC)
exp(Snp(z) —nP(p)) = 7

Let ¢ be a Holder continuous function on J and p1 = pe be the equilibrium measure

1
— <
Ky

for (g,¢). Let v = v, be the Gibbs measure of the Holder potential ¢ = o x on X7.
Note that p = x.v. Finally, consider the function ¢ such that logy = ¢ — P(p). ¥ is a
Holder continuous function on M such that P(logt) = 0 and v is a unique equilibrium
measure for log .

We collect some facts about a notion of dimension denominated HP-spectrum for
dimensions, that was introduced by Hentschel and Procaccia in [32].

The following result was proved by Pesin and Weiss in [47] (see Theorem 1.(2) and

Lemma 5).
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Proposition 1.2.9 ([47]). For all ¢ € R, the following limit exists
iy L8 Sy (B, 1)) dp(z)

r—0 —logr

In addition, the function T(q) is real analytic for all ¢ € R, T'(0) = dimg J, T(1) = 0,
T'(q) <0andT"(q) > 0. AndT"(q) > 0 if and only if the functionlogy—T'(q) log |a(x(w))]

is not cohomologous to a constant, if and only if i is not a measure of mazximal dimension.

T(q) = (1.3)

Remark 1.2.10. Given q¢ € (—o0,0), define ¢, on ¥} the one parameter family of
functions by

¢q(w) = =T(g)log |a(x(w))| + qlog P (w).
The function T(q) is chosen such that P(¢,) = 0. Moreover, for any q > 1,

19D _ (). (14)

l—gq
Note that u is exact dimensional, see for instance [46, Theorem 9.
Theorem 1.2.11 (Dimension of repellers of conformal maps). If (J,g) is a conformal
repeller then
dimygJ = s,

where s is the unique real number such that P(s@) = 0, for the function ¢ : J — R defined
by ¢(x) = —log||dag]|-

Proof. See e.g. Section 4.1 in [15]. O

Remark 1.2.12. Ruelle in [50] showed that a conformal repeller (J,g) such that g is
topologically mixing satisfies dimy J = dimy p. In addition, the equilibrium measure p of
sy s equivalent to the s-dimensional Hausdorff measure m. The equilibrium measure [

is called the measure of maximal dimension.

We will now introduce another notion of dimension on dynamical system that is
related to invariant ergodic measures.

For ¢ = 2, the formula (1.4) coincides with the correlation dimension of the measure
(e (see Section 17 in [44]). For simplicity of notation, we write C), instead of HP,(2), that

is,

o — g L 1Bl dita) .
r—0 log r
If p is ergodic, Pesin and Tempelman [45] showed that for all ¢ > 1 this limit exists.
Note that the limit (1.5) depends on the metric on M and on the invariant measure
but does not depend on the map.

The lower and upper correlation dimension of p are denoted, respectively as

log fy, p(Blw.) duta) - log f, w(Ble.r) dulx)

r—0 log r

C =1
= % log r
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1.3 Probability results

In what follows we present inequalities in probability theory that will provide boun-
ding quantities throughout this work.
Let (€2, F,P) be a probability space, where 2 is the sample space, F is the event

space and P : F — [0,1] is a function that assigns probabilities to events.

Definition 1.3.1. A real valued function X defined on §2 is said to be a random variable
if for every Borel set B C R we have X '(B) = {w: X(w) € B} € F.

Theorem 1.3.2 (Markov’s inequality). Let X be a non-negative random variable and
suppose that [ X]| exists. Therefore, for any t > 0,
E|X
P(X >t) < %
Theorem 1.3.3 (Chebyshev’s inequality). Let u = E[X] and 0® = Var[X]. Then,
o? 1

PX —pl 2t) < -5 and P(|Z] 2 k) < 5

where Z = (X — p)/o.

The next theorem is a classical result that establishes if certain events occur infinitely

often or only finitely often.

Theorem 1.3.4 (Borel-Cantelli’s lemma). Let (2, F,P) be a probability space and con-
sider a sequence A, € F, n > 1.

(i) ]ff:]P(An) < 00, then
n=1
P({x:x € A, forinfinitely many n}) = 0.
(ii) ]fi P(A,) = 0o and the A, ’s are independent, then
n=1
P({x:x € A, forinfinitely many n}) = 1.

Proof. A proof can be found in [34]. O

1.4 The large deviation principle

In this section we introduce a large deviation lower and upper bound that characte-
rizes the limiting behavior of a family of probability measures in terms of the logarithmic
moment generating function. This approach is due to Dembo and Zeitouni [26] who

concerns this to the study of rare events and its relation with large deviation theory.
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1.4.1 Basic definitions and properties

Throughout this section M denotes a topological space and B the Borel o-algebra on
M.

Definition 1.4.1. The function I : M — [0,00) is a rate function if it is lower continuous
(i.e., for all a € [0,00) the level set {x : I(x) < a} is a closed subset of M ). If the level

sets are compacts subsets of M, I is called a good rate function.

Definition 1.4.2. Let (p,)n>0 be a family of probability measures on (M,B). W say that
(tn)n>0 satisfies the large deviation principle (LDP) with a rate function I if:

1. for any closed set F C M,

— 1
lim — log u,,(F') < — inf I(z);

n—o0 1M zeF

2. for any open set G C M,

1
lim —1 > —inf I(z).
lim - log 1 (G) = — inf I (x)
Consider a sequence (X;);>o of d-dimensional random vectors independent and iden-
tically distributed (i.i.d.) according to the probability law u € M;(R?) and let the

n
1
sequence of empirical means S,, := — E X;.
n
J=1

Denote by i, the law of S,, and T = E[X;] and assume that T exists and is finite.
From the classical theory of probability we have two results: the law of large numbers
and the central limit theorem. The law of large numbers states that S,, converges to =

almost surely when n goes to infinity. If in addition 0? = Var[X)] is finite, the central

\/H(Sn — f)
o

deviations techniques it is possible to estimate the rate at which pu,, (S, > a) converges to

limit theorem states that converges to the normal distribution. With large

zero for a > T.

Definition 1.4.3. The logarithmic moment generating function associated with the law

[ 1s defined as

A(N) = log Mx(\) = log E [eM] (1.6)

d

where (A, x) = Z Az, is the usual scalar product in R®.
j=1

Definition 1.4.4. The Fenchel-Legendre transform of A is defined by

A*(z) := sup {{(\,z) — A(N)}.

AeR4
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Let us define D) = {\ : A(\) < oo} and Dy« = {2 : A*(z) < oo} the domain of A
and A*, respectively.

We consider the first result for random variables taking values in R.

Theorem 1.4.5 (Cramér). The sequence of measures (fin)n>0 satisfies the LDP with the

convez rate function A*(-), that is:

(a) For any closed set F' C R,

— 1
lim — log 1, (F) < — inf A*(z).

n—oo M zeF

(b) For any open set G C R,

lim ! log 11, (G) > — inf A*(z).

n—oo 1l zel@

Note that this theorem is a LDP with convex rate function A*(-). Moreover it is a
result limited to the i.i.d. case.

The following lemma presents some properties of A*(-) and A(-).
Lemma 1.4.6. (a) A is a convex function and A* is a convex rate function.

(b) A(:) is differentiable on DY with

and

’

An)=y=AN(y) =ny—An). (1.8)

Proof. (a) Given A\, Ay € R and @ € [0, 1], applying Holder’s inequality for the conjugate
exponents 7 and T—g Ve get,
AN + (1= 0))y) = log [l
— logE [(6)\1){1)9 (e,\le)(l%)]
< log { B[] [E [e”XlH(I*‘”}
= log [E [¢7¥1]]” + log [E [e%1]]" 77
= O0A(N) + (1 —0)A(Ne),

which proves convexity.
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The convexity of A* follows by definition,
ON* (z1) + (1 — O)A"(z2) = Osup{A\x; — AN} + (1 —0)sup{Azs — (1 — 0)A(N))}
AER AER
= sup{fAz; — OA(N)} + sup{(1 — O)\zy — A(N))}
AER AER
> sup{(0z; + (1 — O)x) A + A(N)}

AR
= A0z + (1 —0)xs).

By definition A(0) = 0, so A*(x) = supy<o[Az—A(A)] > 02—A(0) = 0 is nonnegative.

Now, fix a sequence x,, — x. Then, for every A € R,

lim A*(z,,) > lim [Az,, — AN)] = Az — A(N).

Tp—T Tp—T

Thus,
lim A*(2,) > supAa, — A(N)] = A*(2).

Ty —T AeR
And this proves that A* is lower semicontinuous.

(b) The identity (1.7) follows using the dominated convergence theorem, since
f(x) = (el —e™) /e converges pointwise to ze™ as e — 0, and
|fe(z)| < e (e2l171) /6 := h(z) for every e € (—4,6), while E[|h(X;)|] < oo for
9 > 0 small enough. By convexity of A()),

A (M)A =n)+ A(n) < AN
implies
y(A—n) +A(n) < AN).

Therefore (1.8) is established.
[l

Lemma 1.4.7. Let {ay(n),...,an(n)} be a collection of N sequences. Then, for every
az(n) 2 O;

lim llog (Z ai(n)> = max lim llog a;(n). (1.9)

n—oon, i=1,..., Nn—oon

Proof. We observe that

Since the max is being taken over finitely many terms, %log N — 0 as n — oo and

— 1 — 1
lim — log ('max ai(n)> = max_lim —loga;(n).

n—oo M i=1,...,N i=1,...,N n—oon

This concludes the proof.
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1.4.2 Gartner-Ellis theorem

Consider a family of random vectors (Z,), in R? which will play a role as the

empirical mean S, in the i.i.d. case. Consider the logarithmic moment generating function
Ap(A) = logE [e*"] . (1.10)

The family (u,)n>0 may satisfy the large deviation property if there exists a limit of

properly scaled logarithmic moment generating functions.

Assumption 1.4.8. For each A\ € R, the logarithmic moment generating function defined

as the limit .
A(A) := lim —A,(nA)

n—oo M,
exists in R. Furthermore, the origin belongs to the interior of the set Dy = {\ € R? :

A(N) < oo}, A is C? and a strictly convex function.
In particular, if p, is the law of S,,, then for all n € Z,,
1
—Ay(nA) = A(N) == log E [eM]
n

and the assumption above holds when 0 € Dg.
More general, one can prove that A(-) is strictly convex and then A*(-) is also strictly
convex.

In fact, computing the second derivative we get

o= () e

Note that A(0) = var(X;). Assume that var(X;) > 0.

Lemma 1.4.9. A* is strictly convex function and C' on its support.

Proof. For simplicity of the proof we will consider d = 1.
By (1.8) we have that A*(A’'(n)) = nA'(n) — A(n). Thus

(A" (N'() = (M) (N ()N () = N'(n) +nA"(n) — A"(n) = A"(n).

Then,
(A7) (A () = .
Now,
(A" (N () = (A")' (A ()" (n) = 1.
Therefore,

Y0 =

since A is strictly convex. Thus, A*(y) is also strictly convex. m

> 0,
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Definition 1.4.10. Suppose that all compact subsets of M belong to B. A family of
probability measures (p,) on M is exponentially tight if for every a < oo, there exists a

compact set K, C M such that

— 1
lim — log p,, (K;) < —av.

n—o0 1,

Definition 1.4.11. We say that y € R? is an exposed points of A* if for some A € RY
and for all x # vy,

A y) = A(y) > (A z) — A(2). (1.11)
The vector X is called an exposing hyperplane.
Definition 1.4.12. A convex function A : R — (—o0, 00| is essentially smooth if
1. D{ s non empty;
2. A(-) is differentiable on DY;

3. A(-) is steep, i.e., if (\,) is a sequence on DY converging to a boundary point of DY
then lim,,_,o |VA(A,)| = oo.

We also need two auxiliary lemmas that presents the elementary properties of A and
A*.

Lemma 1.4.13. Let Assumption 1.4.8 hold. Then,

(a) A(N) is a convex function, A(\) > —oo everywhere, and N*(z) is a good conver rate

function.

(b) Suppose that y = VA(n) for some n € D. Then X (y) = (n,y) — A(n).

Moreover, y € F, with n being the exposing hyperplane fory.

For every non empty convex set C, the relative interior of C, denoted by ri C'| is
defined as the set

riC ={yeC:2e€C=y—e¢clx—y) e C for some € > 0}.

Lemma 1.4.14 (Rockafellar). If A : R? — (—o0,00] is an essentially smooth, lower

semicontinuous, convex function, then ri Dy« C F.
Theorem 1.4.15 (Gartner-Ellis). Suppose that the Assumption 1.4.8 holds. Then,

(a) For any closed set F,

Tim — 0, (F) < — inf A*(z). (1.12)

n—oo M zeF
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(b) For any open set G,

lim lun(G) > — inf A*(x) (1.13)

n—soom xeGNF

where F is the set of exposing points of A* whose exposing hyperplane belongs to
Dg.

(c) If A is an essentially smooth, lower semicontinuous function, then the LDP holds

with the good rate function A*(-).

Proof. (a) The upper bound for compact sets is established by the same argument from
the proof of the theorem of Cramér-R¢ (see Section 2.2 in [26] for details). The
extension to all closed sets follows by proving that the sequence of measures (u,)
is exponentially tight. For that, let p; denote the j-th unique vector in R? for
j=1,...,d. Since 0 € DY, there exist §; > 0, n; > 0 such that A(f;u;) < co and
A(—njuj) < oo for j =1,...,d. Then, by Chebycheff’s inequality,

1l (=00, —p]) < e P tAn(=mmus) ang

M"ZL([p7 OO)) é e_nejp+An(n9juj)’

j = 1,...,d, where u/ are the laws of the coordinates of the random vector Z,,.
Thus, for j =1,...,d,

— 1
lim lim — log p((—o00, —p|) = —o0,

p—00 N—00 N,

— 1
lim lim —log pu([p, 00)) = —oc.
n

pP—>00 N—+00

Consequently, combining these limits with Lemmal.4.7, we get

lim T — log u(([—p, pI1)%) = —o0

p—00 Nn—00 N,

i.e., (u,) is an exponentially tight sequence of probability measures.

(b) To establish the lower bound for any open set, it is sufficient to prove that for every
y e F,

lim lim log 11,(B(y,0)) = —A"(y). (1.14)

000 ny00

Fix y € F and let n € DY an exposing hyperplane for y. Then for n large enough,

A, (nn) < oo and the probability measures fi,, are well defined via,

in () _ gntn)=duton)
d,
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Thus,

log (B ) = () = (1,2) + - logFi(Bly,)

= Aalmm) — (o) + 1,y — )+ login(B(y,0))

%An(nn) —(n,y) — In|d + %108;%771(3(?/75))-

v

Therefore,

1 1
lim lim ~log y1n(B(y,0)) = A(n) = (n,y) + lim lim ~log f1,(B(y, 9)) (1.15)

0—=0 500 —Un—ool

> —A*(y) + lim lim ~ log fin (B(y, 6)).

-0 00

Since the weak law of large numbers can not be applied, the strategy now is to use
the upper bound proved in (a). At first we verify that s, satisfies Assumption 1.4.8
with the limiting logarithmic moment generating function K() =A(-+n) —An).
In fact, A(0) = A(n7) — A(n) = 0 and since 5 € DS it follows that A(\) < oo for every
|A| sufficiently small. Let A, (-) denote the logarithmic moment generating function
corresponding to the law fi,,. Then for every A € R,

1~ 1 ~

) = g [ e (2]

n R

n

1

= J— log |:/ €”<)‘+7772’>—An(m7)dﬂn(z):|
n R4

1 1
= ——A,(nm) + ~log { / e<”(“")’z>dun('2)}
n n Rd
1 1 ~
= —Au(n(A+n)) — —An(nn) = A(N)
n n
because A, (nn) < oo for n large enough. Let us define

A (z) = Supd{%w) — AN} = A*(z) — (n,2) + An). (1.16)
AER
Since Assumption 1.4.8 also holds for ji,, it follows, applying Lemma 1.4.13 to K,
that A* is a good rate function. Moreover, by part (a), a large deviations upper
bound of the form of (2.8) holds for the sequence of measures fi,, with the good rate
function A*. In particular, for the closed set B(y, §)° it holds
1 ~ ~
lim —log i, (B(y,0)°) < — inf A*(z) = —A*(x)
n

n—00 - z€B(yd)°

for some xq # y. Since y is an exposed point of \* with n being the exposing

hyperplane, we get that when A*(y) > [(n,y) — A(n)] e xo # y, follows

A*(20) > [A*(z0) — (1, m0)] — [A*(y) — (m, )] > 0.
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Hence, for every 6 > 0,
I
lim —log 41, (B(y, 0)) < 0.

n—oon
This inequality implies that g, (B(y,0)¢) — 0 and then , 11,,(B(y,d)) — 1 for every
0 > 0. In particular,
1 ~
lim lim —log fi,(B(y,9)) = 0,

020 pn—s00M

and (1.14) follows by (1.15).

(c) In view of parts (a) and (b) and Lemma 1.4.14, it is sufficient to show that for any
open set G,
inf  A"(z) < inf A*(x).

cE€GNIiD p zeG
If GN Dy~ = 0, there is nothing to prove. Then, assume that Dy~ # (). This implies
that there exists some z € ri Dj«. Fix y € G N Dy~. Hence, for all a > 0 sufficiently
small,

az+ (1 —a)y € GNriDy-.

Therefore,
inf  A"(x) < 1i<n0 AN (az+ (1 —a)y) < A (y).

x€GNIiD p*

The arbitrariness of y completes the proof.

]

Remark 1.4.16. In R, a point y is exposed if the curve A*(y) lies strictly above the line of
slope A through the point (z, A*(x)). It was proved that A*(-) is convex and differentiable,
then we can make this the tangent hyperplane (see lecture notes [56, Chapter 33]). So,
F is the interval where the tangent is well defined. And then the Theorem 2.2.5 can be

reduced to a simpler version since in R we have GNF = G.



Chapter 2

Large deviation estimates for return

times

In this chapter we focus on large deviation results for a dynamical systems with an
exact dimensional measure. In the first section we present a generalization of [33] for
return time of the orbit of x to the ball B(x,r). We establish a link between return
time and rate functions for dimension and for fast return times. We prove that when a
dynamical system has an exact dimensional measure, the large deviation rate function
that is given in terms of the rate functions mentioned above. As an application, a large
deviation result for repellers is proven in Section 2.2.

This chapter is based on article [23], Large deviation for return times, written with

Benoit Saussol and Jérome Rousseau and published in Nonlinearity.

2.1 Large deviation estimates for return times in a

general setting

Throughout this section we consider g : M — M a measurable map and p an ergodic

invariant probability measure on (M, A).

2.1.1 Definitions and statements

We define the rate functions which will appear in our large deviations estimates. The
first one is related to the deviations in the pointwise dimension; it has been computed in

[47] in the case of conformal repellers.

Definition 2.1.1. The exponential rate for dimension is defined for e > 0 by:

log 1 ({w c [ﬂ}> , (2.1)

+e) =1i
$(Fe) = lim —logr

- r—ologr

29
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where I, = (—oo0, —d, —€) and I_. = (—d,, + €, +00).

If we denote by
_ AN B(x,r))

1B () (A) = w(B(x,r))

the conditional measure on B(x,r), where A is a measurable set, then we can present the

second rate function that quantifies the probability of quick returns near the origin.

Definition 2.1.2. The exponential rate for fast return times is defined for e,a > 0 by:

¢(a,€) = lim log i1 ({:cg ! LB (z0,2r) (TB(W’QT) < r’d““) > C’r“}) , (2.2)

- r—olog T

for some constant C' > 0.

We may now state our main result. We emphasize that the value of C' in (2.2) is

irrelevant in the theorem.

Theorem 2.1.3. Let (M, A, g, 1) be a measure preserving system. Suppose that p is an

exact dimensional measure. Given € > 0, we have:

lim lo ( > r_d”_€> >  max min (1 —7)e, 2.3
o gU\Tr = = oy {( )€ w(’YE)} (2.3)
lim lo ( <y 6) > max min{—vye — €'+ a,¥(ye), p(a,€), P(—€")}. (2.4
o gU\Tr = = e { e —€ Y(ve), pla, ), Y(—¢ )} (2.4)

a,e’’>0

This result is satisfactory in the sense that it can be applied to a broad class of
dynamical systems, provided one can estimate the rate functions ¢ and .

The rate function for dimension ¢ is rather classical. We can observe that in (2.3) if
the rate function for dimension ¢ is positive in some interval (0, €), it readily implies that
14 (TT > r‘d“_e) has a fast decay.

The rate function ¢ is not so well known. However, for several dynamical systems an
estimation of the error in the approximation to the exponential law for return time has
been computed. In many cases, including Hénon maps [20, Theorem 3.1], it is possible to

show that for some a,b > 0, and any sufficiently small r > 0,
E1 there exists a set 0, C M such that u(Q¢) < r’;

E2 for all z € Q,,

sup
>0

t —t
M B(z,r TB(z,r > —) — €
| >( = ul(Bla,r)

The conditions E1-E2 imply that ¢(a,e) > min{y(a — €),b} (see Proposition 2.1.5 in
Subsection 2.1.2).
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2.1.2 Proof of the general result

In this section we prove the Theorem 2.1.3 using the method developed in [52]. We
start by the result that is an elementary property related to the lower bound that will be
used throughout the chapter.

Lemma 2.1.4. Let {a1(r),...,a,(r)} be a collection of p sequences with a;(r) > 0. If

Then

.....

Proof. For all ¢ > 0 there exists r; > 0 such that » < r; implies a; < %7€, Let € > 0
sufficiently small such that v; — e > 0. We have,

p

Z a;(r) < zp:r%_f < prmin{i}—e

=1 =1

and this implies

1 u ) log p
log (Z ai(T)> > ':ngunp{%} —€+ :

log r — i=1,..., log r
Finally,
1 p
L ‘ > mi N
Hiogr (Z a*”) = A, e
The result is proved since € can be chosen arbitrarily small. O]
Denote
— lim 1 > —d,—€
fle) =l ogp (1 = r%7)
and

|
— lim—1 < gty
f(=) = lmgelog (7 < 77 ™)

Given €,& > 0, define
Al(r)={z e M : pu(B(z,r)) > rt} (2.5)

and

Ae(r)={z e M:u(B(z,r) <r*}. (2.6)

Proof of the Theorem 2.1.3. Let v € (0,1). We have

poin@ =) < u({oed (§)in@ =]
+oa(frea (3) n@zrey

N— N———



32

Let us define the set

M, = {a: €A, (%) Te(x) > r’d“’e} )

Let {B (£i, g) }Z be a family of balls of radius /2 centered at points of A,(
M, and such that B (z;, %) N B (x;,%) =0 if x; # x;. We have

%) that covers

p({z:m(@)>r %)) < u(UB;NM)+p ({g; € A, (%) r(2) > T—du—e})
< ZM(Bz' NM,.)+p <A,CY6 (%)) ,

Using first the triangle inequality and then Kac’s lemma and Markov inequality, we obtain

j(B; N M) < i (Bi ) {7, > 1)) < pote / S

7

dy+e
Observe that Z (2) < Z 1 <B (xi, 2)) < 1. Thus, since the balls are disjoint it

follows that the number of balls is bounded by (i) —hue Therefore,

p({wsmle) 2o }) < D e (45 (3))
(i) e )

< fdutrep(l=7)e + (Ag (C)) .
= e\

IN

Thus,

1 1 T
1 () > el) > 1 (4‘1““6 (1=)e (AC (—))) :
g7 og [ ({x T(x) >71 }) = Toar og r +p (A5, 1

Hence, by Lemma 2.1.4, we get

1 r
> limlog (45700 (45, (7))
fle) > i 108 r (A% (3

1 1
Z min {h_ml_ log (4du+767~(1—7)6) , hml log H (A’CYE (f)) }

—ologr —ologr

= min {(1—7)e,¥(7e)}.

This proves the first statement.
Now, let ¢’ > 0. We define

I = {x € Aye(2r) N A(—e//)(QT) (1) < T—du-ﬁ—e}

and

D, = {20 1 1B(so2r) (TBwe2r) < 177" < Cre}, C > 0.
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Let {B(z;,2r}; be a family of balls of radius 2r centered at points of
Aye(2r)N D, NA e (2r) that covers I, N D, and such that B (z;, )N B (z;,r) = 0 if ©; #

z;. We have
w({a:m(z) < rdte})
< p({r e A@r)N Dy N A (2r) 1) <17 %t
i ({2 € (Aye(2r) N D N ACan(2r))¢: mo(a) < rme))
< p(UiB(s,2r) ML N D) + p (AS(20)) + 1 (DE) + (Ao (2r)) -
We remark that
p(U;B(x;,2r) N T, N D,)
< Zu (2:,2r) T, 1 D,)
= Z“ (i, 2r) mu (B(@i,2r) N { 7oz < r7%*})

where the last inequality follows from {TB(%T) < r_df”“} - {TB(%QT) < r‘d“+€} . There-

fore, by definition of D,.,

({:13 . Tr( ) < T_dﬂ+5})
< Z“ (0, 20 B aiar) (TBG20) S 77%F) 4+ 1 (A5e(20) + 1 (D7) + p (AT (21))

< Z p(B(ws, 2r)Cr® + p (AS(2r)) + 1 (DE) + 11 (A7 (2r)) -

Observe that Zrd“ﬂe < Z p(x;,r) < 1. Thus, since balls are disjoint it follows that

the number of balls is bounded by r~%~=7¢ and

Z pu(B(x;,2r)) < Z(Qr)d“’en

7
r_d“_’ye(QT)d“_eﬂ

< 2d‘u‘76//r7'}/676”‘

IN

Then, we obtain that

i ({a s mo) < ) < Co R (A (20) 4 g0 (D) + (A7 (20).

Hence,

f(=€) > lim

= r—olog T

log (CQd“‘e”T‘“‘E"” + (AL (20) + (D) + (AL ) (27‘))> :
Finally, using the definitions of ¢ and ¢ we get by Lemma 2.1.4 that

f(=€) = min {—ve — " + a,¥(ve), p(a, €),¥(—€") } .

This concludes the proof of the theorem. O
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We finish with a brief result that may help to estimate the rate function for fast

returns.
Proposition 2.1.5. If there exist constants a,b > 0 such that for all r € (0,1) :

o there erists a set Q. such that

o for all x € (),

for every t > 0.
Then, ¢(a,e) > min{y(a — €),b}.

Proof. Take t = Cr®, C > 0. Making the first order expansion of e, we have for x € €,

Cre 9
UB(z,r TB(z,r > —> -1+ Cr® + O(T a) S 7’&,
o) < @7 (B, 7))
which implies
Cre 9
1B | T < —) + Cr® 4 o(r=)| < r®.
o) ( @0 (B, 1))

So, it follows that

( - Cre ) <o
HUB(z,r TB(x,r N r.
FONTED T (Bl r)

Let N, be a set defined by N, = {.70 s u(B(x,r)) > rd“+“_€} . For x € N, N (2, we obtain
1B (TBEy < Or~t) < ro.
Thus,
p({: pB@ar (Ta@an <r7%7) > 29 }) < pu((Nyr N Q,)°) < u(Ns,) + p(95,).
Finally, by Lemma 2.1.4, we get

w(a,e) > min{y(a — €),b}.
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2.2 Large deviation estimates for return times for

conformal repeller

From now on, let (J, g) be a conformal repeller.
If we consider a conformal repeller and an equilibrium state of a Holder potential ¢

we obtain a somewhat more concrete version of our principal result:

1. in this setting we can compute the exponential rate for the dimension ¢, using

thermodynamic formalism;

2. we can also estimate the exponential rate for fast return times ¢, using a technique

similar to the one used to prove exponential return time statistics.

Thus, applying Theorem 2.1 to this setting, we obtain a large deviation result with
a rate that is given in terms of Legendre transform of the convex function 7T(-) defined in
(1.3).

Theorem 2.2.1. Let (J, g) be a conformal repeller and p an equilibrium state for a Hélder
potential . For any € > 0, we have:

1213)10gr log pu (7 > r_d”_g) > gi(e)
1

1. _1 . < —du+€ >

,«l_r}(l)logr ogu(T <r ) > gole),
where

g1(€) = max min {(1 —y)e, A" (—d, —ve)} >0
~v€(0,1)

and

g2(€) = m(%}f) min {a’, A"(—d, — ve), min{ag, A"(—d, + €)}, A"(=d,, + €")} > 0
(0,
’ye’>%
€’>

with ' = —ye — ¢’ + min{dy, e — €'}, A*(z) = —o + T*(z) = —x + sup{\z — T'(\)} and
AeR

ag, do are some constants.

Lemma 2.2.2. If uu is the measure of mazimal dimension then HP,(q) is constant and

equal to d,,.
Proof. See for instant the proof of [15, Lemma 6.1.7]. O

Remark 2.2.3. If u is the measure of maximal dimension the above theorem remains
valid. However, since HP,(q) is constant and equal to d,, it follows that A*(x) = 400 for

x # 0, and thus g1(¢) = max (1—7)e and g2(¢) = max min{—ye—e"+min{dy, e—¢€'}, ao}.
7€(0,1) 7€(0,1)
€>0
€’'>0
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Proposition 2.2.4. Suppose that p is not the measure of mazximal dimension. Then for
2 1
any k < 1 and € sufficiently small, g1 > kce? and go > ke <§) , with ¢ = §(A*)”(—du) =

A
—g, where A\, is the Lyapunov exponent of g and O‘Z the variance of log + log |a| with
o

W
respect to p.

Proof. By definition T*(x) = sup{qz — T(q)}. The supremum is achieved for ¢ such that
qgeR
d

d—q(qx —T(q)) =x—T'(q) =0, that is, 7"(q) = z. Thus, for any ¢ € R
T*(T'(q)) = ¢T"(a) — T(q)-
So, it follows that
(T*)Y(T"(a)T"(q) = ¢T"(q),
and hence, (T*)(T'(¢q)) = q and, differentiating, we obtain
(T7)"(T"(q))T"(q) = 1,

that is
for every ¢ € R such that T"(¢) = .

KN\ (i o 1
Since A(A) =T (A + 1) and A*(z) = —x + T*(z) we conclude that
()'@) = s

Moreover, by Proposition 1.2.9 this is non negative.
For x = —d,, we have A = 0. Then, by Lemma 5 in [47]

(W)'(=4) = 5 = 5

, where T"(A+ 1) = x.

K
5 -
i

€
Finally, for e sufficiently small, g; > kce? and taking € = ¢’ = ye = —, with n > 3, we
n

e\ 2
have g > ke <§> )
O

To obtain Theorem 2.2.1, we need a fundamental theorem of large deviation theory,
the Gartner-Ellis Theorem, that was presented in Subsection 1.4.2.

In this context, for r € (0, 1) let (u,), be a family of probability measures and consider
a family of random variables (Z,), in R.

Hence, for any A € R and taking n = —logr, the logarithmic moment generating

function defined in Assumption 1.4.8 can be reformulated as
A(N) = lim ———A,(—Alogr). (2.7)
T

Thanks to Remark 1.4.16, in R we can enunciate Gartner-Ellis theorem as follows.
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Theorem 2.2.5. If Assumption 1.4.8 holds, then

(a) for any closed set F,

lim — ogr log 1, (F) < — f A"(x); (2.8)
(b) for any open set G,

i > — i *(x). .

lﬁ%—logr log pir(G) 2 — inf A™(2) (2.9)

We will apply this Theorem 2.2.5 to the family Z, defined by

5 _ logu(B(z,r))

r

—logr
Replacing Z, in (1.10) we get that
)\ log u(B(z,7))
A.(N) =log [ e —Per du(x). (2.10)

Thus, substituting (2.10) into (2.7) we obtain

— ] Alog u(B(,r))
AN = 11_1}5 —logrlog/e dp(z)
. 1 A
= 71}_% gt log/,u(B(x,r)) dpu(x). (2.11)

The next result is basically a consequence of Proposition 1.2.9 combined with (2.11).

Proposition 2.2.6. Let (J,g) be a conformal repeller and jv an equilibrium state for the
Hoélder potential (. Then, for A > 0, the following limit exists

_ 1 A _
AW = limy oo [ p(B(a.r))du(a) = T+ 1)
Proof. The result follows taking A = ¢ — 1 in (1.3). O

Applying Gartner-Ellis Theorem, we obtain that the quantity g ({W el }) ,

where [ is an interval, decrease exponentially when r goes to zero. Namely,

Corollary 2.2.7. Under the same conditions of Proposition 2.2.6 we have that for all

g ({ B ¢ 1) = inf ),

—logr zel

interval 1,

lim
r—0—logr

where N*(z) = —x + T*(x) is continuous on its domain.
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Proof. This equality is a direct consequence of Theorem 2.2.5. Since the logarithmic mo-
ment generating function is defined by A(\) = T'(A + 1), the Fenchel-Legendre transform
of A()N) is

A(z) = ilelg{m—A(A)}

= sup{A\x—T\+1)}
AER

= s {(y -z -T@)}

= —ax+sup{rve—T(v)}
veR

= —x+T1T"(z).
The continuity of A*(z) follows from its convexity. O

In Figure 2.1, one can see a graph of the Fenchel-Legendre transform of A, where the
interval I C (—o0,—d, —€) U (—d, +¢€,+00) = I UI_.. A*is strictly convex and its

minimum is reached at —d,,.

A

A* ()

Figure 2.1: Graph of A*.

Recall we defined the exponential rate for the dimension
1 1 B
P(e) = lim—— log 1 ({M . g})
- r—ologr —logr

(see Section 2.1). Using Corollary 2.2.7, we get the rate function for the dimension for

conformal repellers.
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Proposition 2.2.8. For any € > 0, the exponential rate for the dimension is given by:

P(e) = inf AN(x)=AN(—d,—€)>0

z€(—00,—dy—€)

and

P(—e) = Ie(_;;fgﬁ(}) A (xz) = N*(—d, +¢€) > 0.

Proof. By Corollary 2.2.7 and from the convexity of A*, we deduce that

P(te) = inf A*(z)

- €l

= AN(=d. Fe)
which proves the proposition. O

From now on, assume that ¢ is an Holder potential such that P(¢) = 0. To obtain
an exponential rate for the fast return times (Proposition 2.2.9), we will need the Closing
lemma (recall Theorem 1.2.5).

We will use these properties to obtain information about the rate function for the

fast return times.

Proposition 2.2.9. There exist constants ag, dy > 0 such that for e, e’ > 0, the exponential

rate for fast return times satisfies:
p(min{dy, € — €'}, €) > minf{ag, (—€)} > 0.
This proposition is a consequence of the following lemma.

Lemma 2.2.10. For any dy € (0,d,) there exist constants ay, 3, cs,c5,d1, D > 0 and a
set Q. such that
pu(§27) < Dre

and for all xo € €2, one has

Pbao.2r) (TBo2r) < 77%) < (e = cslogr) u(B(xo, c5r™)) + r~® u(B(wo, 3r)).

Proof. We first claim that there exists €2, with p(Q¢) < Dr® such that for all zy € Q,
and for all k < ¢plog 5= we have B(z,2r) N g=*(B(zo, 2r)) = 0.

Indeed, let ¢y = ﬁ;ﬁ,
B(xg, 2r)Ng~*(B(xo, 2r)) # 0, there exists x such that d(x, zy) < 2r and d(g*(x), z¢) < 2r,
thus d(z, g*(x)) < 4r. By the Closing lemma, there exists a point z such that ¢*(z) = 2

where m is the degree of the map g. If xy is such that

and d(z,z) < 4y
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Define P, = {z : g¥(2) = 2} that is, the set of points that are arbitrarily close to x
such that are also periodic. Thus d(z,Py) < 4cyr. Observe that

{z0: B(xo,2r) N g *(B(x0,2r)) # 0} C B(Pi, (41 +2)r) = | ) Bly, (e +2)r). (2.12)

yEP

Moreover, let { = ;-4—. Using (2.6), we have the inequality

1 (Ao ((Ber +4)r) N B(Py, (4ey +2)r)) < #Py sup w(B(x, (8c1 +4)r))
z€A(_¢)((8c1+4)7)

< m"((8cy +4)r)H¢.
Now, take K = ¢ log = and define

Q= Ao ((8er +4)r) N () B(P, (4er + 2)r)".
k<K
We proceed to compute a upper bound for the quantity p(Q¢). In order to get this, it will

be necessary to combine the previous inequality with Corollary 2.2.7. Hence,

pQ) < Y (Ace((8er +4)r) N B(Py, (4er +2)r)) + 1 (ATg (81 + 4)r))

k=1
K
< ((8er + 4)r) ™t ka + ((8¢y + 4)r)L=9)=0
k=1
< ((Bex + ) B S+ ((8cy + 4)r)L97?

< Dr®,

for § > 0 sufficiently small and ag = min{d, — £ — cglogm, (&) — d}.

We observe that zo € €, implies that zq ¢ B(Py, (4c1 + 2)r) for all £ < ¢ylog %
Therefore, from (2.12) we obtain B(zg,2r) N g~ *(B(xe,2r)) = () which proves our initial
claim.

We now turn to estimate the quantity pip(s,2r) (g*kB(xO, 27")) for large values of k.

Recall that ¢ is a Holder potential such that P(¢) = 0. We also recall that the Ruelle-
Perron-Frobenius operator L. : C'(M) — C(M) defined on the space C(M) of continuous

function by

L) =Y EWf(y).

yeg~(x)

By induction, for every n > 1,

LY = Y T W(y), (2.13)

yeg—"(x)
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n—1
where S, = Z ¢ o g*. Now we have that

k=0
i (B(zo,2r) N g " B(xo,2r)) = / 1502 L B@o2r) © 9* dps

- /‘Ck(ILB(zo,QT))ILB(IU,QT) d/’l’
< pu(B(xo,2r)) || L (Lpme2n) | -

Hence, the conditional measure is limited to

HB(zo,2r) (g_kB(an QT)) < ||£k(]lB(xo,2r))Hoo . (214)

Now let f = 1 be the characteristic function of R € J;. Applying (2.13) we have

L)) = Y ULy

yeg~ha

< ) k(R

yeg~kz, yeR

where the last inequality follows from the Gibbs property since P(¢) = 0. In addition, the

preimage of x under ¢* has just one element in R, thus

(1)) < hep(R). (2.15)
By (2.15) we have
‘Ck(]lB(:ro,Zr)) = Z ‘Ck(]lR)
Re Ty, RNB(z0,2r)#0
< > kcp(R)
ReJy,RCB(xo,2r+diam(Jg))
< kep(B(zo, 2r 4+ diam(Jy))). (2.16)

Substituting (2.16) into (2.14) see that
B0z (97" B(x0,2r)) < kep(B(o, 2r + diam(J))).

Let k > colog 5-. We have that diam(7;) < c26*. Then, for k such that ¢;7% > r, we
have
Bfk < 6700 logQ—IT — (27°)CO logﬁ’

which implies

u(B(wo, 2r + diam(Jy))) < p(B(o,3c287F))
(B, c5r8F)).

IN
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When k satisfies ¢p37% < r, we obtain
H(Blao, 2r + diam (7)) < u(B(wo,31).

Recall that for all 25 € Q, and for all k < ¢glog 5=, B(zo,2r) N g~ (B(zo, 2r)) = 0.

We may now combining these informations to conclude that

1B(w0.2r) (TB(2r) < 77%)

r—do

< Z KB (z0,2r) (g_kB(xo, 27"))
k=1
|2 | p—do
= Z [1B(o2r) (97 B(xo,2r)) + Z 1B (o,2r) (97 B(xo,2r))
k=cp log Q—IT k:Llog nggogrj+1
| B RET | —
< Y uBaer™)+ Y p(Blaedr)
k=co log 2717" k::Llog ng_;ogrj-f—l

< (eq — cslogr) p(B(xg, csr™)) + r®u(B(xg, 3r))
with d; = ¢glog 8, which ends the proof. m

Remark 2.2.11. Given a subset A C R™ by the usual metric on R"™ we have that d(a,b) =
la — b|, for all a,b € A. However, we can also consider the intrinsic metric on R",
defined as the infimum of the lengths of curves that connect a to b in A. Thus, the
intrinsic diameter is the longest of all shortest paths on the surface between pairs of

points. Following this notion, let us denote by int diam Jy(x) the intrinsic diameter of

the cylinder Jy(x).

From the theory of conformal repellers we obtain the lemma that gives a uniform

bound for the measure.

Lemma 2.2.12. There exists d3 > 0 such that for all x € J and r > 0, one has
u(B(w, 7)) < 1.

Proof. Let r > 0. Given a point « € J by [46, Proposition 2], there exist positive constants

cg and cg such that, for every =z,
k—1 . k—1 4
diamJ(z) < cg H |a (gz(x)) |71 and int diamJ(x) > co H }a (g’(x)) }71 .
i=0 =0

Let k be the minimum value such that diamJ;(z) < r. We claim that there exists ¢ > 0
such that int diamJy(x) > c1or. Indeed,
k—2

diamJ;_1(x) > r implies that cg H ‘a (9'(2)) ‘_1 > r.
i=0
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And then,

k-1

o ; 4, _cC N -

int diamJx(z) > ¢g H la(g(z))|™! > C—g la (6" ()| Y > e,
i=0 8

where ¢y is independent of = and 7 (see proof of Theorem 4.1.7 in [15]). Thus the claim
is proved.

Therefore, it follows that there exists y such that B(y, cior) C Jx(x). On the other
hand, since diamJ,(z) < r we have B(x,r) C B(y,2r). Then, since p is diametrically
regular (see [44, Proposition 21.4]), that is, there exist constants vy > 1 and Cy > 0 such
that for any point z and any r > 0

p(B(z,70r1)) < Cop((B(z, 7)),

we obtain
pw(B(z,r)) < p(Bly,2r))
< Cyt'u(B(y,27"r))
< Gy u(B(y, cor)), (2.17)

for k large enough such that 27% < ¢.

Now, we claim that there exist positive constants b and ' such that
w(Ti(z)) < Cre . (2.18)

If 1 is the density of p with respect to the conformal measure, i.e. L:h = h then, the
potential { = ¢ — log(h o g) + log h has the same equilibrium measure p as ¢. Moreover,
L1 = 1, implies that ((y) < 0 for all y (if we suppose that each x has at least two
preimages, otherwise we should to normalise with g" for N such that each x has at least

two preimages for g’v). Thus, there exists b > 0 such that

myax{f(y)} < —b.

And then,
max{exp Sp(y)} < e k.
)
By Gibbs property, we obtain the claim.
Therefore, by (2.17) and (2.18), it follows that u(B(z,7)) < CLCE* e,
Let k = —logr, thus pu(B(z,r)) < Cpr’. Choosing ds such that r% > Cpy7°, we

conclude the proof of the Lemma. O

Proof of Proposition 2.2.9. Using the above lemma we have that there exist constants

cg,ds > 0 such that (c; — c5logr) u(B(xg, csr™)) < cer?2, for all .
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Let 0 < € <, for x € Q, N A_ey(3r) and using Lemma 2.2.10 we obtain

i) (tenan 7). cqr® + =(r)

rmin{dg,—do +d,—€'}

IN

Cr

Consequently

IN

(N Ao (3r))
< () + g (A (30)).

M ({33 * HB(wo,2r) (TB(zo,2r) < T’_d0> > C7Tmin{d2’_d°+d“_€/}}>

Finally, taking dy = d,, — € and using Lemma 2.1.4, we get
p(min{dy, € — €'}, €) > min{ag, (—¢€')}

and the proposition is proved.

We are now able to prove Theorem 2.2.1.

Proof of the Theorem 2.2.1. For v € (0, 1), by Proposition 2.2.8
Y(ve) = A (=dy — 7€) > 0

and
Y(—€") = A" (=d, +€") > 0.
Moreover, by Proposition 2.2.9,
p(min{dy, e — €'}, €) > min{ao, 1(—€)} = min{ag, A*(—d, +€)} > 0.

Thus, it follows from Theorem 2.1.3, that

li 1 A A in{(1 —y)e, A*(—d, — 0
LI ogp (1 > r™%7) > nax min{(1 = 7y)e, A*(~dy — 7€)} >
and
lim log p (7, < r~ %)
r—ologr
> m(ax) min {a', A*(—d,, — ve), min{ag, A*(d, + € )}, A*(=d, + €")}
(0,1
ﬁ/e’>0
€’'>0
> 0,

with @’ = —ve — €’ + min{ds, € — €'}. Thus the theorem is proved.



Chapter 3

Shortest distance between observed
orbits and matching strings in

encoded sequences

In this chapter we present our results related to behaviour of the shortest distance
between observed orbits. For a dynamical system (M, A, g, 1) and an observation f from
M to a metric space (Y,d), in Section 3.1, we study the shortest distance between two
observed orbits, proving that the limiting rate is related to the correlation dimension of
the pushfoward measure f,u. In Section 3.2, we present a result in the case of random
dynamical systems and give some examples for which the theorem applies. Finally, in
Section 3.3, under mixing conditions, we present the symbolic theorem which establishes
a relation between the longest common substring between encoded strings and the Rényi

entropy. This chapter is a joint work with Rodrigo Lambert and Jérome Rousseau.

3.1 Shortest distance between observed orbits

Let (M, A, g,u) be a measure preserving dynamical system. In what follows, we

present one of the main quantities of this chapter.

Definition 3.1.1. Let f : M — Y C R" be a measurable function, called the observation.

We define the shortest distance between two observed orbits as follows

mi(z,y) = min _(d(f(g'0). f(g'y)))-

We will show that the shortest distance between two observed orbits is related with

the correlation dimension of the pushforward measure f,u. Recall that the pushforward

measure is given by fou(-) :== u(f71()).

45
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We also recall that the lower and upper correlation dimension of f,u are denoted by
Qf*u and Uf*u-

Theorem 3.1.2. Let (M, A, g,p1) be a dynamical system. Consider an observation f :
M —Y such that C; , > 0. Then for i @ p-almost every (x,y) € M x M

- /
logmi(r,y) _ 2

. 3.1
n—oo  —logn - Qf*ﬂ ( )

We recall that the condition C' fon = 0 can lead to unknown values for the above
limit. However, one can observe that if m/ = 0 on a set of positive measure, our result
implies immediately that C'; , = 0. In the following example we present a measure y and
an observation f for which Cy,, is zero. Moreover, m{(z,y) is also zero for the system

(M, A, g, 1) such that p is invariant by g.

Example 3.1.3. Let M C R and p = Leb the Lebesgue measure on M. Given A C M
with p(A) > 0 we define a function f: M — M by

) oz ofw e A°
f(x)—{ c, ifreA

where ¢ € A is a constant and A is the interior of A.

Now, take any transformation g which is p-invariant. By Poincaré’s recurrence Theo-
rem, we obtain that, for some finite n, the pair (g'z, g’y) visits AX A for some 0 < 1,5 < n.
Therefore, for n sufficiently large m!(x,y) = 0, and then Cr,=0.

Note that Im(f) = A° U {c}. Then for r < d(c, A°), if f(x) = ¢ we get that
fap(B(f(z),7)) = u(A). On the other hand, if f(x) € A, fuu(B(f(z),r)) < 2r. Thus

| B 0) duta) = [ FlBG @) duo) + [ LB )0 duta)

/A p(A) dp(z) + / 2 duf(z)
< P (A) 4 2rp(A°).

IN

It is easy to see that Cy,, = 0. As an illustration, take: M =[0,1], c =3/4, A=[1/2,1]
and g(x) = 2x mod 1.

Now let us present some technical notation as well as some tools that will be used to

proof our results. For € > 0 we define

b 2logn + loglogn

Qf*ﬂ —€

We also define
AL) =g " [f B (f(g'y).e )]
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and

Si(z,y) = ' Z ]}‘A{j(y)(x)'
Lemma 3.1.4. Under the same conditions of Theorem 3.1.2 we have
m!(z,y) < e Fr = S (z,y) >0 .

Proof. SJ(z,y) > 0 if and only if there exists at least a pair (i,7) € {1,...,n}x{1,...,n}
such that z € Azfj(y), ie. f(g'r) € B(f(¢’y),e k), thus d (f(g'x), f(¢’y)) < e *». This

occurs if and only if, for all 1 <4,7 <n

m!(z,y) = min {d(f(g'z), f(g’y))} < e
0

In general the pushforward measure is not invariant. Nonetheless, since p is g-
invariant, given y € M and taking ¢(y) = f.u(B(f(y),e *)) in Proposition 1.1.2 we

have:

Lemma 3.1.5. By invariance of i follows the equality

/ Foi (B (F(gy), e ™)) dpuly) = / Foi (B (F(y).e™)) du(y).

Proof of the Theorem 3.1.2. We first show that the event {m£ < e‘k"} occurs only finitely
many times. By Lemma 3.1.4 and Markov inequality, we get that

[T ({(m,y) cmi(z,y) < e_k"}) <E (S{:) )

By definition, the expected value of S/ is given by

BES) = [ [ X Ly dut) duty

- Z/( 1@ dum) du(y)
- S [h B0
- ¥ [ £ (B (') ™)) duty)

where the last inequality follows is according to Lemma 3.1.5. Thus,

p@p({(z,y): ml(z,y) <e™}) < n2/f*u (B (f(y),e™™)) du(y).
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For large values of n, by definition of C; , it holds

/ e (B (f(y),e™™)) duly) < e,

Moreover by definition of &,

1
logn

n@p({(@y) mi(z,y) <e ™)) < ne @9 =

Choosing a subsequence (n).en such that n, = [e”ﬂ, we have that

1

pep({(@y)ml (vy) <et}) <=

Since the last quantity is summable in x, the Borel-Cantelli lemma gives that if & is

large enough, then for p ® p-almost every pair (z,y) it holds

mfﬁ (z,y) > e Fnr

n

and then

1 f
ogmy, (x,y) < 1 (2 N log log n,{) . (3.2)
€

—logn, — Cy, — log n,,
We observe that for all n, there exists & such that e < n < e, In addition, since

(mﬁ)n o 18 & decreasing sequence and log z is a monotone function, it follows that

logm! (z,y) < logm{ (x,y) < log mfmﬂ(l'ay)
—logne: ~— —logn —  —logn,

logn
Taking the limit superior in the above inequalities and observing that lim AL
k=00 l0g Ny 11

1, we get
— logm/(z,y) _ ——logm] (z,y)
lim —————— = lim ——————

n—oo  —logn koo —logn,
Thus, by (3.2) we obtain

. /
= logmj(v,y) - 2

nsoo  —logn T Cp, —€

Since € can be arbitrarily small, the prove is complete. O]

As in [18], to obtain an equality in (3.1), we will need more assumptions on the

system.

(H1) Let H*(M,R) be the space of Hélder observables. For all ¢, ¢ € H*(M,R) and

for all n € IN*, we have:

\/ vo (g a)oe f(e) dute) — [ wo s du [ ¢Ofdu'§||¢Of||a||¢0f||a0n
M X M

with 6,, = a™ and a € [0, 1).
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(HA) There exist 79 > 0, £ > 0 and > 0 such that for f.u-almost every y € R" and
any ro >r > p >0,

fen(Bly,r+ p)\Bly,r = p)) <r=%p°.

One can observe that, if f is Lipschitz, assuming hypothesis (H1) is weaker than
assuming a exponential decay of correlations (for Holder observables) for the system
(M, A, g,1). Indeed, note that if f is Lipschitz then ¢ o f is Holder for every Holder

function .

Theorem 3.1.6. Let (M, A, T, ) be a dynamical system and consider a Lipschitz obser-
vation f 1 M — Y such that C; , > 0. If the system satisfies (H1) and (HA), then for
p & p-almost every (x,y) € M x M

/
i logmy, (%, y) > 2
n—oo IOgn Cf*'u

Furthermore, in the case that C; , = Cy.. = Cy., we get

f
lim logmj(z,y) 2

nvoo  —logn  Cp,

To prove Theorem 3.1.6, the main difficulty is that we cannot apply mixing as simply.
In particular, we can only apply mixing to Holder observables and indicator functions are
not even continuous. To overthrow this difficulty, we will first prove that a particular
function is Holder in order to apply the mixing property, then, in the proof of Theorem
3.1.6, we will also approximate characteristic functions by Lipschitz functions in order to

apply mixing again.

Lemma 3.1.7. Let (M, A, g, 1) be a dynamical system with observation f. If it satisfies
(HA), then there exist 0 < 19 < 1, ¢ > 0 and { > 0 such that for any 0 < r < rq, the
function ¥y = x — fou(B(x,r)) belongs to H*(M,R) and

Il < 2
Proof. Let x,y € M and 0 < r < 1o, if ||z — y|| < r we have
(i) B(z,r — [z —yl]) € B(z,r) and B(x,r — [[z = yl]) C B(y,7);
(ii) B(z,r) C B(x,r+ ||z —y||) and B(y,r) C B(x,r + ||z — y|).

Then it holds

fep (B(a,r = |lz = yl])) < fon(B(z, 7)) and fup(B(y, 7)) < fep(B(,r + ||z = y[])) -
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Hence

1 fen(B(y, 7)) = fep(B(z,r))|| < fup(B(,r + [|x = yl])) = fup(B(a,r — [lz = yl]))-
Thus, by (HA),
1 fer(B(y, 1) = ferl( B, r)]] < 178z — yl|”.
On the other hand, if ||z — y|| > r then
2
| fer(Bly,)) = fep(Bla, )l =2 < —lz = yl] -

Thus, ¢, is Holder and |[¢1|], < 2r~¢ with ¢ = max{1,£}.
[

In the sequel, we present the proof of Theorem 3.1.6. This proof mainly follows the
ideas of the proof of [18, Theorem 5].

Proof of Theorem 3.1.6. Without loss of generality we will assume that 6, = e~‘. Let
b < —4. Given € > 0, we define
2logn + bloglogn
Cpute
Remember that in the proof of Theorem 3.1.2 we had

E (S)) an/f*u (B (f(y),e™)) duly).

In addition, by Lemma 3.1.4

p@p({(@y):mie,y) > e} < pep({( ):Sf(:vy ) =0})

kn =

< pep({(ey) :|Si@y) —E(S)] = [E(SD)]})-
var 7{
By Chebyshev’s inequality we get that this last quantity is limited by <S)2 And thus,
var (Sf)
® z,y) ml(z,y) >etl) < —12
p@p({(z,y) :mh(z,y) 1) S
We now proceed to estimate the variance of S.
We see at once that
f\ —
var (S]) = Z cov (]lA{j, ]lA{/jl>
1<i,if j,5'<n
= // ,j,<y>_//]lAz;<>// A, W)
1<i4,i’,5,5'<n
= Z // ~1B(f(g7y) —kn)(g I)]l F1B(1(g7"y), —kn)(g x)
1<i4,i’,5,5'<n

— ot (/f*u (B (f(y),e*)) du(y)>2- (3.3)
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Since we would like to apply the mixing property to estimate the previous sum, we
will present an approximation for characteristic functions by Lipschitz functions following
the construction of the proof of Lemma 9 in [51].

Let p > 0 (to de defined properly later). Let n,-x, : [0,00) — R be the —kn
Lipschitz function such that Ly .-rn) < Ne-tn < Ljg 14p)ein) and set @y i (T) =
Ne—kn (d(f(y),v)). Since f is L-Lipschitz it follows that ¢, .- o f is ﬁ—LipSChitz.

Moreover, we have

Lip(sigipen) (@) = Lp(ggiy).etn)(f(2))
L c#a1(d(f(g"y), f(2)))
Ne—+n (d(f (), f()))
P f(giy)e—ta (f(2))- (3.4)

IN

We are now able to apply the mixing property. We will consider four different cases.
Let us fix £ = ¢(n) = log(n”) for some v > 0 to be defined later.
Case 1: |i —¢'| > ¢. By (H1) and (3.4) we obtain

//]lf—lB(f(gjy),e—kn)(gix)]lf—lB(f(gj’y),e—kn)(gi/x) d(z) dp(y)
N / / L1 (pigietn) (9 DL i sig0y o) (@) dple) duly)
< [ ([ e 60 duo) [y (70 )] )

+ 0, Hspf(gjy)@*’““” Hgof(gj'y) -

erL—;nGe + /f*u (B (f(g’y), X+ p)e™™)) fun (B (f(gj'y), (1+ p)e‘k")) dp(y)-

To estimate the second part of the last inequality, we can observe that using (HA)
we obtain

[ £ (B (3670, (4 ™) s (B (10670 (15 p)e ™)) dutw)
/f*u (B (f(g"y),e™™)) fun (B (f(gj'y),e”“"» dp(y)
1 (B (£(gy) L+ p)e™) (ot (B (57" 9). (14 pe™) ) = Lo (B (£(97 ) e™) ) ) dity)
+ /f*u (B (f(gj'y)yef’“"))(f* (B (f(gjy),(ler)e*'“”))—f* (B (f(g’y),e™™))) dn(y)
1 (B (1(70), (14 p)e ) e duty) + [ fon ( ) ) et du(y).

IN IN
— —
= =

Therefore, choosing p = n~° for some § > 0 to be defined later, we have for n large



enough

[ st o) T a0y (07 ) o) diy)
< L% 0 + 2e8kn ﬁ/fu (f(gy),2¢7*)) dul(y)
/f 7 ) f. u( (f(gj'y),e"“”» du(y).
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To deal with the third term of the last inequality we need to consider two different

cases.

Case 1.1: |j — j'| > £. Using Lemma 3.1.7, we can use the mixing property (H1)

/f [ ) S u( (f(gj'y) e"“")) dp(y)
/f 1w (B (f(gy),e™)) duly /f [ f(gj'y),e”“”» dp(y)
+0 ( (e k”)) (B (ne™))]

< Afpe*tn + ( / furt (B (f(y),e7*)) du(y))Q-

Case 1.2: |j — j/| < ¢. Using Holder’s inequality together with Lemma 3.1.5 we have

/f 7 ) fe u( (f(gj’y),e‘k"» dpu(y)

IN

_ / For (B (F(y).e™))* duly).

Combining these cases we can write

IN

IN

Z //]lf1B(f(gjy),ekn)(giw)ﬂflB(f(gj’y)@kn)(gi,x) du(z) du(y)

li—d'[>0,|5—5"|>¢

Z //]]‘f—lB(f(gJ'y)’e—kn)(gix)]lf—lB(f(gj/y)ﬁ—kn)(gi,x) du(z) dp(y)

li—i'|>¢,]5—35"|<¢

WAL2p 2, 1 2Pt 3 / Fobt (B (F(g7y). 2¢™)) duly)

li—3"1>¢

iy ( [ 1B 0.4)) )

li—3"|>¢

n’ > /fu e ™)) du(y)

l7—3"1<e

n*L?p~2e 0, + 2n'ekn pf / fer (B (f(gy), 2¢7)) dp(y) + 4n*6pe**

(fstasn s o) (f (o)) o)

s ( [ £ (B (e du(y)) o't [ Ln (B (). 7) duty). (39
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Case 2: |i — /| < {. At first we observe that for all [, m € IN it holds

m l
L p(sigigpen) (978) = Lpmip( pgmay ern) (99).
And this implies that

[ 1m0 (o) 65 die) dity)
/ / ]lf—lB(f(gix),e—k") (gjy)]lf—lB(f(gi’x)ve—kn) (gj/y) d:u(y) d/J(ZL’) (36)

Case 2.1: |j — j'| > £. In this case, we can proceed in the same way as in the second
sum using the above symmetry.

Case 2.2: |j—j'| < ¢. For this, the boundedness of the indicator function and Lemma
3.1.5 give that,

[ 1 sstam o) GO a0y (67 ) i) diy)
< / / Ly pgrgp.e—in) (9'7) dpa(x) dpay)
< / furt (B (f(g7y),e7™)) du(y)
— [ £ (B ™) duty) (3.7)

Finally, for these cases we have

> /f*u (B (flg'y).e ) for (B (S(57y) e ) dialy)

|i—i|<e,|j—35"|>¢

+ Y /f*u (B (f(g'y),e™™)) fur (B <f(gj’y),€_k")> dp(y)

li—i'|<eli—5"I<¢

< n'L*n0,+ 200 Y /fu ))* dp(y)
l7—3"1>¢
+ om0y /f* e ")) du(y)
l7—3"1<¢

< AL 2, + 2t / Fob (B (F(9), ™)) duly)
st [ f (B (f).e ™) duty) (338)

Putting all the previous estimates in (3.3) we obtain

var (S}) < 2ntL2p~2en 0, + Ant0,e®Fr 4 2n efk”pﬁffu( (f(g’y),2¢7%)) du(y)
B(s) (2 ] Lo (B (F(0).e)) dn(s))”

A [ fou (B (f(y),e ™)) du(y) +4n3€ff* (B(f().e™))" dpty)
(n2 [ for (B (f(y), 7)) du(y))”
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By definition of C'y,,, we have for n large enough

/f*,u (B (f(y)7e—kn)) du(y) > ok (Couto)

Recalling that p = n =%, we can observe that we can choose § large enough (depending

on 5,6,@*“,@*#,6 and €) so that

2n'enpP [ fopu (B (f(y),2¢7™)) dply)
(n2 J fur (B (F(y), 7)) dp(y))’

Recalling that ¢ = log(n”), we can observe that we can choose 7 large enough (de-

IN

%. (3.10)

pending on &, C,,,, ¢, b and €) so that

e <. (3.11)
(02 [ for (B (f(y),e7) du(y))” — 7 |
and so that
A bee™ <! (3.12)
(n2 [ fort (B (f(y),e7)) du(y))” ~ n
For the fourth term we have
n? [ fop (B (f(y),e™™)) dply)  _ 4
(n2ff*:“ (B (f(y),e*n)) al/vb(y))2 T n2eFn(Crute)
< 49%(logn)**". (3.13)

To estimate the last term, we will use the following lemma.

Lemma 3.1.8 (Lemma 14 [18]). Let Z C R™ and let v be a probability measure on Z.

There exists a constant K > 0 depending only on n such that for every r small enough

[ n By a) < & ( [ n(B) du<y>)3/2.

Applying the previous lemma with Z =Y and v = f,u we obtain

A [ fon (B (f).e™™))® dply) 400K ([ fon (B (J(y) ™)) dp(y))*”
(n2 [ fur (B(f(y),e*)) dp(y))® — (02 fou (B (f(y),e~*)) du(y))”
WK
<

1/2

n ([ fo(B(f(y),e7)) du(y))
UK 2oChuto
40K (log n)"/?

AK~(logn)' 2. (3.14)

VAN VAN

IN
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Taking b < —4 and substituting (3.10), (3.11), (3.12), (3.13) and (3.14) into (3.9) we
get
var (S})
T N2
E (1)

< O((logn)™). (3.15)

p@p({(@y) mi(z,y) > e}

Thus, taking a subsequence n, = [e“ﬂ . As in the proof of Theorem 3.1.2; by the

Borel-Cantelli Lemma we obtain

/ 1 f
i log mj)(,y) _ lim ogm,, (z,y) > 2
nooo —logn rooo  —logmy Qf*u t+e
Since € can be arbitrarily small, the theorem follows. m

3.2 Shortest distance between orbits for random dy-

namical systems

Let M C R™ and let (€2, 6, P) be a probability measure preserving system, where € is
a metric space and B(€2) its Borelian o-algebra. We first introduce the notion of random

dynamical system.

Definition 3.2.1. A random dynamical system G = (g,)weq on M over (2, B(Q2),P,0)

is generated by maps g, such that (w,z) — g,(x) is measurable and satisfies:

g° = 1Id for allw € Q,

n __

9l = Gon—1(w) © " * © Gh(w) © G for all n > 1.
The map S : Q@ x M — Q x M defined by S(w,z) = (0(w), g.(x)) is the dynamics of the

random dynamical systems generated by G and is called skew-product.

Definition 3.2.2. A probability measure p is said to be an invariant measure for the

random dynamical system G if it satisfies
1. wp is S-invariant
2. mip =P
where m: QX M — § 1is the canonical projection.

Let (g ). denote the decomposition of 1 on M, that is, du(w, ) = du,(z)dP(w). We
denote by v = [ u,dP the marginal of v on M.

To obtain a result that links the shortest distance between orbits and random dy-
namical systems we need to assume a hypothesis for the measure and an (annealed) decay

of correlations for the random dynamical system. Namely,
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(a) There exist ro > 0, £ < 0 and 8 > 0 such that for almost every y € M and any
ro >1>p >0,
v(B(y,r+p)\B(y,r — p)) <r7¢p°.

(b) (Annealed decay of correlations) Vn € IN*, ¢ and ¢ Holder observables from M to R,

(g (2)p(x) du(w, z) — U dp ¢ dp

Qx M Qx M Qx M
with 6,, = e ™.

< ¥ llallllabn

Definition 3.2.3. We define the shortest distance between two random orbits as follows

me(r,d) = min(d(g(x),g5(%))).

§,§=0,...n—
Theorem 3.2.4. Let G be a random dynamical system on M over (2, B(2),1P,0) with
an invariant measure p such that C,, > 0. Then for p ® p-almost every (w,z,0,%) €

Qx M xQx M, ~
mlogmn’ (x,7) < i
n—o0 —log’n QV

Moreover, if the random dynamical system satisfies assumptions (a) and (b), then

h_mlogmﬁ’@(x,it)z_l
n—oo  —logm C,

and if C, = C\,, then ~
lim logm¥*(z, ¥) _
n—o0 — logn

ol

Proof. This proof will follow the idea given in [49].
This theorem is proved using Theorem 3.1.2 and Theorem 3.1.6 applied to the dy-
namical system (2 x M, B(2 x M), i, S) with the observation f defined by
f:QxM-—>M
(w,x) — .
With this observation, for all z and ¢ € 2 x M we can link the shortest distance

between two observed orbits and the shortest distance between two random orbits. Set

z = (w,z) and t = (@, Z) then

ml(z,t) = min (d (f (Si(w,x)) 7f<5j(@»f))))

Moreover, we can identify the pushforward measure: f,u = v. Therefore, in view of the

lower and upper correlation dimensions, the following statement finishes the proof

Cy.,=C, and 6f*u =C,.
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3.2.1 Examples

We will present some examples of random dynamical systems where for which we can
apply the last statement.
Non-i.i.d. random dynamical system

The first example is a non-i.i.d. random dynamical system for which it was computed
recurrence rates in [40] and hitting times statistics in [49)].
Consider the two linear maps which preserve Lebesgue measure Leb on M = T*, the

one-dimensional torus:

g:M—M and go: M — M

T — 2 T — 3x.

The following skew product gives the dynamics of the random dynamical system:

S:OxM—>Qx M
(w,2) = (0(w), gu(z))

with Q =[0,1], g, = ¢1 if w € [0,2/5) and g, = g2 if w € [2/5, 1] where w is the following

piecewise linear map:

2w if we[0,1/5)
) — 3w—1/5  if we[1/5,2/5)
Y w45 i we [2/5,3/5)
[

3w/2—1/2 if we[3/5,1].
Note that the random orbit is constructed by choosing one of these two maps following

a Markov process with the stochastic matrix

. ( 1/2 1/2 ) |
1/3 2/3

The associated skew-product S is Leb ® Leb-invariant. It is easy to check that
Lebesgue measure satisfies (a). Moreover, by [13] the skew product S has an exponential
decay of correlations. Since in this example C,, = 1 with v = Leb, Theorem 3.2.4 implies
that for Leb ® Leb ® Leb ® Leb-almost every (w,z,©,7) € [0,1] x T! x [0,1] x T*,
log miy® (z, )

lim

= 2.
n—00 —logn
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Randomly perturbed dynamical systems

Consider a deterministic dynamical system (M, g, 1) where M is a compact Rieman-
nian manifold, g is a map and p is a g-invariant probability measure. We will present a
random dynamical system constructed by perturbing the map g with a random additive
noise. For € > 0, set A, = B(0,¢) and let P, be a probability measure on A.. For each
w € A, we denote the family of transformations {g, }, where the map g, : M — M are
given by

() = g(z) +w.

Denote G the i.i.d dynamical system on M over (AN, PN ). In the case where M = T,
for some expanding and piecewise expanding maps, if € is sufficiently small, it was proved
(see e.g. [11, 14, 57]) that the random dynamical system has a stationary measure .
absolutely continuous with respect to Lebesgue measure with density A, such that 0 <
h, < he < he < oo and the system has a superpolynomial decay of correlation. Thus,
since the assumptions (a) and (b) are satisfied one can apply Theorem 3.2.4 and obtain

behavior of the shortest distance m<®.

Random hyperbolic toral automorphisms

A linear toral automorphism is a map ¢ : T?> — T? defined by the matrix action
x +— Az, where the matrix A has integer entries and det A = +1. We say that g is
hyperbolic if A has eigenvalues with modulus different from 1. For more simplicity, we
will use the notation A for both the matrix and the associated automorphism.

For an hyperbolic toral automorphism A, we denote E# the subspace spanned by e,
the eigenvector associated to the eigenvalue whose absolute value is greater than 1 and
we denote E4 the subspace spanned by e, the eigenvector associated to the eigenvalue
whose absolute value is less than 1.

Following the definition from [12], we say that a pair (Ag, A;) of hyperbolic toral

automorphisms has the cone property if there exists an expansion cone £ such that
1. A,ECE,
2. there exists A¢ > 1 such that |A;x| > A¢|z| for z € &,
3. EAN0E =0, where € denote the boundary of &,
and there exists a contraction cone C such that CNE = 0 and
1. A7'Cc cc,

2. there exists A¢ < 1 such that |A; x| > \; |z for z € C,
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3. EANacC =0.

One can observe that for example a pair of hyperbolic toral automorphisms with
positive entries, or a pair of hyperbolic toral automorphisms with negative entries, has
the cone property.

Let A = {0,1} and # = o be the left shift on AY. Let Ay, A; two hyperbolic
automorphisms satisfying the cone property. Let Ay be chosen with a probability ¢ and
Ay with a probability 1 — ¢, i.e. P = PY with P(0) = ¢ and P(1) =1 —q.

Then, for the i.i.d. random dynamical system on T? over (AN PN &) the Lebesgue
measure is stationary (and thus hypothesis (a) is satisfied) and the system has an expo-
nential decay of correlations (see [12]).

Note that v = Leb ® Leb implies that €, = 2. Then, by Theorem 3.2.4 we get for
P ® Leb ® P ® Leb-almost every (w,z,@,7) € Q x T? x  x T?

log m%<(z, )

lim =1.

n—oo  —logn

3.3 Matching strings in encoded sequences

The present section is dedicated to study of longest common substring of encoded
sequences. We start by presenting some terminology and definitions, in order to introduce
the problem.

Let (2, F, P) be a probability space, where Q = xN for some alphabet , F the sigma-
algebra generated by the n-cylinders in €2, and P is a stationary probability measure on
F. If o is the left shift on Q, we can see (2, F, P, o) as a symbolic dynamical system with
P o-invariant. Let Q = ¥ for some alphabet ¥ and F the sigma-algebra generated by
the n-cylinders in €.

Definition 3.3.1. Let f : Q — Q be a code. Given two sequences x,y € €, we define the
n-length of the longest common substring for the encoded pair (f(x), f(y)) by

M](z,y) = max {k‘ L f(@) = Fy)i T for some 0 < j <mn— k:} ,

where f(a:)?rk_l and f(y)g}k—l denote the substrings of length k beginning in f(x); and
f (y)j respectively.

For y € Q (respectively Q) we denote by C,(y) the n-cylinder containing v, that is,

the set of sequences z € Q (respectively Q) such that z; = y; for any ¢ = 0,...,n — 1.
We denote F (respectively ) the sigma-algebra on Q (respectively Q) generated by all

n-cylinders.
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Definition 3.3.2. The lower and upper Rényi entropies of a measure P are defined as

1 — — 1
H,(P)=—1lim —1 P(Cy)? and Ho(P) = —lim —1 P(Cy)?
H,(P) = — lim 7 og%} (Cv)? and Hy(P) = — Iim _ ogczk (C)
where the sums are taken over all k-cylinders. When the limit exists we denote by Ho(IP)

the common value.

In general, the existence of the Rényi entropy is not known. However, it was computed
in some particular cases: Bernoulli shift, Markov chains and Gibbs measure of a Holder-
continuous potential [31]. The existence was also proved for ¢-mixing measures [39], for
weakly ¢)-mixing processes [31] and for ¢),-regular processes [1]. In Section 3.3.1, we will
prove that for Markov chains, the Rényi entropy does not depend on the initial distribution
but only on the transition matrix and that one can compute the Rényi entropy even if

the measure is not stationary.

Definition 3.3.3. Consider the dynamical system (2,P,0). We say that it is a-mizing
if there exists a function a : N — R where a({) converges to zero when € goes to infinity
and such that

sup P (Ano " "B) — P(A)P(B)| < a(l),

AeFy ; BEFy N
for all m,n € N. Moreover, we say that the system is \-mizing if there exists a function

Y IN = R where ({) converges to zero when € goes to infinity and such that

P(Ano~*"B) —P(A)P(B)
Aefgs?%efg” P(A)P(B) <¥(O),

for all m,n € IN. In the cases that «({) or 1({) decreases exponentially fast to zero, we

say that the system has an exponential decay.

Now we are ready to present the main result of this section. It states that, under
suitable conditions and large values of n, the longest common substring behaves like log n,

for almost all realizations.

Theorem 3.3.4. Consider f : Q — Q a code such that Hy(f,P) > 0. For P ® P-almost
every (x,y) € Q x Q,

— M/ 2
wose logn = Hy(f.P)

(3.16)

Moreover, if

(i) the system (Q,P,0) is a-mizing with an exponential decay (or -mizing with () =
=% for some a > 0);
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(i) C, € Fp implies f~'C, € ]_—(})1(71)7 where h(n) = o(n?), for some v > 0,
then, for P @ P-almost every (z,y) €  x 2,

lim = . 3.17
nooo  logn T Hy(f.P) (3:17)
Then if the Rényi entropy exists, we get for P @ P-almost every (z,y) € Q x Q,
f
lim Mal®:y) 2 (3.18)

nsoo logn  Hy(f.P)

Proof. For simplicity we will assume that a(f) = e~*. The proof of this theorem follows

the proof of the Theorem 7 in [18]. In the first part of the proof, for € > 0 we denote

b - FIOgn + loglogn"
Hy(f.P) — e

Let us also denote
Al (y) = o7 [T Cr (f(07y))]

and

Sf (z,9) Z ]lAfJ(y

i,9=1,...,n
We first show that the event {Mﬂ: > kn} occurs only finitely many times. It follows

from Lemma 3.1.4 and Markov’s inequality that
PP ({(r.y): M](z,y) > kn}) S P@P({(x,y) : Sf(2,y) > 1}) <E(S]).

Moreover, by computing the expected value of SI we get

E<S7J:) = //Z ]lA{j(y)(x) dP(z) dP(y)

ey
- > [ c @) aw)
- > [ £B(Ctt@) dpw)

where the last inequality follows as in Lemma 3.1.5.
Thus,

PP ({(z,y): M](z,y) > k,}) < nQ/f*IP (Cr, (f(y))) dP(y).
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For large values of n, by definition of H,(f.[P) it holds
_ -1 2 < o kn(Hy(fuP)—€)
[ £P (@) dPl) = 3P (571 (C) < .
Chn

Moreover by definition of k,,

_ . 1
PP ({(z,9): Ml(@y) 2 kn}) < e UL — o

Choosing a subsequence (n,).en such that n, = [e“ﬂ we have that
1

PP ({(x,y): M (x,9) > kn. }) < = .

Since the last quantity is summable in &, the Borel-Cantelli lemma gives that if x is

large enough, then for almost every pair (z,y) it holds

Nk

and then

(3.19)

M (z,y) 1 (2 N 1 + loglog n,€>

<
logn, = Ho(f.P)—¢ log n,

We observe that for all n, there exists x such that e < n < e**!. In addition, since

f . . .
(Mn)n o 18 an increasing sequence, we get

M () _ Mi(y) _ M (@)
logney1 = logn = logn,

log n
ogn _q

Taking the limit superior in the above inequalities and observing that lim

r—00 l0g Ny 11
by (3.19) we obtain

lim —4—— = lim ———~,
n—o0 logn K—00 log Ny
Thus, by (3.19) we have
— M/ 2

n—oo  logn H,(f.P)—¢

Since € can be arbitrarily small, (3.16) is proved.

We will now prove (3.17). In order to do that denote, for € > 0,

B Flogn + blog lognJ
' Hy(f.P) + ¢

where b is a constant to be chosen.
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Note that by Lemma 3.1.4 we have

P®P ({(:c,y) : Mﬂf(x,y) < kn}) < PP ({(:zc,y) : Si(x,y) = O})
< PP ({(): 8o - E(S)] 2 [E(S]).

By Chebyshev’s inequality we deduce that
var (S})

E (Sﬂf)z‘

PP ({(z,y): Mi(z,y) <ka}) <

We have to estimate the variance of Sj.

We see at once that

var (S,{) = Z cov (]lAf', ]lA]_«/ .,>

1<ii’ g5’ <n
1<i,i',5,5'<n J J

p> / / L=t e (0 D) 10, gy (@' 2) - (3.20)
lgivilvjmj/gn

-t ([ rp i) @)
Let ¢ = {(n) = (logn)®, for some 8 > ~ such that
(logn)? > (logn)?. (3.21)

As in the proof of Theorem 3.1.6 there are four cases to consider.

Case 1: |i — /| > £+ k,,. Using the a-mixing condition we have

/ ( / ]1f1<ckn<f<ajy)>>(0(iil)x)ﬂfl(ckn(f(of’y»)(x)d]P(x)) dP(y)

</ ( [ 1o @@ [ nf_lmm(f(ﬂ/y»)<x>d1P<x>) dP(y)
+a(l + k, — h(k,))

= [ 1P (Co () 2P (4 (£ (o)) aPw

ol + ki — hiky)). (3.22)

To estimate the first term of the sum above we analyse two cases.



Case 1.1: |7 — j'| > €+ k,. In this case we have
e f]P(ck (£ (o4))) )
_ /fIP (Ce (1 (779))) 1P (C, (f ))) dP(y)
_ Cg; /f oyt iy PO P (¢t.) dPw)

— Y 4P Ckn)f*IP< G ) B (£ G e (57 ()

!
Clen Cr,

Using the a-mixing condition in the last expression we get that

[ #B (€ (¢ (0)) 2P (€ (7 (+79))) dPl0)
Z 1P (C, >f1P(ckn) (£.p () 1P (CL))

* Z £.P (Cu) £.P (G, ) (@ (C+ ko = h(k,))

IN

Chn Chn, ;éc,’m

< a0+ ky —h(k (Zf]? (Ch,) )

Case 1.2 |7 — j'| < £+ k,. By Holder’s inequality it follows that,

/fIP (Cr., ( fIP<Ck <1f2( )))le()
< (/f]P (Ch. ( > dP(y >/(/f]P Cr (f (o7 y)))zd]P(y))

1/2
= (Zf*mckn)g) (Zf*ll’ (0,;”)3)
Ck, Cl/cn
= Y fLP(C).
Cr,,

64

(3.23)

1/2
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Using the subadditivity of the function z(x) = #%* we obtain
3/2
2/3
S AP < [ D (AP (G
Ckn Ckn
3/2
< | DORPCL| (3.24)
Cron

Using (3.23) and (3.24) we obtain

IN

IN

//]lf H(Crp (f(07y) (o’ 13)]1 (Ckn(f(o'j/y))>(O-ilw)d]P(x)dIP(y)

li—i \>z+kn li—3"1>+kn

" 2 / / L1000 L ps (o (1(07 ) (0 0) AP (2)dP (y)
|i_i/‘>£+kn7|j_j, |§Z+kn

n'o (€ + kn — h(ky)) + n? Z a(l+k, — h(k,))

‘j_j/‘>£+kn

2 3/2

LD DI DOF A A (S B DR DA S ()
li=3'1>t+kn \ Ckn li—3'|<t+kn \ Ckn,
2
2nta (€ + k, — h(k ZfIP )’
Ch,,

3/2

20 (0 + k) | Y FAP(C)* | (3.25)

Chp,

Case 2. |i —i'| < L+ ky:

Case 2.1 [j — j'| > L+ ky:

This case is analogous to the case 1.2.

Case 2.2. [ —j/| <L+ Eky:

[ 1 scismm(@ DL o, o) o 2@
: / / L-1(0y, (f(oiy)) (0" 2)dP (2)dP(y)

= [ £P(C, (7 (@0)) dP)
_ Zf*IP (Ckn)Q. (3.26)

Ch
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Using (3.24) and (3.26) we get

> / / 16, o (@' 2) L pr (105 (0 )P (2)dP (y)
li—i | <l4-kn,|j—j |>+kn

T > / / L1000 L ps (¢ (1(05 ) (0 0) AP (2)dP (y)
li—i'|<l+kn,|j—5' |[<t+kn

3/2

< nfa(l+ky = hk,) + 2000+ k) ) > P (G

l7—5'|>l+kn \ Cky,
+ ot ky) ) LP(C)

3/2
< nta(l+ky = hky) + 2050+ k) | D P (Cr,)’
Ch,,

+ A’ (C+ k) LP(Cr,)? (3.27)

Ch,,

Putting these estimates together in (3.20) we get

3/2
var (S1) < 3nta (C+ky — h(k,)) + 40P (0 + k) | D P (£ (Cr,))

Ck,

HAR (0 + k)Y P (Cr, )2 (3.28)
Chrp,
Therefore,
3/2
3t (0+ ky — h(ky)) +4n3(0+ k) | 3 f.P(C,)?
var (S}) Crn
E(Sh)? ’
n2 3 £.P(Cy,)?
Ch,,
n?(C+ka)? 2 fP (Cr,)?
+ G . (3.29)
(n? > [P <Gkn>2)
Ch,,

We estimate each term on the right separately. Using the definition of k,, and of the

Rényi entropy and the choice of ¢, we have for the first term

3nta (0 + k, — h(k,)) < 3n ef(logmﬁnﬂ/(ﬁz(f*ll))ﬁ)(log n)fb/(ﬁz(f*]P)Jre)eh(kn)

, 2 = (logn)~—2b
<n2 > [P (Cy,) )

Ck,
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By hypothesis, h(k,) = o((logn)?) thus there exists ng such that for all n > ng, h(k,) <
(logn)?. In (3.21) take 3 large enough such that (logn)? > (logn)” + log nt=2/(H2(f-P)+e)

Hence,

3nta (C+ kn — h(kn)) _ 3(log n)~b/ (Ha(f:P)+<))
tT (logn)=2
<n2 > [P (Ckn>2>

Ciy,

= 3(log n)b(2—1/(ﬁ2(f*IP)+€))' (3.30)

To estimate the second term we obtain

3/2
4n3(0 + k) (Z [P (Ckn)2>

Ciyp,

<n2 > [P (Ckn)2>

Cron
4n3 (0 + ky)

1/2
oz )

Ch,,

IA

IN

4(0 + k) (logn)*/?
e 2(log n)'**/2 4 blog(log n)(log n)"/?
HQ(f*]P) + € .

< 4(logn (3.31)

Finally for the third term we get
An2(0+ k)2 S L P (C,)?

Cron
3
(n2 > [P (Ckn)2>
Cron
an?(l + k,)?
T oty LP(C)

Cron
4(€ + kn)*(logn)®

= 4(logn)** + 8(logn)~**

IA

2logn + blog(logn)
Hy(fiP) + €
4(2logn + blog(logn))?(log n)®
((1P)+6)"
Taking b < —2 — 2/ and substituting (3.30), (3.31) and (3.32) into (3.29), we obtain

(3.32)

PeP ({(z,y): M](z,y) <k,}) <O ((logn)™"). (3.33)

Thus, taking a subsequence (n,), = { -‘ as in the proof of (3.16) we use the Borel
Cantelli Lemma to obtain (3.17).
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On the other hand, if the system is t¢-mixing, for |i —i'| > ¢ + k, we have the

equivalent of equation (3.22):

/ ( / ]lfl(ckn(f(ajy)))(a(iil)x)]lfI(Ckn(f(aj/y)))<x)dlp(x)) dP(y)
/f*]P (Cr. (f (o7y))) £.P (ckn <f (ij>>> dP(y) (1 + ¥ (l + Ky — h(ky)) -

If, moreover, |j — j'| > £+ k,, we have the equivalent of (3.23):

[ £2(Co (7 (@0) £ (G, (£ (o70))) dP)
< Y0+ ky — h(k (Zf]? Ch,) ) :

Chy,

Then,

var (1) < n* (Y (€4 ky — h(ka)) + (& (£ + K — h(kn)))*] +40°(C+ ka)? Y~ P (C, )’

Chy,

3/2
+2n3(0 + k) (2 + 0 (0 + Ky — h(k (Zf]? C.) ) .

Ck,,

Using the definition of i) we can estimate the first and the second term

) (4 ko = hlkn)) - At Ry — (k)
2 = nte—2kn(Ha(fiP)+e)
<n2 WA (%)2)

Chn
(0+ kK, — h(ky))®

n=4(logn)=%
)2

nt(logn
(0 + k,, — h(k,))e

and

n* (0 + k, — h(k,))™*
n4e—2kn(Hz(f+P)+e)

) (0 + ky — h(ky))?

Ckp,

IN

(0 + Kk, — h(k,))™?
n~*(logn)=2
>2b

n*(logn
(0 + ky, — h(ky))?
The third term and the first part of the fourth term are estimated in the same way

as in (3.32) and (3.31) respectively.
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Finally, for the second part of the fourth term we get

Ck,

3/2
2n3(0 4 k) (0 + Ky — h(ky)) (Z [P (Ckn)z)

Ch,,
23 (0 + k)b (€ + ke — h(kn))

<n2 2. [P (Ckn)2>

< 1/2
n (z £P (Ckn)z)
Cip,
_20%(0 k) (4 K — (ko))"

nie—zkn(Ha(f+P)+e)
202 (0 + k) (€ + Ky — (k)™
n*n=1(logn)=t/2
200+ kp) (0 + ky, — h(ky))™®
(logn)~*/2
2(¢ + ky,)(logn)b/?
(0 + ky — h(kn))

Using the hypothesis that h(k,) = o((logn)?), the definition of k, and choosing
b < 23, we conclude this case as in the proof of the case a-mixing.
Finally, if the Rényi entropy exists, by (3.16) and (3.17) we conclude the proof of the

theorem. O

3.3.1 Rényi entropy of Markov chains

In the sequel we present an entropy’s invariance statement by change of initial dis-
tribution. In particular, we will use this result in the example of the stochastic scrabble

(Subsection 3.3.2) to compute the entropy of the pushforward measure.

Theorem 3.3.5. Let (X,))nen be a Markov chain in a finite alphabet x, with irreducible
and aperiodic transition matric P = [(p;;)] and stationary measure p. For any Markov

measure v with initial distribution m and transition matriz P it holds
Hy(v) = Ha(p) = —logp
where p is the largest eigenvalue of the matriz [(pi;)?].

Proof. First of all, we observe that the second equality is a well-known result (see e.g.
[31] Section 2.2). For the first equality, we will show that

Hy(p) < Hy(v) < Ha(p) -
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For convenience here, we will adopt the following notation for strings of stochastic
processes: { X" =2} ={X, =z, Xos1 = Tpy1, -+, X;m = Ty} for every non-negative
integers n, m such that n < m and for any realization = = z{°.

We will use corollary (3.13) from [28], which states that there exists v € (0, 1) such
that for all £ > 1

sup [v(Xg = ap) — p(ze)] <A~

TREX

A straightfoward computation gives that for every n > k > 1

sup [v(Xg = 2 | Xo = x0) — plax)| <A

T0,TEEX

and for every 2z € y"~**1

(X = a3) — )] < ey p(a})

with ¢ = (inf,, {p(xo)}) ™! < +o0.
Let (an)nen be a non-decreasing and unbounded sequence in n taking values on the
non-negative integers and such that n > a, = o(n). Without loss of generality we will

only consider the strings z{ such that v(XJ = zf) > 0. On the one hand, we get

v(Xg =a5) < v(Xg, =g,)

< ey () + play)] -

Therefore

2 1
logz v(XJ =a0)? < - log(ey™ + 1) + - logzu(x

= %log(cyan +1)+ %log Z Zu

lln—l x"

IN

2
2 log(er™ + 1) + S log [y|™ + -1
Slog(ey™ +1) + —log |x|*™ + —log En e

One can observe that the two first terms in the last line vanish as n — oo. Moreover,

by stationarity of u we obtain

. ]' n \2 n an
lim ﬁlog;u(%n) = lim nlog Z = Ha(p)

which gives us the first inequality.
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On the other hand, first notice that for strings such that v(XJ = zf}) > 0, we have

for n large enough

V(XSL = Ig) = 7(x0) Pagay - P"Eanflzan annxanﬂ v Pry e,
1
> Aan Xn — n
et ﬂ_(xO)p V(Xan _ xan) I/( an xan)
7.‘—(CL’O)pan n an
> ———— [l )(1—~")]

1(q, ) + v

> dp™ [p(ag, ) (1 —y")]
: I
where p 1= Irjgg%) Py and d = 5 W(I;tl)goﬂ'(l'o).

Now

1 2 1 2

_1 n__ ,.n 2 > _1 d (7% _1 n 1 — an

., 108 En v(Xg =a5)" 2 n og (dp™) + o 08 En: (g, ) (1 =)
xy o

2 2 1
> - log (dp®™) + - log(1 — ) + o logz [M(mgn)f

As in the first part of the proof, the first two terms in the last line vanish and the third
one converges to Hy() as n diverges. This last statement concludes the proof.

]

3.3.2 Applications

In what follows we present some applications of the above stated theorem. They come
from some well-known cases of probability’s literature. The first one is a contamination
code that flips to zero some symbols of the sequence, and in some sense shrinks the strings.

The second put a weight on each symbol of y, and has an effect of expanding the strings.

The zero-inflated contamination model

Example 3.3.6. Let (&;);ew be a sequence of i.i.d. Bernoulli random variables taking
values on {0,1}, independently of P, governed by a Bernoulli measure given by u(§; =
1) = 1 — €, where € is a noise parameter in (0,1). Let fe : Q@ — Q be a perturbation given
by fe(2) = (&izi)iew- This defines the zero inflated contamination model (see [22, 30]).
To shorten notation, we write f instead of fe.
Then, if Hy(f.P) > 0, for P @ P-almost every (z,t) € © x ,
T M/ (z,t) < 2 ‘
n—oo logn T Hy(f.P)
Moreover, if the system (Q,P,0) is a-mizing with an exponential decay, for P @ P-

almost every (z,t) € Q x €,

. MI(z,1) 2
lim > = .
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Indeed, for k large enough f~1C), € ]:Sne(k), where m¢(k) is the proportion of 1’s in the
k-cylinder Cy(§). Let p®N denote the product measure that governs the stochastic process
{&}iew. One can observe that by the law of large numbers u®N-almost every realization &
has an e-proportion of zeros, i.e.

lim
k—o0

— €.

mE(k) .
& !

Thus, for p®N-almost every &, it exists €, > 0 such that m.(k) = o(k'*') and we can
apply Theorem 3.3.4.
Moreover, if P is a Bernoulli measure we can calculate explicitly the Rényi entropy

of f:IP. Namely, by using the binomial theorem, for k large enough we get

me(k)

PGP = > <m€;k))p2f(1_p)2(me(k)j)

Cr 7=1
)

Therefore the Rényi entropy is given by

Hy(f,P) = — lim meT(k)log(pz +(1-p)?)

k—o00

= —(1—e)log(p*+(1—p)?) .

We observe that if x = {a1,...,a,} is a finite alphabet and P(X = a;) = p;, by similar

computations (and the multinomial theorem) we obtain

Hy(f.P) = —(1 —€)log (Zzﬁ) = (1= e)Hy(P) .

Therefore, in view of Theorem 3.3.4, as n diverges we get

M/ . 2
logn (1—e)Hy(P) -

The case f = Id is equivalent to € = 0 (no contamination) and if € > 0 we expect to
observe larger values for M (in view of Theorem 3.8.4). This can be summarized with
the following assertion: the more contamination, the more coincidences appear between
the encoded strings. This is a rather intuitive feature of the string matching problem,
which indicates that sequences which had lost much information tends to present more

simalarity.

The highest-scoring matching subsequence

Example 3.3.7. In this example we will consider the case in which a shorter match can be

better scored than a long one, depending on the symbols that compose the matched strings.
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For this we assume that each string is scored according to the symbols that compose it.
In this sense suppose that each letter a € x is associated to a weight v(a) € IN*. We
also denote the score of a string z'* by V(20" ') = ZT:_Olv(zj). If x and y are two
realizations of the x-valued stochastic processes (X,,) and (Y,) (for short notation),

Va(z,y) = o ax {V (") : there exists 1 < m < n such that 2" = z;™" " = y§+m_1}

is the n'™ highest-scoring matching subsequence [9]. The authors also named it stochastic
Scrabble, because of the namesake board game. For two copies independently generated
by the same Markov source P with positive transition probabilities [p;;], they stated the

following result:

) Vi 2
lim =
n—oo logn  —logp
where p € (0,1) is the largest root of det(P—A") =0, with P = [pZ] and AV = [6;;\*?].

One can observe that this result (3.34) can be obtained as particular case of Theo-

PxP-—a.s., (3.34)
2.
ij

rem 3.3.4. Indeed, inspired by [9], we can construct a specific code f that stretches the

sequences depending on the weights of its letters. Formally

foax™m—=
I‘go H xoxo ) xg?lml o o xl o ‘Tnxn oo xn .. (3.35)
v(o) o) o(an)

With this particular code, we get that MJ (x,y) = V,(x,y) and thus to get (3.34) we
need to compute Hy(fP) and check that conditions (i) and (ii) are satisfied.
We recall that if (X,,) is a Markov chain in x = {1,2,...,d}, we can see f(X,) as a
Markov Chain in X, which is a (Y v(i))-sized alphabet, given by
1EX

Y={1n 1o, ..., L), 21,22, .-, 202, - - -, diy oy dya) b

In this context, we will consider that f : x™ — XN. Furthermore, if Q = [Qi;], 1 <1i,j < d
is the transition matriz for (X,,) we get that the transition matriz Q* for the chain f(X,)

on X s gwen by

Q=1 if 1<0<v(i)—land1<ij<d;
i = Qi if 1<4,j<d;
Q=0 otherwise.

Let us give an example. Consider a i.i.d. random sequences over x = {0,1,2}, with
v(0) = 2, v(1) = 2 and v(2) = 1. Note that gdc{v(0),v(1),v(2)} = 1. The transition
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matriz for X = {01, 09,11, 19,2} is

[ 001 0 0 0 |
QOO O QOI 0 Q02
0 0 0 1 0
QIO O Qll 0 Q12

| QQO O QZl 0 Q22 i

Notice that, if vy, = min{v(i)} is the minimum weight, we get for any cylinder C,,
1€X

f—lcvn c ]_'O{WSmJ ’

and since /vy, = o(n**€) for all € > 0, condition (ii) of Theorem 3.5.4 is then satisfied.
We recall that an irreducible and aperiodic positive recurrent Markov chain is an a-mizing
process with exponential decay of correlation (see e.g. Theorem 4.9 in [38]) which implies
condition (i).

Finally, to obtain (3.34), we need to compute Hyo( fIP). As in [9], to assure aperiod-
icity for the encoded process f(X,) we assume that gdc{v(1),v(2),...,v(d)} = 1.

Moreover, by Theorem 3.3.5 we know that the Rényi entropy of its stationary measure
p is given by Ho(p) = —logp, where p is the largest positive eigenvalue of the matriz
[(@)%].1<4,j < > iey V(@) (it was proved in [9] that this p is the same as the one defined
in (3.34)). Moreover, we observe that f.IP is a Markov measure with initial distribution
and transition matriz QQ*, where w is defined by m(i1) = P(Xo =1) and w(i;) = 0 for any
i€ x and 1 < j<w(i). It is important to notice that in general, f.JP is not stationary.

Thus, by Theorem 3.3.5, we have Hy(1) = Ha(fP) and we can combine it with equa-
tion (3.18) in Theorem 3.3.4 to conclude that, for P &P almost every pair of realizations,

as n diverges it holds
Vi 2

— .
logn —logp

We remark that this ezample generalizes [9] to a-mixing processes with exponential decay
and -mizing with polynomial decay, since we can apply Theorem 3.5.4 to this code f,

and then obtain information on the highest scoring V,,.



Chapter 4
Future perspectives

In view of the first part of this work, we intend to study properties of large deviation
for return time in cylinders for Bernoulli shifts. More precisely, using results from [7] and
techniques of [6] we expect to find estimates of large deviation for return time in cylinders
in the case of shifts with a Bernoulli measure.

In Chapter 2, rates functions were estimated with elements of multifractal analysis
found in the work of Pesin and Weiss [47]. Following this, we would like to estimate
exponential rates for dimension and for fast return time in these above mentioned cases.
Let us define:

7(Cp) =min{l <k <n:C,No *C, = 0}

and
70, (2) = inf{k > 1: o"(x) € C,,}.

Then, we are interested in investigating the asymptotic behavior of u (:c L Ton () () < e”(h_€))
and p (2 : 7¢, (z)(x) > €""*9)) | where h denote the entropy of the system.

We would like to extend these results to ¢-mixing systems with 0 < ¢(0) < 0.

We recall that the dynamical system (€2, i, o) is ¢-mixing if there exists a function

¢ : N — R where ¢(¢) converges to zero when ¢ goes to infinity and such that

p(ANo™"B) — u(A)u(B)
sup
AEFy ; BEFY 1(A)

< ¢(f),

for all m,n € IN.

As a second perspective, we propose to study the behavior of the non-aligned segment
score presented by Dembo, Karlin and Zeitouni in [24]. More precisely, let X,..., X,
and Y7, ..., Y, be two sequences of length n, where the letters X; and Y; take values in a
finite alphabet y and ), respectively. Consider a score function f : y x Y — R that is

assigned to each pair of letters (X;,Y;). The non-aligned maximal segment score is given

75
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by
M, (X,Y) = Ugg.?zgm {Z f(Xisr, Yg+k)} .
m>0 k=1
If we suppose that the two sequences are independent: X,..., X, ii.d. following the
distribution law ux and Yi,...,Y, i.i.d following the distribution law py, where pxy and

[y are probabilities measures on X and Y, respectively. Moreover, if we assume that
the expected score per pair is negative and there is positive probability of attaining some

positive pair score, i.e.
Ejyxpy (f) <0 and px X py (f >0) >0,

the authors proved that M, /logn converges almost surely to a positive finite constant
~v(px, ty) defined in terms of appropriate relatives entropy.

As in Theorem 3.3.4, we would like to extend these results to ¥-mixing systems.



Bibliography

[1]

2]

8]

[10]

[11]

M. Abadi and L. Cardeno, Renyi entropies and large deviations for the first-match
function, IEEE Trans. Inf. Theory(61), 4 (2015), 1629-1639.

M. Abadi, L. Cardeno and S. Gallo Potential well spectrum and hitting time in
renewal processes, J. Stat. Phys. 159 (2015), no. 5, 1087-1106.

M. Abadi, S. Gallo and E. Rada, The shortest possible return time of B-mizing
processes. IEEE Trans. Inf. Theory(64), 7 (2018), 4895-4906.

M. Abadi and R. Lambert, The distribution of the short-return function, Nolinearity
(26) 5 (2013), 1143-1162.

M. Abadi and R. Lambert, From the divergence between two measures to the shortest

path between two observables, To appear on Ergod. Theory Dyn. Syst.

M. Abadi and S. Vaienti, Large deviations for short recurrence, Discrete and Conti-
nuous Dynamical Systems-Series A,21 (2008), no. 3, 729-747.

M. Abadi and N. Vergne, Sharp Error Terms for Return Time statistics under mizing
conditions, Journal of Theoretical Probability, 22, no. 1, (2009), 18-37.

V. Afraimovich, J.-R. Chazottes and B. Saussol, Point-wise dimensions for Poincaré
recurrence associated with maps and special flows, Disc. Cont. Dyn. Syst. 9 (2003),
no. 2, 263-280. (2003).

R. Arratia, P. Morris and M. Waterman, Stochastic scrabble: Large deviations for
sequences with scores, J. Appl. Prob. 25 no 1 (1988), 106-119.

R. Arratia and M. Waterman, An Erdos-Rényi Law with Shifts, Adv. Math. 55
(1985), 13-23.

H. Aytac, J. Freitas, and S. Vaienti, Laws of rare events for deterministic and random
dynamical system, Trans. Amer. Math. Soc. 367 (2015), 8229-8278.

77



[12]

[13]

[15]

[16]

[17]

[18]

[19]

[20]

[26]

78

A. Ayyer and M. Stenlund, Fxponential decay of correlations for randomly chosen hy-
perbolic toral automorphisms, Chaos Interdiscip. J. Nonlinear Sci. 17 043116 (2007).

V. Baladi, Positive Transfer Operators and Decay of Correlations, Advances Series
in Nonlinear Dynamics, World Scientific Publishing Co. Inc., River Edge, NJ, 16,
(2000).

V. Baladi and L.-S. Young, On the spectra of randomly perturbed expanding maps,
Comm. Math. Phys., 156 (1993), 355-385.

L. Barreira, Dimension and Recurrence in Hyperbolic Dynamics, (2008).

L. Barreira, Ergodic theory, hyperbolic dynamaics and dimension theory, Universitext,
Springer, Heidelberg, (2012).

L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence,
Communications in Mathematical Physics, 219 (2001), 443-463.

V. Barros, L. Liao and J. Rousseau, On the shortest distance between orbits and the
longest common substring problem, Adv. Math., 334 (2019), 311-339.

M. Boshernitzan, Quantitative recurrence results, Invent. Math., 113 (1993), 617-631.

J.-R. Chazottes and P. Collet, Poisson approximation for the number of visits to balls
in nonuniformly hyperbolic dynamical systems, Ergodic Theory Dynam. Systems, 33
(2010), 49-80.

J.-R. Chazottes and R. Leplaideur, Fluctuations of the Nth return time for Azxiom A
diffeomorphisms, Discrete Contin. Dyn. Syst., 13 (2005), 399-411.

P. Colett, A. Galves and F. Leonardi, Random perturbations of stochastic processes
with unbounded variable length memory, Electron. J. Probab. 13, no 48 (2008), 1345-
1361.

A. Coutinho, J. Rousseau and B. Saussol, Large deviation for return times, Nonlin-
earity 31 no. 11 (2018), 5162-5179.

A. Dembo, S. Karlin and O. Zeitouni, Critical phenomena for sequence matching with
scoring, Ann. Probab., 22, no. 4, (1994), 1993-2021.

A. Dembo and I. Kontoyiannis, The asymptotics of waiting otimes between stationary
processes, allowing distortion, Ann. Appl. Probab. 9, no 2 (1999), 413-429.

A. Dembo and O. Zeitoune, Large deviations techniques and applications, (1992).



[27]

28]

[29]

[31]

[32]

[34]

[35]

[37]

[38]

[39]

[40]

79

D. J. Feng and J. Wu, The Hausdorff dimension sets in symbolic spaces, Nonlinearity,
14 (2001), 81-85.

P. Ferrari and A. Galves, Acoplamento e Processos FEstocdsticos, 21° Coloquio
Brasileiro de Matematica, IMPA-RJ (1997).

A. Galves and B. Schmitt, Inequalities for hitting times in mixing dynamical systems,
Random Comput. Dyn., 5 (1997), 337-348.

N. Garcia and L. Moreira, Stochastically perturbed chains of variable memory, J.
Stat. Phys 159, no 5 (2015), 1107-1126.

N. Haydn and S. Vaienti, The Rényi entropy function and the large deviation of short
return times, Ergodic Theory Dynam. Systems 30 (2010), no. 1, 159-179.

H. G. E. Hentschel and 1. Procaccia, The Infinite Number of Generalized Dimensions
of Fractals and Strange Attractors, Physzca D, 8 (1983), 435-444.

S. Jain and R.K. Bansal, On large deviation property of recurrence times. Interna-
tional Symposium on Information Theory Proceedings (ISIT), (2013), 2880-2884.

B. J. James, Probabilidade: um curso em nivel intermedidrio. IMPA, Projeto Eu-
clides, (2004).

M. Kac, On the notion of recurrence in discrete stochastic processes, Bull. A.M.S.,
53 (1947), 1002-1010.

I. Kontoyiannis, P. H. Algoet, Y. M. Suhov and A. J. Wyner, Nonparametric Entropy
Estimation for Stationary Processes and Random Fields, with Applications to English
Text, IEEE Trans. Inform. Theory 44, no 3 (1998), 1319-1327.

R. Leplaideur and B. Saussol, Large deviations for return times in non- rectangle sets
for Aziom A diffeomorphisms, Discrete Contin. Dyn. Syst., 22 (2008), 327-344.

D. A. Levin, Y. Peres and E.L. Wilmer, Markov chains and mixing times, American
Mathematical Society, (2009).

T. Luczak and W. Szpankowski, A suboptimal lossy data compression based on ap-
proximate pattern matching, IEEE Trans. Inform. Theory 43 (1997), 1439-1451.

P. Marie and J. Rousseau, Recurrence for random dynamical systems, Discrete Con-
tin. Dyn. Syst., 30 (2011), 1-16.



[41]

[42]

[43]

[44]

[45]

[46]

[47]

[50]

[51]

[52]

[53]

80

C. Neuhauser, A Phase Transition for the Distribution of Matching Blocks, Combi-
natorics, Probability and Computing, 5(2), (1996), 139-159.

D. S. Ornstein and B. Weiss, Entropy and data compression schemes, IEEE Trans.
Inform. Theory 39, no. 1 (1993), 78-83.

L. Peng, B. Tan and B.-W. Wang, Quantitative Poincaré recurrence in continued
fraction dynamical system, Sci. China Math., 55 (2012), 131-140.

Y. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Ap-

plications, Chicago Lectures in Mathematics, University of Chicago Press, (1997).

Y. Pesin and A. Tempelman, Correlation Dimension of Measures Invariant Under
Group Actions, Random and Computational Dynamics, 3:3 (1995), 137-156.

Y. Pesin and H. Weiss, On the Dimension of Deterministic and Random Cantor-like
Sets, Symbolic Dynamics, and the Eckmann-Ruelle Conjecture, Comm. Math. Phys.,
182 (1996), 105-153.

Y. Pesin and H. Weiss, A multifractal analysis of equilibrium measures for conformal
expanding maps and Moran-like geometric constructions, J. Stat. Phys., 86 (1997),
233-275.

J. Rousseau, Récurrence de Poincaré pour les observations, PhD Thesis, University
of Brest, (2010).

J. Rousseau, Hitting time statistics for observations of dynamical systems, Nonlin-
earity 27 (2014), 2377-2392.

D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems, 2
(1982), 99-107.

B. Saussol, Recurrence rate in rapidly mizing dynamical systems, Discrete Contin.
Dyn. Sysr., 15, no. 1 (2006), 259-267.

B. Saussol, An introduction to quantitative Poincaré recurrence in dynamical systems,
Rev. Math. Phys., 21 (2009), no. 8, 949-979.

B. Saussol and J. Wu, Recurrence spectrum in smooth dynamical system, Nonlinear-
ity, 16 (2003), 1991-2001.

B. Saussol, Formalisme thermodynamique, analyse multifractale et récurrence de

Poincaré dans les systémes dynamiques hyperboliques, Brest, (2009).



81

[55] B. Saussol, S. Troubetzkoy and S. Vaienti, Recurrence, dimensions and Lyapunov
exponents, J. Stat. Phys. 106 (2002), 623-634.

[56] C. Shalizi, Advanced Probability II, Spring, (2007).

[57] M. Viana, Stochastic dynamics of deterministic systems, Brazilian Math. Colloquium,

IMPA, (1997).

[58] M. Viana and K. Oliveira, Fundamentos de Teoria Ergddica - Rio de Janeiro: SBM,
(2014).

[59] A. J. Wyner, More on recurrence and waiting otimes, Ann. Appl. Probab. 9, no 3
(1999), 780-796.

[60] A. Wyner and J. Ziv, Some asymptotic properties of the entropy of a stationary er-
godic data source with applications to data compression, IEEE Trans. Inform. Theory
35, no 6 (1989), 1250-1258.

[61] L.-S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam.
Systems 2 (1982), 109-124.



Universidade Federal da Bahia - UFBA

Instituto de Matemética e Estatistica / Colegiado da Pés-Graduagao em Matematica

Av. Adhemar de Barros, s/n, Campus Universitario de Ondina, Salvador-BA
CEP: 40170-110
<http://www.pgmat.ufba.br>



